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Anonymization of Sensitive Quasi-Identifiers for
l-Diversity and t-Closeness
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Abstract—A number of studies on privacy-preserving data
mining have been proposed. Most of them assume that they
can separate quasi-identifiers (QIDs) from sensitive attributes.
For instance, they assume that address, job, and age are
QIDs but are not sensitive attributes and that a disease name
is a sensitive attribute but is not a QID. However, all of
these attributes can have features that are both sensitive
attributes and QIDs in practice. In this paper, we refer to
these attributes as sensitive QIDs and we propose novel privacy
models, namely, (l1, ..., lq)-diversity and (t1, ..., tq)-closeness,
and a method that can treat sensitive QIDs. Our method
is composed of two algorithms: an anonymization algorithm
and a reconstruction algorithm. The anonymization algorithm,
which is conducted by data holders, is simple but effective,
whereas the reconstruction algorithm, which is conducted by
data analyzers, can be conducted according to each data
analyzer’s objective. Our proposed method was experimentally
evaluated using real data sets.

Index Terms—privacy, data mining, l-diversity, t-closeness

I. INTRODUCTION

In recent years, numerous organizations have begun to
provide services that collect large amounts of personal
information. This personal information can be shared with
other organizations so that they can subsequently create
new services. Moreover, shared data are also very important
for researchers [1]. We call an organization that has an
original database a “data holder.” We assume that the data
holder wants to anonymize and publish the database. We call
organizations that receive and use the anonymized database
“data analyzers.”

Many studies regarding anonymized databases of personal
information have been proposed. Most existing methods
consider that the data holder has a database in the form
of explicit identifiers, quasi-identifiers (QIDs), or sensitive
attributes, where explicit identifiers are attributes that ex-
plicitly identify individuals (e.g., name), QIDs are attributes
that could be potentially combined with other directories to
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TABLE I: Patient Table

Name Age Address Job Disease
Alex 41 13021 Artist Fever

Becky 41 17025 Writer Obesity
Carl 51 13021 Lawyer Fever

Diana 51 14053 Lawyer Obesity
Ewen 51 14003 Lawyer HIV
Flora 51 16005 Lawyer HIV
Glen 51 14003 Lawyer Fever
Helen 51 16005 Lawyer Obesity

identify individuals (e.g., zip code and age), and sensitive
attributes are personal attributes of a private nature (e.g.,
disease and salary) [2].

Even if we remove all of the explicit identifiers from a
database, disclosure may still occur. k-Anonymity [3], l-
diversity [4], and t-closeness [5] are some of the major
privacy models for preventing the problem. Many studies
on these privacy models have been proposed, such as [6],
[7], [8], [9], [10]. First, we provide a brief overview of k-
anonymity, l-diversity, and t-closeness, and then we describe
the problem that this paper addresses.
k-Anonymity ensures that there are k records or more

that have the same QID values so that k-anonymity can
protect against “identity disclosure.” For example, Table I
shows the original patient database that a hospital wants
to publish, and Table II(a) shows one result of k-anonymity
when we assume that Name is an explicit identifier, Disease
is a sensitive attribute, other attributes are QIDs, and k is set
to 2. Even if the data analyzer knows Ewen’s QID values,
he or she cannot know whether the fifth record or the sixth
record is Ewen’s record.

However, in some cases, k-anonymity cannot protect
against “attribute disclosure.” For example, in Table II(a),
the data analyzer can know that Ewen surely has HIV
because the fifth and the sixth records have the same disease
values.
l-Diversity ensures that there are at least l “well-

represented” sensitive values and protects against attribute
disclosure. There are several definitions of the term “well-
represented.” For example, frequency l-diversity ensures that
data analyzers cannot specify each individual’s sensitive
values with a confidence greater than 1/l. Table II(b) shows
one result of frequency l-diversity. The data analyzer cannot
know whether HIV or fever is Ewen’s disease.

However, l-diversity does not consider the rareness of
each sensitive value. For example, in Table I, the probability
distribution of fever, obesity, and HIV in the whole table is
{3/8, 3/8, 2/8}. On the other hand, the data analyzer can
know from Table II(b) that the probability distribution of
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TABLE II: Anonymization Results of Existing Studies

(a) 2-Anonymity

Age Address Job Disease
41 13*-17* * Fever
41 13*-17* * Obesity
51 13*-14* Lawyer Fever
51 13*-14* Lawyer Obesity
51 14*-16* Lawyer HIV
51 14*-16* Lawyer HIV
51 14*-16* Lawyer Fever
51 14*-16* Lawyer Obesity

(b) 2-Diversity

Age Address Job Disease
41 13*-17* * Fever
41 13*-17* * Obesity
51 13*-14* Lawyer Fever
51 13*-14* Lawyer Obesity
51 14003 Lawyer HIV
51 16005 Lawyer HIV
51 14003 Lawyer Fever
51 16005 Lawyer Obesity

(c) 0.25-Closeness

Age Address Job Disease
41 13*-17* * Fever
41 13*-17* * Obesity
51 13*-16* Lawyer Fever
51 13*-16* Lawyer Obesity
51 13*-16* Lawyer HIV
51 13*-16* Lawyer HIV
51 13*-16* Lawyer Fever
51 13*-16* Lawyer Obesity

the sensitive value of Ewen is {1/2, 0, 1/2}. These two
probability distributions are widely different. t-Closeness
can ensure that the distance between the probability dis-
tribution of sensitive values in the records that have the
same QID values and the probability distribution of sensitive
values in the whole table is lower than threshold t. Table
II(c) shows the result of 0.25-closeness. The data analyzer
knows from the table that the probability distribution of the
sensitive value of Ewen is {1/3, 1/3, 1/3}, which is near the
distribution in the whole table. Moreover, t-closeness can
consider the distance between sensitive values in calculating
the distance between the two probability distributions.

However, in this case, we have a problem that should
be addressed. Another data analyzer who knows Ewen’s
disease is HIV but does not know his age and job can
know from Table II(b) that Ewen’s age is 51 and that he
works as a lawyer. This is because the values of Disease
are protected by frequency l-diversity, but other attributes
are not protected. In practice, the age, address, and job
of a person might be considered as private information.
In this case, we should consider that these attributes have
features of both QIDs and sensitive attributes. We refer to
such attributes as “sensitive QIDs.” Our proposed method
can protect each sensitive QID Sj by lj-diversity for all
j = 1, . . . , q, where q represents the number of sensitive
QIDs.

Our contributions are as follows: (1) we propose new pri-
vacy models, namely, (l1, . . . , lq)-diversity and (t1, . . . , tq)-
closeness, which can treat databases containing several
sensitive QIDs; (2) we propose a simple but effective gen-
eral anonymization algorithm for (l1, . . . , lq)-diversity and
(t1, . . . , tq)-closeness, which is conducted by data holders;
and (3) we propose a novel reconstruction algorithm that can
decrease the reconstructed error between the reconstructed
and the original values according to each data analyzer’s
purpose.

The rest of this paper is organized as follows. Privacy and
utility as used in this paper are defined in Section II. Section
III discusses the related methods. Section IV presents the
novel privacy models. Section V presents the design of our
algorithm. The results of our simulations are presented in
Section VI. Section VII discusses several design issues in
our method. Finally, Section VIII concludes the paper.

II. BACKGROUND

A. Assumptions

A data holder has a large database that contains personal
information. The personal information may contain dozens
of attributes. The types of attributes are “explicit identifiers”,
“non-sensitive QIDs”, “sensitive QIDs”, “non-QID sensitive
attributes”, and “non-QID non-sensitive attributes”. Explicit
identifiers are attributes that explicitly identify individuals,
non-sensitive QIDs and sensitive QIDs are attributes that
could be potentially combined with other directories to iden-
tify individuals, and sensitive QIDs and non-QID sensitive
attributes are personal attributes of a private nature. We
refer to the attribute values of sensitive QIDs and non-QID
sensitive attributes as “sensitive values.”

Although the specific goals of data mining can be dif-
ferent, knowledge of the probability distributions of the
original data is generally required [11], [12]. The probability
distribution of the original data can be represented by a
cross tabulation (also called a contingency table or a multi-
dimensional histogram). Following existing papers (e.g.,
[13], [11], [12], [14]), we aim to maintain the knowledge
of the probability distribution of the original data.

B. Existing Privacy Models

Let T and T ∗ denote the original and anonymized
databases, respectively. Assume that T contains explicit
identifiers, non-sensitive QIDs, and non-QID sensitive at-
tributes only.

First we define an equivalence class as follows:

Definition 1 (Equivalence class) We denote a set of
records that contains all the same non-sensitive QID values
as an equivalence class.

1) l-Diversity: There are several definitions of l-diversity.
We introduce the two most popular ones.

Definition 2 (Frequency l-diversity) The anonymized
database T ∗ satisfies the frequency l-diversity if and only if
the relative frequency of each of the sensitive values does
not exceed 1/l for each equivalence class in T ∗.

For each equivalence class in Table II(b), there are two
sensitive values and the relative frequency of each of the
sensitive values is 1/2. Therefore, Table II(b) satisfies the
frequency 2-diversity.

On the other hand, suppose that the attribute of Age is
a (non-QID) sensitive attribute and that other attributes are
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(non-sensitive) QIDs in Table II(b). In this case, there are
eight equivalence classes that consist of one row. Therefore,
Table II(b) does not satisfy the frequency 2-diversity in this
case.

Definition 3 (Entropy l-diversity) Let D(s) represent
the domain of a non-QID sensitive attribute s. Let n(v) rep-
resent the number of occurrences of value v in a non-QID
sensitive attribute of records in an equivalence class. The
anonymized database T ∗ satisfies the entropy l-diversity if
and only if the following equation holds for all equivalence
classes:

−
∑

v∈D(s)

p(v) log(p(v)) ≥ log(l),

where p(v) = n(v)/
∑

w∈D(s)

n(w).
(1)

2) t-Closeness:

Definition 4 (t-Closeness) Let d represent the number of
possible values of a non-QID sensitive attribute, and let the
distribution of the sensitive values in the whole database
be A = (a1, . . . , ad). Let the distribution of the sensitive
values in an equivalence class that is inferred from the
original distribution of the equivalence class and the whole
distribution of the database be B = (b1, . . . , bd).

The anonymized database T ∗ satisfies t-closeness if and
only if the following equation holds for all equivalence
classes:

D[A,B] ≤ t, (2)

where D[A,B] represents the earth mover’s distance
(EMD) [15] of the distributions A and B.

D(A,B) measures the cost of transforming distribution
A to distribution B by moving the distribution mass be-
tween them. The cost of transforming a unit mass from
element i of A to element j of B is defined as the ground
distance dij between i and j.

Definition 5 (Earth mover’s distance (EMD)) Let A =
(a1, . . . , aq) and B = (b1, . . . , bq) be probability distribu-
tions, and let di,j be the ground distance between element i
of A and element j of B. We want to find F = [fi,j ], where
fi,j represents the flow from element i of A to element j of
B that minimizes

WORK(A,B, F ) =

q∑
i=1

q∑
j=1

di,jfi,j ,

subject to the constraints

fi,j ≥ 0, 1 ≤ i ≤ q, 1 ≤ j ≤ q

ai −
q∑

j=1

fi,j +

q∑
j=1

fj,i = bi, 1 ≤ i ≤ q

q∑
i=1

q∑
j=1

fi,j =

q∑
i=1

ai =

q∑
i=1

bi = 1.

When the optimal F is found by solving the optimization
problem, the EMD is defined as

D[A,B] = WORK(A,B, F ).

C. Utility Metrics

Each attribute value in the original data set is compared
to each of the perturbed versions of that value in the
corresponding positions in some cases. However, when we
want to create a (multidimensional) histogram, we can use
the difference between the distributions of the reconstructed
and original histograms to measure the utility much more
directly. Many existing studies have included anonymized
histograms [16], [17], [18], [19], [14], [20], [21], [22],
but they cannot ensure (l1, . . . , lq)-diversity or (t1, . . . , tq)-
closeness. These studies use utility metrics to calculate
the distance between the reconstructed and the original
distributions.

We use L1 distance, L2 distance, and Hellinger distance
as utility metrics, as these can be used to calculate the
distance between two distributions. L1 distance is the first-
order version of the norm of the difference; it is very
common in statistics [23]. L2 distance is also very common;
it has been widely used as a utility metric for privacy-
preserving data mining [17], [18], [14]. The advantage
of using L1 and L2 distances is that they are easy for
researchers to understand.

However, because these utility metrics do not consider
the magnitude of each value, we need another utility metric.
For example, consider the distributions A1, B1, A2, and B2

with the values {10, 100}, {10, 80}, {10, 25}, and {10,
5}, respectively. The L1 distance between A1 and B1 is 20
(= |10 − 10| + |100 − 80|). The L1 distance between A2

and B2 is also 20 (= |10− 10|+ |25− 5|). The L2 distance
between A1 and B1 is 20 (=

√
(10− 10)2 + (100− 80)2).

The L2 distance between A2 and B2 is also 20 (=√
(10− 10)2 + (25− 5)2). That is, the distances between

A1 and B1 and between A2 and B2 are the same for L1
and L2. This is because the difference between the first
attributes is 0 for all distributions and because the difference
between the second attributes of A1 and B1 is the same as
the difference between the second attributes of A2 and B2

(i.e., 20). However, the value of the second attributes of
A1 is only 1.25 times that of B1, whereas the value of the
second attributes of A2 is 5 times that of B2.

Hellinger distance, which preserves the properties of a
distance metric (non-negativity, coincidence, symmetry, and
triangle inequality) [24], has often been used to quantify
two distributions [25], [26]. It can be considered as the
L2 distance between the square roots of two distributions.
Hellinger distance can be used to consider the magnitude of
each value because the difference between the square roots
of two small values is larger than the difference between
the square roots of two large values—even if those values
have the same absolute difference. The Hellinger distance
between A1 and B1 is 0.74, whereas that between A2 and
B2 is 1.95. The advantages of using Hellinger distance are
that it includes the magnitude of each value and that it is
relatively easy to understand because it is a variation of the
L2 distance, which is a very common metric.

We now introduce the notations used in this paper.
Database T has N records. Let ri denote the ith record
of T , let S denote the set of all attributes of T except the



4

explicit identifiers, and let q denote the size of S.
Let D(s) denote the domain of possible values that can

appear in attribute s, and let S′ be the set of attributes that
a data analyzer wants to analyze; therefore, S′ is a subset
of S. The size of S′ is q′. Let S′

j be the jth attribute of S′.

Definition 6 (Target distribution) Let C denote all of the
combinations of the elements of D(S′

1), . . . , D(S′
q′); that is,

C = D(S′
1)×D(S′

2)× . . .×D(S′
q′). (3)

Let cm denote the mth element of C, and let cm[i] denote
the ith attribute value of cm.

Example 1 Suppose that the data analyzer wants
to analyze the relationships between Job and Disease,
and suppose that D(Job) is {Artist, Writer, Nurse} and
D(Disease) is {Fever, HIV, Cancer}. In this case, C =
{Artist, Writer, Nurse} × {Fever, HIV, Cancer}. Therefore,
c1 = (Artist, Fever), c2 = (Artist, HIV), . . ., c9 = (Nurse,
Cancer). The value of c1[1] and c1[2] is Artist and Fever,
respectively.

A data analyzer reconstructs the distribution of values for
each cm (m = 1, . . . , |C|). Let xm denote the number of
records that are categorized to cm according to the values of
their attributes. The value xm is unknown to data analyzers.
Moreover, let x̂m denote the reconstructed number of the
values of xm.

Here, we define these utility metrics. A data analyzer
reconstructs the distribution of values for each cm (m =
1, . . . , |C|). Let xm denote the number of records that
are categorized to cm according to the values of their
attributes. The value of xm is unknown to the data analyzers.
Moreover, let x̂m denote the reconstructed number of the
values of xm.

Definition 7 (L1 distance)

L1 distance =

|C|∑
m=1

|xm − x̂m|. (4)

Definition 8 (L2 distance)

L2 distance =

√√√√ |C|∑
m=1

(xm − x̂m)2. (5)

Definition 9 (Hellinger distance)

Hellinger distance =
1√
2

√√√√ |C|∑
m=1

(
√
xm −

√
x̂m)2. (6)

III. RELATED WORK

A. k-Anonymity, l-diversity, and t-closeness

Algorithms for k-anonymity, l-diversity, and t-closeness
have been widely studied in the area of privacy-preserving
data mining such as [6], [7], [8], [9], [10].

Although k-anonymity can protect individual identities,
in some cases it cannot protect the sensitive attributes of
these individuals by attribute-linkage attacks.

Although many algorithms for l-diversity and t-closeness
have been proposed, most of these assume that they can

separate sensitive attributes from QIDs. For example, Soria-
Comas et al. [27] proposed a method called t-closeness
aware microaggregation, which generates t-closeness data
sets by refining the microaggregation algorithm usually
used for k-anonymity. Their method is an efficient method;
however, they [27] assume that they can separate sensitive
attributes from QIDs.

Shi et al. [28] introduced a new type of attribute called
“quasi-sensitive attributes,” which are not sensitive by them-
selves, but may become sensitive when used in combination.
They also assume that they can separate (quasi-) sensitive
attributes from QIDs.

Terrovitis et al. [29] proposed algorithms for k-anonymity
that can be applied to a situation in which several attributes
have features of both sensitive attributes and QIDs. How-
ever, their method cannot be applied to l-diversity or t-
closeness in the said situation as is claimed in their paper.

Soria-Comas et al. [30] proposed an algorithm called IR-
SWAP for k-anonymity. It generates different anonymized
databases for each data analyzer. They [30] assume that they
can separate QIDs and sensitive attributes in each execution
of IR-SWAP on the basis of the knowledge of each data
analyzer.

Wan et al. [31] had the same motivation as our study and
proposed a concept named FF-anonymity, which emphasizes
that treating attributes that have a feature of both QIDs
and sensitive attributes is important. However, they have
not proposed their anonymization algorithm yet.

Jin et al. [11] defined versatile privacy rules that can
treat attributes with a feature of both QIDs and sensitive
attributes, although they did not provide the notion of
(l1, . . . , lq)-diversity and (t1, . . . , tq)-closeness. They pro-
posed two algorithms named Guardian Decomposition (GD)
and Utility-Aware Decomposition (UAD) for satisfying the
versatile privacy rules. However, UAD completely loses the
relationships between attributes when the corresponding val-
ues of l1, . . . , lq are more than 1 or when the corresponding
values of t1, . . . , tq are less than 1. For example, if we want
to anonymize Table I so that it satisfies (2, 2, 2, 2)-diversity,
the result is four databases that have only one attribute
each: Age, Address, Job, and Disease. All the records of
these databases are randomized. Therefore, the data analyzer
cannot analyze any attribute correlations. The same problem
can occur in GD. Moreover, the algorithm of GD may get
caught in an infinite loop if two or more values of l1, . . . , lq
are more than 1 or if the corresponding values of t1, . . . , tq
are less than 1.

Liu et al. proposed the Rating method [32] for l-diversity,
which can anonymize databases even when there are several
sensitive QIDs. This method publishes the Attribute Table
(AT) and the ID Table (IDT) based on each sensitive
coefficient, which is similar to lj in this paper, of dif-
ferent attributes. In the Rating method, each tuple of the
anonymized table has several values, like in our proposed
method. However, our proposed method adds sensitive QID
values completely randomly, whereas the Rating method
adds values based on other records’ sensitive QID values.
Therefore, in this method, each reconstructed value is af-
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fected heavily by other reconstructed values; that is, the
reconstructed values of the Rating method are much smaller
than the original values when the original values are larger
than the average value, and vice versa.

Ye et al. [33] proposed a method for l-diversity that
can anonymize databases with multiple sensitive attributes.
However, they assume that they can separate QIDs and
sensitive attributes. Moreover, the method breaks the rela-
tionship between sensitive attributes. For example, if they
consider that the attributes of salary and disease are sen-
sitive, then they cannot conduct a clear analysis of the
relationship between salary and disease.

As pointed out by Cao et al. [34], even if the privacy
parameter t of t-closeness is set to a fixed value, the
way people feel can depend on the situation. For example,
assume a database with sensitive attributes HIV and fever,
and we set t to 0.1. If the sensitive attribute distribution
of the whole database between them is (0.5, 0.5), the ratio
of HIV in an equivalence class can be up to 0.6, i.e.,
the probability of HIV can increase by up to 1.2 times
(from 0.5 to 0.6). On the other hand, if the distribution of
the whole database is (0.01, 0.99), the ratio of HIV in an
equivalence class can be up to 0.11, i.e., the probability of
HIV can increase by up to 11 times (from 0.01 to 0.11).
People might feel that the privacy is less protected in the
latter situation than in the former situation, even though the
privacy parameter t is set to the same value.

However, this type of problem can occur in any privacy
models. Although Cao et al. proposed an enhanced β-
likeness to tackle the limitation of t-closeness, the way
people feel could still depend on the situation. For example,
assume a database with sensitive attributes HIV and fever,
and we set β to 0.7. If the sensitive attribute distribution
of the whole database between them is (0.5, 0.5), the ratio
of HIV in an equivalence class can be up to 0.846. On
the other hand, if the distribution of the whole database is
(0.01, 0.99), the ratio of HIV in an equivalence class can
be up to 0.017. People might feel that the privacy is less
protected in the former situation (the probability of HIV is
increased from 0.5 to 0.846) than in the latter situation (the
probability of HIV is increased from 0.01 to 0.017), even
though the privacy parameter β is set to the same value.
Therefore, we should determine the value of the privacy
parameter in considering the worst-case situation, regardless
of which privacy model we use. In this paper, we target l-
diversity and t-closeness because these models have been
widely studied for protecting privacy.

B. Differential Privacy

Differential privacy [35] makes user data anonymous
by adding noise to a data set so that an attacker cannot
determine whether or not a particular point of user data is
included.

Recently, several studies for the generation of differen-
tially private data sets have been proposed. Soria-Comas
et al. [14] showed that the amount of noise to be added
for the generation of differentially private data sets can
be reduced using a microaggregation-based k-anonymity

method. In their method, they first obtain a k-anonymous
database and then generate a differentially private database
by adding noise to each equivalence class. Sánchez et al.
[36] proposed a more efficient algorithm and proved that
the algorithm can reduce information loss.

Several studies for an anonymized histogram publication
with differential privacy have also been proposed [16], [21],
[19]. However, if the database has many attributes, it is
difficult to apply these studies to a histogram publication.
Recent studies such as [22],[18],[17] proposed algorithms
that prevent the high cost of the calculation. However, they
do not target l-diversity or t-closeness.

C. Randomization for Association Rule Mining
Rizvi et al. [37] proposed the MASK method, which

preserves privacy for frequent itemset mining. Guo et al.
[12] analyzed the effectiveness of MASK. In their studies,
the value of an attribute is represented by a random vector
X = {xi}, such that xi = 0 or 1. MASK generates the
randomized vector by computing yi = xi ⊕ ri, where ri
takes a value of 0 with probability p and 1 with probability
(1−p). In other words, MASK changes the original value to
another value with some probability. The number of values
is not changed.

In contrast, our proposed method does not change the
original value but adds several random values to each
attribute value for realizing (l1, . . . , lq)-diversity. In regard
to (t1, . . . , tq)-closeness, our proposed method changes the
original value with some probability and also adds several
random values. Moreover, optimization of the parameters
for (l1, . . . , lq)-diversity and (t1, . . . , tq)-closeness and the
proofs are also our contribution.

IV. PROPOSED PRIVACY MODELS
To simplify our discussions, from here on, we assume

that a database consists of explicit identifiers and sensitive
QIDs only. However, our method can be used if we assume
that databases contain not only explicit identifiers and sen-
sitive QIDs but also non-sensitive QIDs, non-QID sensitive
attributes, and non-QID non-sensitive attributes. We discuss
this in Section VII.

Let S be the set of sensitive QIDs in a database, let q be
the number of sensitive QIDs (i.e., q = |S|), and let E(r, s)
denote the value of the QID s of record r in database T .

Let Sj be the jth sensitive QID of S. Let D(Sj) denote
the domain of possible values that can appear in Sj .

Then, we define our novel definition of an equivalence
class.

Definition 10 (Equivalence Class for Sj) We denote a
set of records that contains all the same sensitive QID values
except for Sj as an equivalence class for Sj .

Example 2 There are four equivalence classes for S4

in Table II(b). Equivalence classes for S4 are the same as
the original equivalence classes if we consider that S4 is
a non-QID sensitive attribute and that other attributes are
non-sensitive QIDs.

On the other hand, there are four equivalence classes
each for S1, S2, and S3.
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A. (l1, . . . , lq)-Diversity

We define one of our novel privacy models: (l1, . . . , lq)-
diversity.

Definition 11 (Frequency [[l, j]]-diversity) The
anonymized database T ∗ satisfies frequency [[l, j]]-diversity
if and only if the relative frequency of each of the sensitive
values does not exceed 1/l for each equivalence class for
Sj in T ∗.

Definition 12 (Frequency (l1, . . . , lq)-diversity) The
anonymized database T ∗ satisfies frequency (l1, . . . , lq)-
diversity if and only if frequency [[lj , j]]-diversity is satisfied
for all j = 1, . . . , q.

Example 3 Table II(b) satisfies frequency [[1, 1]]-
diversity, frequency [[1, 2]]-diversity, frequency [[1, 3]]-
diversity, and frequency [[2, 4]]-diversity; that is, it satisfies
(1, 1, 1, 2)-diversity.

We can also provide entropy-(l1, . . . , lq)-diversity.

Definition 13 (Entropy [[l, j]]-diversity) Let nj(v) repre-
sent the number of occurrences of value v in the jth sensitive
QID of records in an equivalence class for Sj . T ∗ satisfies
entropy [[l, j]]-diversity if and only if the following equation
holds for all equivalence classes for Sj:

−
∑

v∈D(Sj)

pj(v) log(pj(v)) ≥ log(l),

where pj(v) = nj(v)/
∑

w∈D(Sj)

nj(w).
(7)

Definition 14 (Entropy-(l1, . . . , lq)-diversity) The
anonymized database T ∗ satisfies entropy (l1, . . . , lq)-
diversity if and only if entropy [[lj , j]]-diversity is satisfied
for all j = 1, . . . , q.

B. (t1, . . . , tq)-Closeness

We consider distance functions other than EMD to calcu-
late the distance; however, the original paper on t-closeness
[5] uses EMD as the distance function, and EMD is the most
common choice for calculating t-closeness [27]. There-
fore, we use EMD as the distance function for calculating
(t1, . . . , tq)-closeness.

Definition 15 ([[t, j]]-Closeness) Let dj represent the size
of D(Sj), and let the distribution of the elements of D(Sj)
in the whole database be Aj = (a1, . . . , adj

). Let the
distribution of the sensitive values of Sj in an equivalence
class for Sj that is inferred from the original distribution
of the equivalence class for Sj and the whole distribution
of the database be Bj = (b1, . . . , bdj

).
The anonymized database T ∗ satisfies [[t, j]]-closeness if

and only if the following equation holds for all equivalence
classes for Sj in T ∗:

D[Aj ,Bj ] ≤ t, (8)

where D[Aj ,Bj ] represents the EMD of the distributions
Aj and Bj .

Note that inference can be diverse, but the inference we
considered in this paper is that by Bayes’ theorem.

Definition 16 ((t1, . . . , tq)-Closeness) The anonymized
database T ∗ satisfies (t1, . . . , tq)-closeness if and only if
[[tj , j]]-closeness is satisfied for all j = 1, . . . , q.

V. PROPOSED ALGORITHM

A. Outline

Our proposed method consists of two steps: a random-
ization conducted by the data holder and a reconstruction
conducted by the data analyzer. The data holder deter-
mines the parameters of the proposed method, p1, . . . , pq
and η1, . . . , ηq , according to the values of (l1, . . . , lq) or
(t1, . . . , tq). Next, the anonymization algorithm generates
an anonymized record in an “aggregated expression” from
each record on the basis of the parameters and inserts the
record into the anonymized database.

The data analyzer first determines which sensitive QIDs
should be analyzed. Then, the number of records is esti-
mated for each combination of the values of the selected
sensitive QIDs.

Note that the anonymization algorithm and the recon-
struction algorithm are common for all privacy models, even
though the parameters p1, . . . , pq and η1, . . . , ηq needed for
these algorithms are different for each privacy model.

B. Anonymization Algorithm

First, we describe the concept of the proposed algorithm.
Because the time complexity of the concept algorithm is
very high, we will describe the actual algorithm later.

The proposed algorithm can be used for any of frequency
(l1, . . . , lq)-diversity, entropy (l1, . . . , lq)-diversity, and
(t1, . . . , tq)-closeness. We first use frequency (l1, . . . , lq)-
diversity as an example because it is the easiest to under-
stand, and then we generalize the algorithm later.

For each sensitive QID Sj of each record ri, the data
holder extracts lj−1 distinct values randomly from D(Sj)\
{E(ri, Sj)} and creates a set Ri,j containing the extracted
values and an original value E(ri, Sj). This step is con-
ducted for every sensitive QID S1, . . . , Sq . Then, the data
holder calculates the Cartesian product of Ri,1, . . . , Ri,q

and inserts each element of the Cartesian product into the
anonymized database. This process is conducted for every
record.

Example 4 A database has one record, which has the
name, age, and disease of Alice (Table III(a)). Assume that
l1 = l2 = l3 = 2 and that the anonymization algorithm
generates R1,1 = {33, 41}, R1,2 = {10105, 32515}, and
R1,3 = {Cold,HIV }. Table III(b) represents the result
of the anonymization. The sixth record represents the true
record of Alice. Even if the data analyzer knows the values
of any of the two sensitive QIDs for Alice, the data analyzer
cannot specify Alice’s value for the other sensitive QID with
a confidence greater than 1/2. For example, assume that a
data analyzer knows that Alice’s age is 41 and her address
is 10105. The data analyzer cannot know whether the fifth



7

TABLE III: Example of Anonymization by the Proposed
Method for Frequency 2-Diversity

(a) Alice’s original record

Name Age Address Disease
Alice 41 10105 HIV

(b) Alice’s anonymized records

Age Address Disease
33 10105 Cold
33 10105 HIV
33 32515 Cold
33 32515 HIV
41 10105 Cold
41 10105 HIV
41 32515 Cold
41 32515 HIV

(c) Aggregated expression of (b)

Age Address Disease
{33,41} {10105,32515} {Cold,HIV}

TABLE IV: Frequency (2, 2, 2, 3)-Diversity in Aggregated
Expressions by Our Proposed Method in Table I

Age Address Job Disease
{41, 23} {12255, 13021} {Artist, Programmer} {Fever, Flu, Chill}
{79, 41} {14000, 17025} {Lawyer, Writer} {Cold, Obesity, Pus}
{42, 51} {13021, 13997} {Writer, Lawyer} {Cancer, Fever, Sty}
{51, 33} {18002, 14053} {Driver, Lawyer} {Cold, Flu, Obesity}
{15, 51} {14003, 15500} {Lawyer, Teacher} {Cold, HIV, Sty}
{51, 69} {16005, 12332} {Researcher, Lawyer} {HIV, Fever, Sty}
{51, 39} {14005, 14003} {Lawyer, Programmer} {Flu, Cold, Fever}
{51, 60} {16005, 12001} {Lawyer, Writer} {Obesity, HIV, Pus}

record or the sixth record is Alice’s record in Table III(b)
as these two records have different values of disease.

Because the size of the Cartesian product of
Ri,1, . . . , Ri,q could be very large, the data holder
instead generates an anonymized record in an “aggregated
expression.” Table III(c) shows the anonymized record in
an aggregated expression of Table III(b). Note that Table
III(c) is equivalent to Table III(b).

Note that each record can be grouped in several equiva-
lence classes. For example, in Table III(b), the first and the
second rows construct an equivalence class for S3 because
each row contains 33 for S1 and 10105 for S2. Moreover,
the first and the third rows construct an equivalence class
for S2 because each row contains 33 for S1 and Cold for
S3.

Table IV represents an example of the frequency
(2, 2, 2, 3)-diversity of Table I in aggregated expressions.
In Table IV, the bold font represents the original values.
Note that it is for clarity only. Our proposed method adds
(lj − 1) random values to each cell so that the jth column
satisfies frequency [[lj , j]]-diversity.

If a data analyzer knows the values of Ewen’s age,
address, and job, the data analyzer can conclude that the
fifth row is his, but cannot interpret from Table IV if he has
a cold, HIV, or Sty. If another data analyzer knows Ewen’s
disease, the data analyzer cannot interpret from Table IV
which of 15, 51, 60, and 69 is his age or which of 12001,
12332, 14003, 15500, and 16005 is his address, etc.

Then, we generalize the algorithm mentioned above. The
data holder removes the explicit identifiers from an origi-
nal database. Next, we calculate the optimized parameters
p1, . . . , pq and η1, . . . , ηq . The method of calculating the

optimized parameters is described in Section V-C. For exam-
ple, in regard to frequency (l1, . . . , lq)-diversity, p1, . . . , pq
are set to 1 and η1, . . . , ηq are set to l1, . . . , lq .

For each sensitive QID Sj of each record ri, the algorithm
creates an empty set Ri,j and tosses a coin with head
probability pj . If the coin is head, the algorithm adds an
original value E(ri, Sj) and ηj − 1 distinct elements ran-
domly extracted from D(Sj)\{E(ri, Sj)} to set Ri,j . If the
coin is tail, the algorithm adds ηj distinct elements randomly
extracted from D(Sj) to set Ri,j . This step is conducted
for every sensitive QID S1, . . . , Sq . Then, the data holder
inserts {Ri,1, . . . , Ri,q} into T ∗ as an anonymized record
in an aggregated expression. This process is conducted for
every record.

C. Parameter Optimization

1) Parameters for Frequency (l1, . . . , lq)-Diversity: The
expected L2 distance in regard to Sj is calculated on the
basis of the study of Bayes algorithm [38] by

EL2 =

√
(1− dj)(p2jdj + ηj − (p2j + dj)ηj)

p2jdjN(dj − ηj)
(9)

because L2 distance is the square root of dj times of the
MSE defined in [38].

We have the following theorem:

Theorem 1 EL2 is an (or a weakly) increasing function
of ηj and a (weakly) decreasing function of pj .

Proof. By differentiating (9) with respect to ηj , we get

1/

2pj

√
(dj − ηj)3N

−djp2j + ηj(−1 + dj + p2j )

(dj − 1)3dj

 . (10)

Because the value of (10) is greater than or equal to 0, the
expected L2 distance decreases with decreasing ηj .

By differentiating (9) with respect to pj , we get

−(dj − 1)2η

p2
√

(dj − 1)dj(dj − ηj)N(−djp2j + η(−1 + dj + p2j ))
. (11)

Because the value of (11) is always less than or equal to 0,
the expected L2 distance decreases with increasing pj .

In regard to frequency (l1, . . . , lq)-diversity, the parame-
ters η1, . . . , ηq should be larger than or equal to l1, . . . , lq ,
respectively. Therefore, from Theorem 1, η1, . . . , ηq are set
to l1, . . . , lq and p1, . . . , pq are all set to 1 to minimize the
expected L2 distance.

We have the following theorem:

Theorem 2 The anonymization algorithm always gen-
erates database T ∗ of frequency (l1, . . . , lq)-diversity by
setting pj = 1 and ηj = lj (j = 1, . . . , q) if every dj is
larger than or equal to lj .

Proof. After conducting the anonymization algorithm for
database T , the algorithm generates l1 × . . . × lq records
from each record, in a no-aggregated expression mode. We
focus on an equivalence class for Sj in anonymized database
T ∗ and assume that its size is δ.
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The equivalence class for Sj in T ∗ has been generated
from exactly δ/lj records in the original database T because
the algorithm generates lj records from each record that has
all of the same sensitive QID values except for Sj . Hence,
the possible maximum number of occurrences of each value
of Sj within the equivalence class for Sj is δ/lj because
the algorithm does not generate more than one record from
a record in T that has all the same sensitive QID values.

Therefore, the possible maximum relative frequency of
each of the values of Sj is 1/lj for each equivalence class
for Sj for all j = 1, . . . , q in T ∗.

2) Parameters for Entropy (l1, . . . , lq)-Diversity: We
have the following theorem:

Theorem 3 The anonymization algorithm always gener-
ates database T ∗ of entropy (l1, . . . , lq)-diversity by setting
pj = 1 and ηj = lj (j = 1, . . . , q) if every dj is larger than
or equal to lj .

Proof. Focus on an equivalence class for Sj and assume that
the size of the equivalence class for Sj is δ. The possible
minimum number of occurrences of each sensitive QID
value of Sj within the δ records is 1. From the proof of
Theorem 2, the possible maximum number of occurrences
of each value of Sj within the equivalence class for Sj is
δ/lj . Therefore, the possible value of pj(v) in (7) is from
1/δ to 1/lj . The values of δ and lj are larger than or equal to
2, and δ is larger than or equal to lj . From the characteristics
of the entropy, the entropy has its smallest value when pj(v)
for all v is 1/lj . In this case, the left side of (7) is log(lj)
and this value is equal to the right side of (7).

3) Parameters for (t1, . . . , tq)-Closeness: Let Uj be a
random variable denoting E(r, Sj) of record r, and let Vj

be a random variable denoting E(r∗, Sj) of record r∗.
Let the distribution of the values of Sj in the whole

database be Aj = (Aj [1], . . . ,Aj [dj ]), and let the distri-
bution of the values of Sj that is inferred from Aj and
E(r∗, Sj) be Bj = (Bj [1], . . . ,Bj [dj ]).

First, we introduce the method to calculate Bj .
Let κc denote the probability that E(r∗, Sj) contains the

original value and specified ηj − 1 distinct values, and let
κd denote the probability that E(r∗, Sj) does not contain
the original value but contains a specified ηj distinct values.
The values of κc and κd are represented by

κc =
pj+(1−pj)ηj/dj

dj−1Cηj−1
, κd =

1−(pj+(1−pj)ηj/dj)

dj−1Cηj

.

From Bayes’ theorem, we get

P (Uj = D(Sj)[m]|Vj = E(r∗, Sj)) =

P (Vj=E(r∗, Sj)|Uj=D(Sj)[m])P (Uj=D(Sj)[m])

P (Vj=E(r∗, Sj))
.

Here, we have

P (Uj = D(Sj)[m]) = Aj [m],

P (Uj = D(Sj)[m]|Vj = E(r∗, Sj)) = Bj [m],

and
P (Vj=E(r∗, Sj)|Uj=D(Sj)[m]) ={
κc (D(Sj)[m] ∈ E(r∗, Sj))

κd (otherwise).

From the law of total probability,
P (Vj = E(r∗, Sj)) =
dj∑

β=1

P (Vj =E(r∗, Sj)|Uj =D(Sj)[β])P (Uj =D(Sj)[β]).

From these equations, we get

Bj [m] =
Υ(E(r∗, Sj), D(Sj)[m])∑dj
β=1 Υ(E(r∗, Sj), D(Sj)[β])

, (12)

where

Υ(E(r∗, Sj), D(Sj)[m]) =

{
κcAj [m] (D(Sj)[m] ∈ E(r∗, Sj))

κdAj [m] (otherwise.)

If D[Aj ,Bj ] is less than or equal to tj for all records
and for all j, the database satisfies (t1, . . . , tq)-closeness
from Lemma 1 described later. This is because we know
from Lemma 1 that the maximum distance of any sets of
records from the whole distribution can never increase when
merging two sets of records.

E[r∗, Sj ] represents the anonymized set of values, and
this set is obtained by the randomized mechanism described
in Section V-B. Therefore, we calculate Bj for all possible
E[r∗, Sj ] and then obtain the largest value of D[Aj ,Bj ].

Finally, we get the optimal combination of ηj and pj
for Sj that satisfies D[Aj ,Bj ] ≤ tj and minimizes the
expected L2 distance. The optimized parameters might not
minimize the L1 distance and Hellinger distance, but we can
confirm that the parameters can reduce both the L1 distance
and the Hellinger distance of the proposed method greatly
by using the simulations of real data sets in Section VI.

Algorithm 1 Parameter optimization for (t1, . . . , tq)-
closeness
Input: Privacy parameters t1, . . . , tq , Original database T
Output: Combinations of optimized parameters

(⟨p̂1, η̂1⟩, . . . , ⟨p̂q, η̂q⟩)
1: for j = 1, . . . , q do
2: Aj ⇐ the frequency distribution of the values of

D(Sj) in T
3: Create associative array ParaCombs
4: for η = 1, . . . , η̃ do
5: S ⇐ {Z|Z ⊆ D(Sj) ∧ |Z| = η}
6: for each element ∈ S do
7: Bj ⇐ the result of (12)
8: p ⇐ the solution of the equation tj =

D[Aj ,Bj ] for p
9: el2 ⇐ EL2(N, dj , p, η)

10: paraCombs.insert(⟨p, s⟩, el2)
11: end for
12: end for
13: ⟨p̂j , η̂j⟩ ⇐ the key that has the minimum value in

paraCombs
14: end for
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Algorithm 1 shows the algorithm that calculates the
optimized parameters for (t1, . . . , tq)-closeness. First, Aj

is calculated from database T (lines 2). Then, the algorithm
calculates the optimal p for each η. The range of η is from
1 to η̃, which is a predefined parameter. The value of η̃ can
be set to dj , but it takes much time when we set η̃ to a
larger value.

The set of subsets of D(Sj) of cardinality equal to η
is substituted into S (line 5). For each element of S, the
algorithm calculates the largest value of p that satisfies
D[Aj ,Bj ] ≤ tj . We can get the largest value of p by
solving the equation D[Aj ,Bj ] = tj for p. Because it
is difficult to solve the equation, the algorithm performs
a binary search. To narrow the search space, we can use
Theorem 1.

With the parameters p and η, an expected L2 distance
is calculated according to (9) (line 9). Then, the parameters
and the expected L2 distance are inserted into the associative
array ParaCombs, binding the parameters to the expected
L2 distance (line 10).

Finally, the algorithm chooses the combination of the
optimized parameters, which has the minimum value of the
expected L2 distance (line 13).

Theorem 4 The anonymization algorithm always gen-
erates database T ∗ of (t1, . . . , tq)-closeness by setting ηj
and pj (j = 1, . . . , q) according to Algorithm 1.

Proof. Algorithm 1 generates a combination of pj and ηj ,
which satisfies D[Aj , B

(i)
j ] ≤ tj , where Aj represents the

distribution of the elements of D(Sj) in the whole database
and B

(i)
j represents the probability distribution inferred from

the distribution of E(r∗i , Sj) and the whole distribution of
the database.

From Lemma 1 described below, we know that the
maximum distance of any sets of records from the whole
distribution of the database can never increase when merg-
ing two sets of records. Therefore, if each record r∗i holds
D[Aj , B

(i)
j ] ≤ tj , the anonymized database always satisfies

[[tj , j]]-closeness.
Because this discussion is common for all j, the

anonymized database satisfies (t1, . . . , tq)-closeness.

Lemma 1 Let A, B, and B′ represent distributions. We
have the following equation:

D[A, (1−λ)B + λB′] ≤ (1−λ)D[A,B] + λD[A,B′],
(13)

for any λ in [0,1].

Proof. Let A, A′, B, and B′ represent distributions.
First, the EMD is absolutely homogeneous, i.e.,

D[λA, λB] = λD[A,B] for any λ ≥ 0, (14)

because it leads to a scaled but equivalent minimization
problem with solutions r∗ and λr∗.

Second, the EMD is subadditive, i.e.,

D[A+A′,B +B′] ≤ D[A,B] +D[A′,B′], (15)

because any optimal solutions r∗ and r′∗ to the latter mini-
mization problem provide a feasible (albeit not necessarily
optimal) solution r∗ + r′∗ to the additive version.

On the basis of (14) and (15), we get

D[(1− λ)A+ λA′, (1− λ)B + λB′]

≤ D[(1− λ)A, (1− λ)B] +D[λA′, λB′]

= (1− λ)D[A,B] + λD[A′,B′]

(16)

for any λ in [0,1].
By substituting A for A′ in (16), we get (13).

D. Reconstruction Algorithm
In this subsection, we consider that data analyzers receive

anonymized databases in aggregated expressions. First, the
data analyzers who receive the anonymized database de-
termine their target distribution C. Then, they reconstruct
the distribution of the sensitive QID values for each cm
(m = 1, . . . , |C|). We use xm to represent the actual number
of records, which are categorized to cm. Let x̂m denote the
reconstructed xm, which is estimated by the data analyzers.
We describe the ValueAdding algorithm, which is a simple
algorithm, and then we extend it.

1) ValueAdding Reconstruction Algorithm: Let S′ be the
set of sensitive QIDs that a data analyzer wants to analyze,
and let E(r∗i , S

′
j) represent the values of the jth QID of

S′ at anonymized record r∗i in an aggregated expression.
Let the function E(r∗i , S

′) return the Cartesian product of
E(r∗i , S

′
j) for j = 1, . . . , q′, i.e.,

E(r∗i , S
′) = E(r∗i , S

′
1)× E(r∗i , S

′
2)× . . .× E(r∗i , S

′
q′).

Then, the data analyzer counts how many elements of
E(r∗i , S

′) (i = 1, . . . , N) are categorized to cm in the
anonymized database; that is, the data analyzer calculates

wm =

N∑
i=1

H(r∗i , cm), where

H(r∗i , cm) =

{
1 (E(r∗i , S

′) contains cm)

0 (otherwise)
.

(17)

Let η(S′
j) represent the parameter η for the sensitive QID

S′
j . Let p(S′

j) represent the parameter p for the sensitive
QID S′

j , and let d(S′
j) represent the size of D(S′

j).
Focus on an original record ri. The set of the sensitive

QID values of ri can be represented by one of the ele-
ments of C. Assume that the combination of the values of
sensitive QIDs selected by a data analyzer in an original
record ri is categorized to ĉm ∈ C. The set E(r∗i , S

′)
has

∏
s′∈S′ η(s′) elements, and the set contains ĉm with

probability
∏

s′∈S′ [(p(s′) + (1 − p(s′))η/d(s′)]. On the
other hand, the size of the target distribution is |C|, and
the set E(r∗i , S

′) does not contain ĉm with probability
1−

∏
s′∈S′ [(p(s′) + (1− p(s′))η/d(s′)].

On the basis of this observation, we can calculate the
reconstruction results as follows:

x̂m = wm ·
∏

s′∈S′ [(p(s′) + (1− p(s′))η/d(s′)]∏
s′∈S′ η(s′)

+

(N−wm) ·
1−

∏
s′∈S′ [(p(s′)+(1−p(s′))η/d(s′)]

|C| −
∏

s′∈S′ η(s′)
.

(18)
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This calculation is simple, but the resulting L1, L2, and
Hellinger distances could be large. We describe the extended
version of the reconstruction algorithm in the following
subsection.

2) Proposed Reconstruction Algorithm: We extend the
ValueAdding algorithm by using Bayes’ technique [39], [40]
for the reconstruction.

Assume that a combination of values of sensitive QIDs
selected by a data analyzer in an original record r is
categorized to cα ∈ C. First, the data analyzers calculate
the probability δα,β that the original record r is anonymized
to a record r∗ whose E(r∗, S′) contains cβ ∈ C for each α
and β.

Focus on the jth elements of cα and cβ . The anonymized
values of the jth sensitive QID of S′ contain the jth element
of cα with probability pj +(1− pj)ηj/dj . The anonymized
values contain a specific element of D(S′

j) other than the
jth element of cα with probability pj · (ηj − 1)/(dj − 1) +
(1− pj) · ηj/dj .

Therefore, δα,β is represented by

δα,β =

q′∏
j=1

F (α, β, j), where F (α, β, j) ={
pj + (1− pj)ηj/dj (cα[j]=cβ [j])

pj(ηj−1)/(dj − 1)+(1−pj)ηj/dj (otherwise.)

(19)

Equation 19 can be calculated for all combinations of α =
1, . . . , |C| and β = 1, . . . , |C|, but the number of different
results is only 2q

′
. Note that we usually assume that q′ is

less than four in creating cross tabulations [41], [42].
Here, we calculate (19) for only the 2q

′
results.

Let Zα,β be a function that returns bit array b1, . . . , bq′ ,
in which bi is determined by the following equation:

bj =

{
1 (cα[j] = cβ [j])

0 (otherwise.)
(20)

Let Zα,β [j] represent the jth bit of Zα,β . The number of
possible values of Zα,β is only 2q

′
. Here, we refine (19) as

follows:

δα,β=

q′∏
j=1

{Zα,β [j](pj+(1−pj)ηj/dj)+(1−Zα,β [j])·

(pj · (ηj − 1)/(dj − 1) + (1− pj) · ηj/dj)}.

(21)

Let the original state of the sensitive QID values of a
record in T be given by a random variable U , and let the
state of each element of E(r∗, S′) be given by a random
variable V .

From the law of total probability, Pr(U = α) can be
represented by

Pr(U=α)=

∑|C|
β=1 Pr(V ∋β)Pr(U=α|V ∋β)∑|C|

β=1 Pr(V ∋ β)
. (22)

From Bayes’ theorem, we have

Pr(U = α|V ∋ β) =

Pr(V ∋β|U=α)Pr(U=α)∑|C|
γ=1Pr(V ∋β|U=γ)Pr(U=γ)

=
δα,β x̂α∑|C|
γ=1 δγ,β x̂γ

.
(23)

We can express Pr(U = α) as xα/N , which is an
unknown value. By using an estimation value x̂α instead
of xα, we can introduce the following equation:

Pr(U = α) = x̂α/N. (24)

Pr(V ∋ β) in (23) represents the probability that
E(r∗, S′) contains cβ . Because there are N records and cβ
occurs wβ times in the anonymized database, we have

Pr(V ∋ β) = wβ/N. (25)

Therefore, we get from (22), (23), (24), and (25) the
following:

x̂α
♯+1 ⇐

|C|∑
β=1

wβ
δα,β x̂α

♯∑|C|
γ=1 δγ,β x̂γ

♯
, (26)

where an element of x̂α
♯
(α = 1, . . . , |C|) represents the

iteration at step ♯. We set an initial value of x̂α
0 to wα for

all α and repeat (26) until the difference between x̂α
♯ and

x̂α
♯+1 for all α is sufficiently small. We finally get

x̂α ⇐ x̂α

/ ∏
s′∈S′

η(s′), (27)

because we can express
∑|C|

β=1 Pr(V ∋ β) as
∏

s′∈S′ η(s′).

VI. EVALUATION

We evaluated the L1, L2, and Hellinger distances, and
the calculation time for frequency (l1, . . . , lq)-diversity and
(t1, . . . , tq)-closeness. The criteria for whether the values
of the utility metrics are good or not can be quite different
according to the purpose of the data analysis. It is our future
work to propose a way to decide the criteria. The results
of entropy (l1, . . . , lq)-diversity were omitted because the
results were similar to those of frequency (l1, . . . , lq)-
diversity. We used real data sets, which were the Adult data
set and the US Census data set1. The Adult data set consists
of 15 attributes (e.g., age, sex, race, relationship, etc.)
and has 45,222 records after eliminating the records with
unknown values. Because several attributes are continuous,
we categorized each of them. The domain sizes of the
categorized attributes varied from 2 to 41.

The US Census data set consists of 68 categorical at-
tributes and has 2,458,285 records. The domain sizes of the
categorical attributes varied from 2 to 18.

Many studies that use l-diversity, such as [4], [32], set l
from 2 to 10. Following their setting, in this paper, we also
set l from 2 to 10. In regard to t-closeness, we set t from
0.1 to 0.5, which covers the range of different privacy levels
observed in existing studies [5].

Following Xiao et al. [13], we consider that a query
generated by data analyzers involves q′ random sensitive
QIDs. For example, when we used the Adult data set and
set q′=3, {S′

1, S′
2, S′

3} was a random three-sized subset of
the 15 attributes.

We compared our proposed method with the ValueAdding
method described in Section V-D1 and a baseline method
called “Random,” which creates a cross tabulation randomly.

1https://archive.ics.uci.edu/ml/datasets.html
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Fig. 1: Adult data set: (l1, . . . , lq)-diversity.
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(f) Hellinger distance
(q′ = 4)

Fig. 2: US Census data set: (l1, . . . , lq)-diversity.
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(q′ = 4)

Fig. 3: Adult data set: (t1, . . . , tq)-closeness.
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Fig. 4: US Census data set: (t1, . . . , tq)-closeness.
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Fig. 5: Anonymization time for all records and all attributes.

Moreover, we evaluated the Rating method described in Sec-
tion III in regard to (l1, . . . , lq)-diversity. All experiments
were conducted on a workstation with an Intel Xeon E5-
2687W v2 CPU and 128 GB of RAM.

We set each lj (j = 1, . . . , q) to one parameter l in
regard to frequency (l1, . . . , lq)-diversity and set each tj
(j = 1, . . . , q) to one parameter t in regard to (t1, . . . , tq)-
closeness. When dj was less than or equal to lj , we set lj
to dj − 1. In each simulation, we generated random queries
based on q′ and calculated the L1 distance, L2 distance, and
Hellinger distance, respectively.

First, we conducted simulations to evaluate the L1 dis-
tance, L2 distance, and Hellinger distance for frequency
(l1, . . . , lq)-diversity. Figures 1 and 2 show the average
results for frequency (l1, . . . , lq)-diversity with the Adult
data set and the US Census data set, respectively. We
varied l, t, and q′. We know from the figures that our
proposed method can reduce all three distances (L1, L2,
and Hellinger) more so than the ValueAdding and Rating
methods can. When the value of l was large, the L1, L2,
and Hellinger distances increased when using our proposed
method. However, the values were still lower than those of
the ValueAdding and Rating methods.

Figures 3 and 4 show the average results for the L1,
L2, and Hellinger distances with regard to (t1, . . . , tq)-
closeness for the Adult data set and the US Census data
set, respectively. From these figures, we know that, with
our proposed method, the L1, L2, and Hellinger distances
decreased with increasing t. Nevertheless, we show that our
proposed method can result in small distances for all three
types (L1, L2, and Hellinger) even if we set t to a small
value (i.e., 0.1) for both data sets.
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(c) q′ = 3
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(d) q′ = 4

Fig. 6: Reconstruction time with varying numbers of selected attributes.
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Fig. 7: (a) Original Adult dataset (Occupation and Age); and (b-d) results of the anonymization and reconstruction.

The L1 and L2 distance results for ValueAdding, Rating,
and Random were similar. However, note that the L1 and
L2 distances for ValueAdding and Rating were lower than
that for Random by about 50% when l was small or t was
large.

For both the Rating method and the ValueAdding method,
each tuple of the anonymized database had multiple values;
however, the Rating method added values based on other
records, whereas the ValueAdding method added values
randomly. Moreover, the reconstruction algorithms were
similar for both. We therefore consider that we have ob-
tained similar results.

Figure 5 shows the average results of the anonymization
time for the US Census data set. Our proposed method and
the ValueAdding method needed less time than the Rating
method. Because the anonymization algorithms of the pro-
posed method and the ValueAdding method were the same,
their anonymization times were almost the same. However,
the Rating method needed more time to anonymize a
database. This is because the proposed method and the Val-
ueAdding method anonymized each record independently,
whereas the Rating method anonymized each record while
considering other values of the records. We know from
Figure 5 that the proposed method took only several tens of
seconds, even if the database has 2 million records and 68
attributes.

Figure 6 shows the average results of the reconstruction
times with various l and q′ for the US Census data set. Our
proposed method needed more time for the reconstruction
than the ValueAdding and Rating methods. If we use cross
tabulation for more than three variables, the table will
lose its major value [42]. In practice, the applications of
cross tabulations involve only two variables at a time [41].
Therefore, we assume that the value of q′ is from 1 to 2
or 3 in practice. Even if we set q′ to 4, the reconstruction
times of both data sets were less than 10 min on average.

Finally, we selected age and occupation as S′ to show
how the reconstructed histogram is similar to the original
distribution. Figure 7 compares the original database of the
Adult data set to the reconstructed results. We set l to
5. The sum of the reconstructed values (i.e., 45,222) was
the same for all the methods. However, the reconstructed
values of the ValueAdding and Rating methods were not
any more precise than the original values. The reconstructed
values were much smaller than the original values when the
original one was larger than average, and vice versa. On the
other hand, our proposed method could reconstruct the true
distribution almost perfectly.

VII. DISCUSSION
A. Analysis of the proposed anonymization algorithm

The dominant approach to anonymize databases for l-
diversity and t-closeness is based on a generalization. The
generalization approach is easily understandable for data
analyzers. Moreover, because the truthfulness of each record
is preserved, we can obtain some information from each
record.

However, the generalization approach causes high infor-
mation loss when the number of attributes of the database
is large because each equivalence class must have the same
anonymized values for all attributes. Furthermore, if the
data analyzer knows the sensitive attribute values of several
records in an equivalence class, he/she has the chance to
estimate the sensitive attribute values of the other records
in the same equivalence class more precisely than expected.

In contrast, our approach, which adds randomized records
to the original database, is relatively difficult to understand
for data analyzers. Moreover, it is difficult to obtain mean-
ingful information from each anonymized record.

However, our approach can reduce information loss, even
when the number of attributes is large, because the ran-
domization of attribute value is executed for each attribute
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TABLE V: Anonymized Database in Setting p1 = p2 = 1
and η1 = d1, η2 = d2

Age Disease
{1, 2, . . ., 99} {Cancer, Cold, . . ., Chill}
{1, 2, . . ., 99} {Cancer, Cold, . . ., Chill}

independently. Furthermore, we can ensure that, even if the
data analyzer knows all the sensitive QID values of the
whole database except for one record, the sensitive QID
values of the record are protected.

B. Non-Sensitive QIDs, Non-QID Sensitive Attributes, and
Non-QID Non-Sensitive Attributes

If the database contains non-sensitive QIDs, the data
holders can set lj to 1 for (l1, . . . , lq)-diversity and can
set tj to ∞ for (t1, . . . , tq)-closeness. These values are not
protected, but they are considered as QIDs. In terms of non-
QID sensitive attributes, the data holders can treat them as
sensitive QIDs.

In our examples in this paper, we consider that age,
address, job, and disease are sensitive QIDs. If the data
holder decided that several attributes, such as age and job,
can be treated as non-sensitive QIDs, the data analyzer can
analyze the anonymized database with more precisely.

C. Discussion of (t1, . . . , tq)-Closeness

In this paper, we used (t1, . . . , tq)-closeness with consid-
eration for the inference from the whole database, although
we can consider (t1, . . . , tq)-closeness without considering
the inference from the whole database. This is because we
consider that the former definition is more intuitive.

For example, assume that we set p1 = p2 = 1 and
η1 = d1, η2 = d2 for anonymization. Table V represents
the anonymization result. The attribute values have nothing
to do with the record owners; in other words, each attribute
is completely protected.

When we use (t1, . . . , tq)-closeness with consideration
for the inference from the whole database, Table V satis-
fies (0, 0)-closeness. Therefore, we can say that Table V
completely protects the attribute values.

On the other hand, if we use (t1, . . . , tq)-closeness with-
out considering the inference from the whole database, we
cannot say that Table V completely protects the attribute
values, because in this case, Table V does not satisfy (0, 0)-
closeness. This is counterintuitive because Table V does not
leak any information about record owners in reality.

D. Extension of the Proposed Approach

We can extend our work to satisfy (l1, . . . , lq)-diversity
and (t1, . . . , tq)-closeness at the same time. By letting the
value of η in Algorithm 1 be changed not from 1 but from
lj , we can obtain an anonymized database that satisfies not
only (t1, . . . , tq)-closeness but also frequency (l1, . . . , lq)-
diversity and entropy (l1, . . . , lq)-diversity. The proof is the
same as the proofs of Theorem 2 and Theorem 3.

Moreover, we can define (k1, . . . , kq)-anonymity in the
same way as for (l1, . . . , lq)-diversity.

Definition 17 ([[k, j]]-Anonymity) The anonymized
database T ∗ satisfies the [[k, j]]-anonymity if and only if
every equivalence class for Sj has k or more records.

Definition 18 ((k1, . . . , kq)-Anonymity) The
anonymized database T ∗ satisfies (k1, . . . , kq)-anonymity
if and only if [[k, j]]-anonymity is satisfied for all 1, . . . , q.

It is obvious that, if an anonymized database satisfies
frequency (l1, . . . , lq)-diversity, the database also satisfies
(k1, . . . , kq)-anonymity.

There are many concepts with regard to privacy models.
The application of the proposed method to other privacy
models is the subject of our future work.

VIII. CONCLUSION

The models of l-diversity and t-closeness have been
widely studied for protecting privacy. Most existing studies
assume that they can separate QIDs from sensitive attributes,
but we cannot always make such assumptions in real-
world situations. Consequently, we can assume that several
attributes have features of both sensitive attributes and
QIDs in this paper. We proposed novel privacy models,
namely, (l1, . . . , lq)-diversity and (t1, . . . , tq)-closeness, and
algorithms of anonymization and reconstruction that can
treat sensitive QIDs. Through simulations of real data sets,
we have proven that our proposed method can anonymize
and reconstruct databases while keeping a high quality of
data within a realistic period.
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