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Chapter 1

Introduction

1.1 Background

Nowadays, stream data processing systems demand much more functionality than what was available in
the past. Many data processing tasks, such as financial analysis, traffic monitoring and data processing in
sensor networks, are required to handle a huge amount of data with certain time restrictions. Low-latency
and high-throughput processing are key requirements of systems that process unbounded and continuous
input streams rather than fixed-size stored data sets.

Most of the modern relational databases (Database Management Systems, DBMSs) have been added
superfluous features. All of them should provide basic set operations including union, intersection, differ-
ence and Cartesian product. Moreover, they support other operations such as join, selection, projection
and division. Likewise, stream databases (Data Stream Management Systems, DSMSs) also support
similar operations. One of these fundamental operations is called stream join or window join [2] that
introduces window semantics besides value-based join predicates.

Stream databases deal with infinite streams of data that have to be processed immediately for real-
time applications. It is stated in [2] that, theoretically, processing a join over unbounded input streams
requires unbounded memory since every tuple in one infinite stream must be compared with every tuple
in the other. It is clear that this causes practical problems. To solve the problem, the window semantic is
introduced for practical applications. That is to say, a finite subset of the unbounded input data is defined
as a window for each input stream, and a join predicate is evaluated over the windows.

1.2 Motivation

Teubner and Mueller have provided new insight into stream join algorithm, and proposed a novel ap-
proach, namely handshake join. It is a stream join algorithm that can support very high degrees of
parallelism and attain unprecedented success in throughput speed [1]. They demonstrate a software im-
plementation using a modern multi-core CPU. It considerably outperforms CellJoin [3], which is another
well-known implementation of window-based join for the Cell processor. They also mention that hand-
shake join can naturally leverage available hardware parallelism even though a complete hardware design
of handshake join is not provided in [1].

Handshake join enables us to parallelize the matching process in a very elegant way; however, there
is a practical problem of the approach: results of parallel processes should be collected and merged into
a single output stream. In addition, the parallel execution of joins can result in a higher output rate than a
sequential execution because the same number of results are produced in a shorter time. In other words,
a larger number of results can be produced per unit time, and the merging process would be quickly
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overloaded. This is the case, for example, with such applications as TCP SYN Flood detection [4] where
a volume of output may be instantaneously generated, depending on the dynamic characteristics of input
streams. Following design issues should be taken into account when it comes to implementing handshake
join hardware:

1. a scalable mechanism (in terms of the resource usage and the signal delay) that merges results into
a single output stream,

2. a flow control mechanism (between all join cores and the output port) that avoids buffer overflows,

3. and a control mechanism that rejects new input tuples when they lead to an overload.

1.3 Objectives

The main objective of this thesis is to address the design issues mentioned above and evaluate a hardware
implementation of handshake join architecture. The hardware resource usage and the signal delays are
significant factors for the overall design. This thesis also intends to clarify these issues. For this purpose,
the proposed design is implemented on an FPGA, and evaluated as a case study in terms of the hardware
resource usage, the maximum clock frequency, and the throughput performance.

In our point of view, the major contribution of the thesis is to identify the problems encountered in
the design of handshake join hardware. To the best of our knowledge, this is the first work that proposes a
complete design of handshake join, and implements it as a dedicated hardware on an FPGA device. The
thesis also indicates buffer tuning for join and merge units included in the handshake join architecture.
Specifically, it presents analysis regarding buffer-size optimization, and discusses static and adaptive
buffer tuning for the proposed design.

Result collection performed by a merging network is a significant issue for a handshake join oper-
ator. Results from our preliminary evaluation show that the merging network has a potential to be an
overwhelming bottleneck for overall performance. It is a crucial limiting factor for the design of hand-
shake join hardware because the throughput performance mainly depends on it, especially at high output
rates. The problem is, therefore, how to design and implement an efficient merging network in order to
overcome the degradation of performance.

Another objective of the thesis is to address the above problem by proposing an adaptive merging
network for the handshake join operator. An appropriate network model and a careful implementation are
extremely important to improve performance of the handshake join operator. Accordingly, a markedly
different network structure is proposed, overcoming a critical disadvantage of the naively implemented
merging network. The handshake join operator with the adaptive merging network substantially outper-
forms conventional approach. The thesis presents evaluation results of throughput performance com-
pared with another implementation of window-based stream join operator presented in [5].

The rest of the thesis is organized as follows: Chapter 2 briefly reviews previous work. Chapter 3
introduces handshake join and identifies the design issues of handshake join hardware on an FPGA.
Chapter 4 presents the details of the implementation of the handshake join architecture, and evaluates the
hardware implementation. After that Chapter 5 gives some discussions on buffer size tuning, particularly
static and adaptive tuning of the buffers for join and merge units included in the handshake join architec-
ture. Chapter 6 presents the design and implementation of the handshake join hardware with the adaptive
merging network, and compares it with the implementation presented in Chapter 4. Finally, Chapter 7
gives conclusions and identifies future work.
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Chapter 2

Related Work

Chapter 2 briefly reviews related work and provides some background information.

2.1 Data Processing on FPGA

Due to increasing demand for processing data streams, DBMS researchers have expanded the data pro-
cessing paradigm from the traditional store and then process model towards the stream-oriented process-
ing model. An extensive range of research is conducted for new problems owing to the nature of data
streams.

The modern CPU architectures are subjected to crucial restriction and limitations. For example, high
latency occurs when getting data in and out of the system, and memory wall causes a serious bottleneck in
the entire system. Instead of the CPUs, FPGAs can be proposed as an alternative platform to implement
data processing systems. In fact, FPGAs are considered as a possible solution for the inherent limitations
of classical CPU-based system architectures.

It is shown in [6] that FPGAs are a viable solution for data processing tasks. For example, Sadoghi
et al. present an efficient event processing platform called fpga-ToPSS, which is built over FPGAs to
achieve line-rate processing [7]. They demonstrate high-frequency and low-latency algorithmic trading
solutions based on the event processing platform [8]. It is stated in [8] that the FPGA-based solution
provides a superior end-to-end system performance by eliminating the operating system. They also
focus on a multi-query stream processing to accelerate the execution of SPJ (Select-Project-Join) queries
[9]. There are other works where FPGA is used as a platform for building application-specific hardware
[10, 11, 12].

2.2 Window Join Implementation on FPGA

2.2.1 Window Join

As mentioned briefly in Chapter 1, how to process joins over unbounded streams is highly problematic.
The main reason for why joins are difficult to deal with is that an important assumption made in traditional
query processing in DBMSs is no longer valid for stream databases. Traditional DBMSs mainly focus
on only fixed-size stored data for query processing. In other words, the DBMSs need to process a finite
amount of data while executing queries. In addition, the DBMSs have enough time to complete queries
including join operations because there is no strict time restriction as in stream databases.

On the other hand, stream databases should process unbounded and continuous streams of data.
Contrary to the traditional DBMSs, streams databases require to handle a potentially infinite volume
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of data while executing continuous queries. Moreover, stream databases are mainly used for real-time
applications where low-latency and high-throughput processing are highly essential. Stream databases
should meet the strict time restrictions, and this leads to an additional difficulty for stream databases to
execute continuous queries including join operations.

In relational databases, each datum is stored as structured data item, called tuple, in form of a table.
In general, traditional DBMSs may have many tables in their databases each of which includes a finite
number of tuples. Basically, a join operator of a traditional DBMS compares each tuple of a table with
all tuples of another table in the relational database. In each comparison, a pre-defined condition (join
predicate) of the join query is evaluated for each pair of tuples. According to the result of the evaluation
of the join predicate, the join operator determines whether or not to produce a result tuple of the join
query. If the join predicate is satisfied (or the join condition is true), then the compared pair of tuples are
combined into a single tuple as a result tuple in the output.

It should be emphasized that the number of combination of tuples is also finite since each table
contains a finite number of tuples. For instance, let us say that one table includes N tuples and another
table includes M tuples. In this case, the total number of the combination of tuples equals to N × M.
When it comes to “joining” these two tables in a join query, the join operator should take into account
N × M combinations of tuples. This is the case for the traditional DBSMs, but not for stream databases.

As mentioned before, stream databases deal with unbounded and continuous input streams. Theo-
retically, there is no notion of “end of stream” in a data stream. In other words, the input streams are
regarded as potentially infinite sequences of input tuples. This leads to a fundamental question that is
how to process joins over infinite input streams. It is obvious that we can’t handle every combination of
tuples from infinite input streams in practice because, as stated in [2], processing a join over unbounded
input streams requires unbounded memory.

What causes the problem for processing joins in stream databases is the infinite nature of input
streams. Processing all pairs of the tuples from infinite input streams is impossible for a join operator
because there is no way to handle the infinite number of combinations of tuples with limited resources.
It is necessary to limit the number of tuples that are processed for join operation over the infinite input
streams. In order to address the problem, the concept of windows is introduced in stream databases for
practical applications. In fact, Kang et al. mentioned that in practice most join queries over unbounded
input streams would contain “window predicates” that restrict the number of tuples that must be stored
for each stream [2].

Window-based stream join, which is also called window join, can be informally described as follows:
A window join operator takes two streams (let us say stream R and stream S ) as inputs and produces
output tuples 〈r, s〉, where r is from stream R and s is from stream S, such that

1. r is in the window for stream R at the same time that s is in the window for stream S,

and

2. r and s satisfy the join condition.

Figure 2.2.1 (adopted from [1]) illustrates an overview of a window join operation over stream R and
stream S . As shown in Figure 2.2.1, the join operator (indicated as in Figure 2.2.1) accepts only finite
subsets of the input streams. The finite subsets of data taken from stream R and stream S are indicated
as “current window for Stream R” and “current window for Stream S ” in Figure 2.2.1, respectively. In
general, the size of each window can differ from each other. In other words, windows over input streams
R and S can include the different numbers of tuples. This is illustrated as the different sizes of windows
for streams R and S in Figure 2.2.1.

It is stated in [1] that various ways have been proposed to define suitable window boundaries de-
pending on application needs. This thesis focuses on sliding windows as in [1] and [5]. Teubner and
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Figure 2.2.1: Window join (figure adopted from [1]).

Mueller [1] describe sliding windows as follows: At any point in time, sliding windows cover all tuples
from some earlier point in time up to the most recent tuple. Usually, sliding windows are either time-
based, i.e., they cover all tuples within the last τ time units, or tuple-based, i.e., they cover the last ω
tuples in arrival order.

In accordance with the description of the sliding windows given above, the semantics of window-
based stream joins (precisely which tuple coming from an input stream should be paired with other tuples
coming from another input stream?) is defined in [1] as follows:
Semantics of Window-Based Stream Joins. For r ∈ R and s ∈ S , the tuple 〈r, s〉 appears in the join
result R onp S iff (ti denote tuple arrival timestamps, Ti denote window sizes)

1. (a) r arrives after s (i.e., tr > ts) and s is in the current S -window at the moment when r arrives
(i.e., tr < ts + TS )

or

(b) r arrives earlier than s (i.e., ts > tr) and r is still in the R-window when s arrives (i.e.,
ts < tr + TR)

and

2. r and s pass the join predicate p (i.e., satisfy the join condition).

Stream joins based on the sliding windows arise in many practical applications. It is mentioned in
[2] that one class of applications in which the sliding windows appear deals with correlating information
from different sources about the same entities. For example, we may wish to correlate stock price move-
ments with news stories suspected of influencing the price, or we may want to correlate cell phone traffic
with e-mail traffic in a surveillance application [2].

Another class of applications mentioned in [2] deals with tracking entities through a network of
sensors. Examples of this sort of application include tracking network packets through routers, or gen-
erating “click stream” information about visits to multiple web sites, or even monitoring the progress of
cars through tollbooths on the highway [2].

It is essential for some applications dealing with unbounded and continuous streams of data that
window join operators should produce the exact results of the window join operation. For example, it
is probably unacceptable for the window join operator to lost or drop some of the result tuples if one is
interested in tracking the movements of specific entities [2].

On the other hand, however, there are other kinds of applications that require only a subset of the
results, but not the exact results. As an example of this kind of application, Kang et al. [2] consider
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measuring the delay in traffic between two sensor nodes. They also mentioned that it may be acceptable to
compute an average value by looking at a subset of the complete result in the case of such a measurement.
In fact, it is indicated in [2] that such an approximate but up-to-date average may be much more desirable
than a delayed exact result for real-time applications if the system does not have sufficient resources to
produce the complete result in a timely fashion. It has also been called load shedding in the stream
processing community. There are some studies on good load shedding strategies (e.g., Tatbul et al. [13])
that will make the output of stream processing systems most valuable even under high load.

2.2.2 Implementation of Window Join

How to implement the join operator is a challenging task in stream databases because of the tight
response-time restriction and high input data rates. In addition, stream join operation needs a heavy
computational cost. It is necessary to implement an efficient stream join operator in order to overcome
these problems. Consequently, acceleration of the stream join operation is a significant research issue
regarding stream databases.

Terada et al. [5] suggest an implementation technique of window join operator on an FPGA platform
in order to improve the performance and achieve high-throughput with low-latency. They try to extract
parallelism from the three-step procedure presented by Kang et al. [2]. The three-step procedure summa-
rizes operations that a continuous query processor requires to handle when it evaluates a join predicate
over windows of input streams.
The Three-Step Procedure. Let us assume a sliding window join R onp S between two input streams R
and S where p is a join predicate. Whenever a new tuple r from stream R (i.e., r ∈ R) arrives at the input
of the join operator, the three-step procedure is triggered. Each step of the procedure can be described
as follows:

Step 1: Scan all tuples in the current S -window (i.e., ∀s ∈ S -window) to find pairs of tuples 〈r, s〉 that
satisfy the join predicate p.

Step 2: Insert the new tuple r into the current R-window.

Step 3: Invalidate all expired tuples in the current R-window.

A new tuple s arriving from stream S (i.e., s ∈ S ) is handled symmetrically.
It is stated in [2] that even though the steps described above seem simple enough, it turns out that their

implementation can become complicated because of a mixture of traditional join processing problems
and additional issues introduced by having to evaluate the join using a sliding window over unbounded
streams.

Table 2.1: Definition of terms used in cost model

λr tuple arrival rate of stream R

λs tuple arrival rate of stream S

WR current window for stream R

WS current window for stream S

Kang et al. propose a unit-time-basis cost model for a window-based stream join query [2]. Fol-
lowing the description of the three-step procedure, each tuple arrival in window R triggers three tasks:
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scanning window S for joining tuples, inserting the tuple in window R and invalidating any expired
tuples from window R. Given the notation of Table 2.1, the cost formula for the three-step procedure is
shown in Equation 2.2.1.

CRonS = λr(scan(WS ) + insert(WR) + invalidate(WR)) + λs(scan(WR) + insert(WS ) + invalidate(WS ))
(2.2.1)

The first term of Equation 2.2.1 indicates the processing cost for tuple r ∈ R arrivals whereas the
second term represents the processing cost for tuple s ∈ S arrivals. In each term, the processing com-
ponent (scan, insert, invalidate) is multiplied by the factor that is the number of tuples arriving per unit
time. It should be mentioned that the cost model of the window join operation given as Equation 2.2.1
can be divided into two independent subgroups of operations, one for each input stream. In reference [2],
Equation 2.2.1 is rewritten as follows:

CRonS = CRnS +CRoS (2.2.2)

CRnS = λs(scan(WR)) + λr(insert(WR) + invalidate(WR)) (2.2.3)

CRoS = λr(scan(WS )) + λs(insert(WS ) + invalidate(WS )) (2.2.4)

According to Kang et al. [2], rewriting the cost formula (Equation 2.2.1) leads to two important
observations:

1. The window join operation is divided into two subcomponents, R n S and R o S . These subcom-
ponents are called join directions.

2. Each subcomponent can be evaluated independently from each other. The cost expression for
CRnS (Equation 2.2.3) is independent of the cost expression for CRoS (Equation 2.2.4).

Equation 2.2.2 represents the aggregate cost of accessing the windows of each input stream in a
single time unit. In particular, Equation 2.2.3 equals to the aggregate cost of accessing WR in unit time.
Similarly, Equation 2.2.4 equals to the aggregate cost of accessing WS in unit time.

For example, let us think about CRoS direction (Equation 2.2.4). In a given unit time, λr tuples arrive
from stream R and each of the arriving tuples should be compared with all tuples in WS . This is indicated
by the first term λr(scan(WS )) in Equation 2.2.4. At the same unit time, λs tuples arrive from stream S
and each of the arriving tuples should be inserted into WS . Concurrently, expired tuples in WS should be
invalidated. If we assume tuple-based window, one tuple gets expired for each tuple insertion into WS .
The cost of insertion and invalidation are indicated by the second term λs(insert(WS ) + invalidate(WS ))
in Equation 2.2.4.

In practice, Equation 2.2.2, Equation 2.2.3 and Equation 2.2.4 mean that both of the R n S direction
and the R o S direction can be evaluated in parallel. In fact, the window join operator presented by
Terada et al. [5] includes two join units one of which is assigned for the R n S direction and the other
is assigned for the R o S direction. Each of the join units performs the nested loops-style join which is
a straightforward implementation of the three-step procedure. As a result, only two join processes are
concurrently executed since the approach adopted in [5] is mainly based on sequential execution.

Another implementation of window join on an FPGA device is the M3Join proposed by Qian et al.
[14]. It is mentioned in [1] that the M3Join implements the join step as a single parallel lookup; however,
this approach causes the significant performance drop for larger join windows. On the other hand, the
pipelining approach and the data flow model of handshake join do not suffer from these limitations.
Details of the handshake join are discussed in the following chapter.
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2.3 Other works

Handshake join hardware includes join units, namely join cores, one of which performs join operation in
an independent manner. Join cores only require local core-to-core communication for data transferring.
They concurrently perform the same task in a synchronous manner. From this point of view, join cores
can be regarded as a one-dimensional systolic array.

Kung and Leiserson [15] proposed the idea of systolic array that is a structure composed of an array
of processors for VLSI implementation. It is stated in [15] that processing units of a systolic array
rhythmically compute and pass data through the system. The data processing and communication model
of join cores are consistent with the properties of systolic arrays. In fact, the data flow model of the
handshake join is similar to that of the join array [16] proposed for relational databases (i.e., traditional
DBMSs). It should be noted that the join array [16] is an implementation of traditional join operation
for relational DBMSs. On the other hand, handshake join [1] is an efficient algorithm of window-based
stream join operation for DSMSs. This is the difference between the join array and handshake join.
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Chapter 3

Design of Handshake Join

Chapter 3 introduces handshake join and identifies the design issues of handshake join hardware on
an FPGA. In addition, this chapter gives an overview of the proposed design of the handshake join
architecture.

3.1 Handshake Join

The basic idea of the handshake join [1] is to consider two input streams which are allowed to flow
in opposite direction as shown in Figure 3.1.1. With this approach, we obtain significant advantages
regarding parallelization and scalability. It is stated in [1] that the parallel evaluation of the matching
processes become possible because the approach adopted in handshake join converts the original control
flow problem (or its procedural three-step description) into a data flow representation. It is also stated
that there is no hot spot that could become a bottleneck if handshake join is scaled up [1].

Figure 3.1.1: The basic idea of handshake join (adopted from [1]).

It is mentioned in [1] that, in general, the three-step procedure corresponds to a nested loops-style
join evaluation; however, the nature of the nested loops-style join evaluation makes it difficult to scale
up to a large numbers of processing units. In fact, this is the main reason why only two join processes
are executed in [5]. To solve the problem, the distributed data flow-style processing model without a
dedicated centralized coordinator is proposed with the handshake join approach. It is indicated in [1]
that handshake join produces the same output tuples as classical window-based stream join procedure,
and it can be regarded as a safe substitute for traditional window join implementations.

Figure 3.1.2 illustrates handshake join operation for tuple-based windows. In Figure 3.1.2, each
rectangular box represents a tuple from two input streams. As shown in Figure 3.1.2, tuples from the
input streams R and S are allowed to flow in opposite direction. It is stated in [1] that both join windows
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Stream R

Stream S

current window for Stream R

join operator

Figure 3.1.2: Handshake join with tuple-based windows. Tuples from the two input streams are flowed
in opposite direction.

are lined up next to each other in such a way that window contents are pushed through in opposing
directions. It should be also mentioned that the oldest tuple in the current window for stream R or stream
S will be expired and discarded whenever a new tuple arrives in the corresponding window. In other
words, tuples from the two input streams R and S are pushed through respective join windows, and each
tuple pushes all existing window content one step to the side, such that always the oldest tuple “falls out”
from the window and expires [1].

Figure 3.1.3: The semantics of handshake join (adopted from [1]).

Semantics of the handshake join is described in [1] as follows:
Semantics of Handshake Join. Let us assume the handshake join R onp S between two input streams R
and S where p is a join predicate, and consider the situation at moment tr when a newly arrived tuple r
from input stream R (i.e., r ∈ R) enters its join window as illustrated in Figure 3.1.3. At this moment, a
tuple si from stream S (i.e., si ∈ S ) can relate to r in one of the following three situations as indicated in
Figure 3.1.3 (ti denote tuple arrival timestamps, Ti denote window sizes):

(1) Tuple s1 is so old that it has already left the current window for stream S (i.e., tr > ts1 +TS ). Thus,
r will not see s1 and no attempt will be made to join r and s1. This means that the join predicate p
is never evaluated for the tuple pair 〈r, s1〉.
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(2) Tuple s2 is somewhere in the current window for stream S when r enters the join window for
stream R. In this case, s2 is older than r (i.e., tr > ts2), but still within the join window for stream
S (i.e., tr < ts2 + TS ).

The two tuples r and s2 are guaranteed to meet eventually since each of r and s2 moves along the
corresponding join windows, respectively. In other words, r and s2 move toward each other, and r
will see s2 before both r and s2 fall out from the join windows. The tuple pair 〈r, s2〉 will be added
to the join result if they pass the join predicate p.

(3) Tuple s3 has not arrived in the join window for stream S yet (i.e., tr < ts3). Whether or not an
attempt will be made to join the tuple pair 〈r, s3〉 depends on tr, ts3 and the window specification
for stream R (i.e., TR). Once s3 arrives, these factors will determine whether r takes a role that is
symmetric to cases (1) or (2) above.

A new tuple r ∈ R arrives after s ∈ S in both of the case (1) and case (2). In addition, the join
predicate p is evaluated for the tuple pair 〈r, s〉 only when tr < ts + TS . From this point of view, both
of the cases (1) and (2) are consistent with the part 1.(a) of the classical definition of window-based
stream join semantics (Section 2.2.1). On the other hand, it is stated in [1] that case (3) is the situation
where r arrives earlier than s, and this case yields the same output tuples as covered by the part 1.(b) in
Section 2.2.1.

This explains that the semantics of handshake join coincides with the classical definition of the
window-based stream joins (Section 2.2.1). This also means that handshake join produces the exact same
output tuples that the classical three-step procedure does [1]. That’s why the approach of handshake join
can be regarded as a safe substitute for window join algorithm, and thus, it can be used for implementing
window-based stream join operators.

One thing should be mentioned here is that handshake join may produce result tuples in a different
order compared with the classical three-step procedure. It is stated in [1], however, that a certain degree
of local disorder is already prevalent in real applications. For example, some stream processing engines,
such as Truviso Continuous Analytics system [17], implement order-independent processing to handle
the out-of-order tuples. In fact, it is mentioned in [1] that the different tuple order can be corrected with
standard techniques such as punctuations [18]. While addressing the problem of the different tuple order
that handshake join can produce is an important topic for future work, the issue is out of scope for the
purpose of this thesis.

The parallelization of the handshake join operation is illustrated in Figure 3.1.4. As shown in Fig-
ure 3.1.4, the degree of parallelism can be easily increased to a higher level than ever achieved before, by
increasing the number of processing units (cores). Since each core is responsible for only its own seg-
ment of the two stream windows, all tuple comparisons and evaluation of the join condition are carried
out locally and independently. Theoretically, it can be readily scaled up in order to support large window
sizes, achieve high throughput rates, and/or handle compute intensive functions of the join conditions.

3.2 Design Issues of Handshake Join Hardware

Figure 3.2.1 (adopted from [1]) illustrates the general overview of the handshake join with tuple-based
window. As shown in Figure 3.2.1, join cores are aligned side by side so that tuples of the stream R and S
flow in opposite direction. It can be easily noticed that the windows of the two input streams are divided
into n sub-windows over n join cores. Furthermore, FIFO buffers (indicated as in Figure 3.2.1) are
included in each of the join cores and mergers. Three design issues have to be considered in order to
implement handshake join hardware based on Figure 3.2.1.
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(a) Handshake join with two processing units (cores)

(b) Handshake join with three processing units (cores)

Stream R

Stream S Core 1 Core 2

Stream R

Stream S Core 1 Core 2 Core 3

Figure 3.1.4: Parallelization of handshake join operation. Each of the cores evaluates its own segment of
the both windows.

First, result collection is a main design issue for handshake join hardware. As illustrated in Fig-
ure 3.2.1, the result merging logic is placed on top of the join cores. It is not implemented in [1] even
though it is stated that a merging network should merge all sub-results generated by each join core.

The second issue is the limitation of the bandwidth of the output channel (bandwidth refers to the
amount of data transferred per unit time). There is a possibility that output rates exceed the bandwidth of
the output channel, depending on the characteristics of the input streams. It is important for handshake
join hardware to be prepared to handle such cases.

Finally, the limitation of the size of the FIFO buffers is considered as a critical issue. Even if most
of the meaningful queries would produce a small amount of results, a possibility of buffer overflow still
remains in some applications. For instance, a number of tuples satisfying a join condition can arrive from
input streams in TCP SYN Flood detection [4]. In fact, it depends on the dynamic characteristics of input
streams, particularly whether or not a TCP SYN Flood attack [19] occurs. This causes an instantaneous
overload of the merging network which leads to the risk of buffer overflow. In this case, some of the
results overflow out of the buffers and they are permanently lost. Whether or not the problem would
occur really depends on application parameters (e.g., input data rate, match rate, and window size);
however, handshake join hardware should be prepared to avoid overflow of the FIFO buffers.
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Figure 17: FPGA Implementation of Handshake
Join for Tuple-based Windows.

intensive (including single-precision floating-point operations)
and amenable to SIMD optimizations. On such workloads,
Cell should benefit more from its higher clock speed (3.2GHz
vs. 2.2GHz) than the Opteron can take advantage from its
super-scalar design. Yet, our system outperforms CellJoin
by quite a margin.

6. HANDSHAKE JOIN ON FPGAS
48 CPU cores clearly do not mark the end of the multi-

core race. To see how handshake join would scale to very
large core numbers, we used field-programmable gate arrays
(FPGAs) as a simulation platform, where the only limit to
parallelism is the available chip space. FPGAs themselves
are an interesting technology for database acceleration [23,
24, 29], but our main focus here is to demonstrate scalability
to many cores (in particular, we favor simplicity over per-
formance if that helps us instantiate more processing cores
on the chip).

6.1 FPGA Basics
In essence, an FPGA is a programmable logic chip which

provides a pool of digital logic elements that can be config-
ured and connected in arbitrary ways. Most importantly the
FPGA provides configurable logic in terms of lookup tables
(LUTs) and flip-flop registers that each represent a single
bit of fast distributed storage. Finally, a configurable inter-
connect network can be used to combine lookup tables and
flip-flop registers into complex logic circuits.

Current FPGA chips provide chip space to instantiate up
to a few hundred simple join cores. The cores contain local
storage for the respective window segments of R and S and
implement the join logic. In this paper we implement simple
nested loops-style processing. To keep join cores as simple
as possible, we only look at tuple-based windows that fit into
on-chip memory (flip-flop registers).

6.2 Implementation Overview
Figure 17 illustrates the high-level view of our handshake

join implementation on an FPGA. The windows of the R
and S streams are partitioned among n cores. The cores
are driven by a common clock signal that is distributed over
the entire chip. The clock signal allows us to realize lock-step
forwarding at negligible cost, which avoids the need for FIFO
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Figure 18: Scalability of FPGA Handshake join with
a constant segment size of 8 tuples per window and
core.

queues and reduces the complexity of the implementation.
E↵ectively, the windows represent large shift registers with
direct support by the underlying hardware.
Following the basic handshake join algorithm (Figure 9)

for each core we need to provide a hardware implementation
of the segment for the R and S windows, a digital circuit for
the join predicate, and scheduling logic for the tuples and the
window partitions. The figure shows the two shift registers
(labeled ‘R window’ and ‘S window’, respectively) that hold
the tuple data. When a new tuple is received from either
stream, the tuple is inserted in the respective shift register
and the key is compared against all keys in the opposite
window (using a standard nested-loops implementation).

Result Collection. As illustrated in the top half of Fig-
ure 17, each join core will send its share of the join result
into a FIFO queue (indicated as ). A merging network
will merge all sub-results into the final join output at the
top of Figure 17.

6.3 Experimental Setup
We stick to a simple stream format where join keys and

payload are all 32-bit integers. We assume an equi-join and
return 96 bit-wide result tuples (32-bit key plus 2⇥ 32 bits
of payload).
Again our main interest is in measuring the scalability of

handshake join. To this end, we instantiate up to 200 join
cores on a Virtex-6 XC6VLX760T FPGA chip. Each of the
join cores can hold eight tuples per input stream (i.e., with
n = 100 cores the overall window size will be 100⇥ 8 = 800
tuples per stream). For each configuration we determine the
maximum clock frequency at which the resulting circuit can
be operated.
In hardware design, clock frequency is an excellent in-

dicator for scalability. In many circuit designs, the clock
frequency has to be reduced according to a n�k law as the
circuit size is increased (larger circuit areas generally lead
to longer signal paths). Only highly scalable designs allow
a constant clock frequency over a large range of circuit sizes
(k ⇡ 0).

6.4 Scalability and Performance
As shown in Figure 18, clock frequencies for our design

remain largely una↵ected by the core count (the absolute
value of 150 ⇠ 170MHz is not relevant for this assessment).

Figure 3.2.1: Overview of the handshake join architecture with tuple-based windows for FPGA imple-
mentation (adopted from [1]).

3.3 Design Strategy of Handshake Join Hardware

The following components are introduced in the design:

1. join core,

2. merger,

3. merging network,

4. and admission control.

Join cores and mergers are shown in Figure 3.2.1. These are fundamental components for join operation
and merging results. Merging network is a result merging logic consisting of a number of merger units.
It should be scalable to merge result tuples even if the number of join cores is increased. Admission
control mechanism provides a flow control between join cores and the output port to prevent data loss
due to the buffer overflow. Moreover, the mechanism rejects input tuples when it is difficult to handle
high-rate streams causing an overload. It is designed in a way that the proposed approach can be suitably
integrated with a load shedding scheme.

It should be also emphasized that the join cores only require local communication for data transfer-
ring, and they are regarded as a one-dimensional systolic array. On the other hand, the proposed design
is composed of not only join cores but also the merging network and the admission control mechanism.
This is the main difference between a traditional simple systolic array and the proposed design.
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Chapter 4

Implementation of Handshake Join
Architecture

This chapter presents an implementation of the handshake join architecture based on Figure 3.2.1. As
stated in Chapter 3, two windows of the input streams R and S are divided into n pieces respectively.
Accordingly, each join core is assigned two sub-windows that one comes from stream R and the other
comes from stream S. Additionally, all of the join cores are connected in such a way that the tuples of
the each input stream flow in opposite direction.

Even though it seems that only join cores are driven by a common clock signal in Figure 3.2.1,
in the proposed design, merger circuits that compose the result-merging network are also driven by a
common clock signal as well as the join cores. Hence, both of the join cores and merger circuits operate
synchronously with the same clock signal.

The common clock signal, which is distributed over the whole chip, enables us to design the win-
dows of the each input streams as large shift registers benefitting from the direct support of the FPGA.
Consequently, whenever a new tuple arrives, all of the join cores are able to send their oldest tuple to the
respective next neighbor simultaneously and thus, an arriving tuple shifts all tuples of the same stream
synchronously through the respective window. Actually, because of the data flow model described above,
handshake join can accomplish high degree of parallelism without a dedicated centralized coordinator.

As shown in Figure 3.2.1, a hardware implementation of join cores and merger circuits is need to be
provided in order to complete the implementation of the handshake join operator. Moreover, although
the connection of the join cores is implicitly defined in the handshake join semantic, the architecture
of the merging network, which would be composed of merger circuits and their connections, is neither
described in the definition of the handshake join algorithm nor illustrated explicitly in Figure 3.2.1.
However, how result merging logic should be designed is crucial point for handshake join hardware so
as to construct the final output stream by merging all sub-results into a single stream.

So far we have outlined the architecture of handshake join, which is illustrated in Figure 3.2.1, and
given the general ideas of the handshake join. Now, let us describe how these circuits are implemented
in further detail.

4.1 Join Core

The most fundamental circuit in our architecture is, of course, join processor (join core) that evaluates
the join condition over the tuples in the windows of the input streams and generates output tuples that
compose an output stream. As mentioned before, segments of the windows of the input streams R and S
are implemented as large shift registers that hold tuple data of the each stream.
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In addition to holding the tuple data, there is a one-bit valid flag field for each tuple in the windows
indicating whether the respective tuple field is valid or not. That is to say, if a valid flag is set to logic 1,
then it means there is a valid tuple datum in respective tuple field, whereas if a valid flag is reset to logic
0, it means the respective tuple field is empty i.e., no valid data.

Besides the large shift registers, which represent the segment of the windows for each input stream
R and S , there need to be an output buffer that keeps the output tuples generated in the respective join
core. For this purpose, a circular FIFO queue is implemented in each join core as an output buffer.

Two types of different embedded memories are available in the Xilinx FPGAs, which are a dedicated
Block RAM (BRAM) primitive and a LUT configured as distributed RAM. Our implementation of the
FIFO buffer is based on the dedicated BRAM primitive, which is configured as dual-ported RAM, that
directly supported by the FPGAs. There might be different use cases of FPGA-embedded memories;
however, it is a fact that distributed RAM consumes regular logic cells and hence, it competes for re-
sources with the other circuits, on the other hand, BRAM uses its dedicated resources. Accordingly, we
can effectively use our hardware resources available in FPGA devices by utilizing the dedicated BRAM
primitives as embedded memory units. It should be also mentioned that we could read from and write to
BRAMs one tuple per cycle and in our case, this is suitable for the FIFO buffer implementation.

Furthermore, there are two address registers, which are read-address register and write-address reg-
ister, inside the FIFO buffer circuit. In addition, two state flags are included in the FIFO buffer, namely
empty and full. Although, the registers and the state flags mentioned above may seem self-explanatory,
one point should be noticed that full flag is set to logic 1 whenever the FIFO buffer is full or almost full
(i.e., there are only few locations left).

The state transition diagram of a join core circuit is illustrated in Figure 4.1.1. The STATE0 performs
a hardware initialization of the join core circuit. The following state, STATE1, indicates that a join core
is ready for accepting new tuples of the both of the two input streams R and S at the same time. The
details of the operations that are carried out in other states illustrated in Figure 4.1.1 are described below.

First, let us look into the two consecutive states that are STATE2 and STATE3. When a new tuple
is received from either or both of the input streams, a join core reads its own input ports of the two input
streams as well as the respective valid signals that indicate whether the data on the input ports of the tuple
field is valid or not. After that, the data read form the each input port is written to input buffer registers
respectively with valid flags. At this point, if one of the input tuples has not arrived yet, then respective
valid flag will be reset to logic 0 so as to notice that a tuple data written into the corresponding input
buffer register is invalid. Otherwise, the valid flags of the input tuples will be set to logic 1. Consequently,
input buffer registers and corresponding valid flags have been updated accurately and these buffers are
ready to be processed at the beginning of the next state i.e., STATE4.

Secondly, after loading the new input tuples in the previous state, that is STATE3, there are two
possible candidates, which are STATE5 and STATE6, for the next state of the STATE4 as shown in
Figure 4.1.1. The next state will be determined by a condition in STATE4. If “valid R”, which represents
the valid flag for the most newly arrived input tuple from the input stream R, is “False”, then it means
that the valid flag has been reset to logic 0 and there is no valid data in the input buffer register of
stream R. Therefore, the segment of the window for stream R will not be shifted. In this case (i.e.,
when “valid R” is “False”), we will skip STATE5 and the next state of the STATE4 is determined to be
STATE6. Contrarily, when “valid R” is “True” that is the valid flag has been set to logic 1, this indicates
that there is valid tuple data in in the input buffer register of stream R. This time, since a new tuple has
come from the input stream R, the newly arrived tuple will be inserted in the current window for stream
R, and thus each segment of the window for stream R has to be shifted one-step to the side. Accordingly,
in this case, the next state of the STATE4 is determined to be STATE5.

Thirdly, after a newly received tuple data from the input stream R is loaded into the input buffer
register in the previous state, the next step is to insert the received tuple in the current window for the
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Figure 4.1.1: State transition diagram of the join core circuits.

stream R, which is implemented as a large shift register. Consequently, in the STATE5, each join core
should shift its own segment of the window for stream R one-step to the side. At this point, in addition to
shifting the window, the key value of the received tuple should be compared with each key value of the
tuples in the segment of the window for stream S (an equi-join is assumed for simplicity as in [1]). After
all, for accurate execution of the window join operation, it has to be guaranteed that the newly received
tuple from stream R is to be compared with all of the tuples that are in the current window for stream S.
In order to meet this requirement, we have adopted the immediate scan strategy, which will be described
below, that is introduced by Teubner and Mueller in [1]. Hence, we have accomplished whole window
semantics correctly by utilizing the immediate scan strategy.

The immediate scan strategy is a local processing strategy that meets the requirement mentioned
above, and thus it will guarantee the correct window semantics. In our proposed design, we have used
immediate scan strategy with a nested loop join implementation as in [5].

The immediate scan strategy is a specific strategy that is used by each join core so as to execute
window join operation on its own segments of the windows for the input streams R and S . The illustration
of the immediate scan strategy for the segment k is given in Figure 4.1.2 (adopted from [1]). In this
particular illustration, the number of tuples, which are in the corresponding segments of the windows in
the join core k, differs from each other. As a matter of a fact, the immediate scan strategy can be used in
spite of the different window sizes and it works accurately even if the relative window sizes are different
from each other.

The immediate scan strategy would work as follows: when a tuple from input stream R or S enters to
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Figure 4.1.2: Immediate scan strategy. When a tuple from input stream R (a) or S (b) enters to the join
core k, the immediate comparison will be triggered respectively in the same join core (figure adopted
from [1]).

the join core k, the immediate comparison will be triggered respectively on the corresponding segments
of the windows in the join core k (see Figure 4.1.2). Accordingly, as shown in the illustration given
in Figure 4.1.2 (a), after entering the segment k of the window for stream R, a newly entered tuple
is compared at once with all tuples of stream S that are already in the same segment of the window.
Figure 4.1.2 (a) shows all necessary pairs that have to be compared after the tuple r is inserted into the
join core k. Similarly, when a new tuple from stream S is inserted into the segment k, the most recently
entered tuple is compared with all tuples of stream R that are already in the same segment of the window
as shown in Figure 4.1.2 (b).

Let us come back to the STATE5 in Figure 4.1.1. As mentioned before, we have adopted the imme-
diate scan strategy with nested loop join in the implementation of our proposed design. That is, all of the
necessary comparison mentioned in the description of the strategy is carried out by using the approach
of nested loop join. Thus, based on the immediate scan strategy with nested loop join, after inserting
the new tuple of stream R into the corresponding window, all comparisons are sequentially performed
with the tuples that are in the window of stream S in STATE5. Accordingly, during the nested loop join
execution, a transition to the next state should not be allowed and the state has to remain at the same
state i.e., STATE5. In Figure 4.1.1, “complete R” represents whether the execution of the nested loop
join is completed or not. If “complete R” is “False”, then it means that the nested loop join is being
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executed, and therefore the state remains STATE5. On the other hand, if “complete R” is “True”, then
the transition to the STATE6 is allowed as the nested loop join has already been completed.

Finally, the tasks that should be performed in the remaining states, which are STATE6 and STATE7,
are similar to what has been performed in STATE4 and STATE5 respectively. The main difference is
that STATE4 and STATE5 states focus on a new tuple that comes from stream R, whereas STATE6 and
STATE7 states deal with a newly arrived tuple from stream S.

4.2 Merger

In our proposed design, we have tried to keep the merger circuits as simple as possible. Accordingly,
we have designed two-in one-out merger that can be considered as the simplest case, which is slightly
different from what is illustrated in the top half of Figure 3.2.1. That is, the only task is to merge two
input streams of data into one.

The components included in a merger circuit are very simple: a circular FIFO queue, two input buffer
registers and corresponding flags that indicate whether the data contained in each buffer register is valid
or not. In addition, it should be also mentioned that the circular FIFO queue is used as an output buffer
that keeps the output tuples generated by join cores.

The state transition diagram of a merger circuit is illustrated in Figure 4.2.1. STATE0 represents the
reset state where necessary hardware initialization operations take place. The details of the other states
illustrated in Figure 4.2.1 are described below.

STATE0:
Reset

STATE1:
Read

input ports

STATE2:
Check for

input1

STATE3:
Check for

input2

Figure 4.2.1: State transition diagram of the merger circuits.

First, the result tuples, which are generated by join cores, are read form the two input ports and
written to the input buffer registers in STATE1. At this point, if there is no valid data on one or both
of the input ports, then respective valid flag will be reset to logic 0 so as to notice that the data written
into the corresponding buffer register is invalid. Otherwise, the valid flags of the data on the input ports
will be set to logic 1. Consequently, buffer registers and corresponding valid flags have been updated
correctly and these buffers are ready to be used for the next state i.e., STATE2.

Secondly, in STATE2, after loading the data from the input ports, let us say port1 and port2, if the
valid flag of input port1 is logic 1, then a result tuple that is stored in the buffer register is transferred to
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the output buffer i.e., the circular FIFO queue. On the other hand, if the valid flag of input port1 is logic
0, there is nothing to be done but transit to the next state.

Finally, the task that should be performed in STATE3 is very similar to what has been done in the
previous state. That is, the only difference is that STATE2 focuses on the data comes from input port1,
while STATE3 deals with the data comes from input port2. It should be also noted that the next state of
STATE3 is STATE1, and therefore a merger circuit would repeats states from STATE1 to STATE3 for
ever and ever.

4.3 Merging Network

As mentioned before, the connection of each join core, which is implicitly defined in the handshake
join semantic, is obvious. That is to say, all of the join cores have to be connected in a way that the
tuples of the input streams R and S flow in opposite direction. However, as shown in Figure 3.2.1, the
architecture of the result merging logic is not given in detail. Furthermore, there is no description about
the architecture of the merging network in the definition of the handshake join algorithm.

It is a fact that a result-merging network is needed in order to merge all partial results produced by a
number of join cores into a single stream as the final join output. In our proposed design, we suggest a
binary tree-like connection for the architecture of result merging network that consists of several merger
circuits and their respective connections.

merger13 merger15

Final join output as a single stream

merger14merger12merger11merger10merger9merger8

merger7merger6merger5merger4

merger2 merger3

merger1

Figure 4.3.1: Binary tree-like connection. An example of a result-merging network for 16 join cores.

An example of a result-merging network for 16 join cores is illustrated in Figure 4.3.1. As described
before, we have implemented two-in one-out merger circuit in order to merge two input streams of result
tuples generated by join cores into a single output stream. Accordingly, we can use our merger circuits so
as to make binary tree-like connections as illustrated in Figure 4.3.1. As shown at the top of Figure 4.3.1,
we can obtain the final result of the window join operation as a single output stream from output port of
the root node (i.e., merger1). Moreover, it should be also indicated that, there are 16 open input ports of
which mergers that are numbered from 8 to 15 at the bottom of Figure 4.3.1. Output ports of 16 join core
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circuits can be connected to these input ports so that the result-merging network can merge 16 streams
of result tuples into a single output stream.

merger1

merger2 merger3

core1 core2 core3 core4

output stream
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Figure 4.3.2: Connection between join cores and merging network.

For the purpose of clarification, Figure 4.3.2 demonstrates how to connect join cores with corre-
sponding result-merging network. For simplicity, there are only four join cores in Figure 4.3.2; however,
the number of join cores and the size of the result-merging network will not affect the approach adopted
in Figure 4.3.2.

4.4 Admission Control

Admission control mechanism addresses the problem regarding the limitation of the bandwidth of the
output channel and the size of the FIFO buffers. The mechanism avoids buffer overflows leading to loss
of the results. All results generated by join cores are transferred to the output port by rejecting newly
arrived tuples when the output rate exceeds the bandwidth of the channel and/or any of the buffers is
close to overflow.

Each FIFO buffer included in a join core or a merger has a full flag. It is asserted when the corre-
sponding buffer is almost full (or completely full). The admission control mechanism is summarized as
follows:

1. If a full flag is asserted, newly arrived tuples are rejected, and all join cores are suspended until all
of the full flags are de-asserted (reset to logic 0).

2. Furthermore, if any full flag of mergers is asserted, input ports of the corresponding merger are
disabled until its own full flag is de-asserted again.

The overhead of the admission control is as follows. All full flags are ANDed together, and the result is
stored in a flip-flop. In addition, the output of the flip-flop is connected to each join core. For example,
if the number of join core is four (as shown in Figure 4.3.2), there are four-bit signals from the full flags
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of join cores and three-bit signals from the full flags of mergers. A total of seven-bit signals are ANDed
together, and the result is stored in a one-bit flip-flop. This one-bit of information indicates whether or
not all of the full flags are de-asserted. With the one-bit signal connected to four join cores, each of the
join cores can determine whether to suspend the matching process.

Notice that the problem regarding the bandwidth of the output channel could be resolved by the
admission control. For example, in Figure 4.3.2, the FIFO buffer of the merger1 becomes full when
the bandwidth of the output channel is not enough to transfer all results, and the corresponding full flag
is asserted. Consequently, the admission control mechanism takes effect in order to prevent loss of the
results due to buffer overflow.

What the admission control provides is the flow control between each join core and the output chan-
nel. With the admission control mechanism, the proposed handshake join operator takes responsibility
for input tuples accepted by join cores. This means that all results derived from the accepted tuples are
transferred to the output channel. In other words, no data loss occurs between each join core and the
output channel. On the other hand, this does not always prevent loss of actual join results. The loss of
the results can occur when the join operator could not keep up with a high input data rate. It is the fact
that a lossless flow of all join results is impossible in such cases since some of the input tuples would
be rejected (because of the admission policy). It is stated, however, in [1] that load shedding [13] or
distribution [20] can be used if handshake join alone is not sufficient to sustain load. The admission
control is consistent with load shedding techniques even though implementation of such a mechanism is
out of scope of the thesis. The handshake join operator can produce more valuable results once a load
shedding mechanism reduces the load of the system because what the admission control guarantees is
the join results of the input tuples accepted by the join operator.

4.5 Evaluation of the Handshake Join Hardware

The design is implemented on a Xilinx XC6VLX240T-1 chip (Table 4.1). The FPGA design software
used in this work is Xilinx ISE 13.1 Logic Edition.

Table 4.1: Specifications of XC6VLX240T-1

#. of Slice Registers 301,440

#. of Slice LUTs 150,720

#. of Slices 37,680

#. of BRAM (36Kbit) 416

#. of DSP48 768

4.5.1 Resource Usage and Signal Delay

The hardware resource usage and clock frequency are evaluated for 6 different configurations. The
different number of join cores (2i where i = 1, . . . , 6) are instantiated on the FPGA. The parameters used
during the instantiation process are as follows. The window size of each join core is set to 8 tuples. Each
input tuple consists of 64-bit of data half of which is join key and the remainder is allocated for payload
field. A result tuple is composed of 32-bit join key and two payload fields, a total of 96-bit data.
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The maximum clock frequency of the prototype system is shown in Figure 4.5.1. The x-axis and the
y-axis represent the number of join cores and the clock frequency, respectively. As shown in Figure 4.5.1,
the graph is almost constant around 150MHz and the frequency is not declined with increased number
of join cores.

The hardware resource usage is given in Table 4.2. In addition, the percentage of the overall resource
consumption is shown in Figure 4.5.2. In this graph, the y-axis represents the percentage of the used
resources. As shown in Figure 4.5.2, the graph is almost linear, and it can be understood that up to 64
join cores can be instantiated on the FPGA. The results of Figure 4.5.1 and Figure 4.5.2 lead us to the
conclusion that the proposed design is scalable in terms of the resource usage and the signal delay.
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Table 4.2: Hardware resource usage

Join cores Slice Registers Slice LUTs Occupied Slices

2 3,682 2,654 1,084

4 7,106 5,281 1,898

8 13,949 9,281 4,064

16 27,763 18,260 7,930

32 58,212 34,467 17,695

64 116,165 78,958 30,052

4.5.2 Performance Evaluation

A simple evaluation model can be used as shown in Figure 4.5.3 to evaluate the throughput performance
of the architecture. A number of input tuples are generated according to match rates and stored in
the input buffer in a random order (according to a uniform distribution). After that, input tuples are
transferred to the handshake join operator. While processing the input tuples, it generates result tuples,
and they are stored to the output buffer.

The following parameters are used in the evaluation. The handshake join operator includes 64 join
cores, and it runs at 100MHz. The size of the input buffer is set to 512 tuples, which is the same as the
total size of the window. The sizes of the FIFO buffers included in each join core and each merger are set
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Figure 4.5.3: Evaluation of the handshake join architecture.

to 8 and 4 tuples, respectively. It should be noted that all results generated by join cores are transferred
to the output buffer owing to the admission control. This is confirmed by counting the number of results
stored in the output buffer. It is shown that the admission control can work properly (no overflow occurs)
even if the sizes of the FIFO buffers are set to such a small value.

The throughput is shown in Figure 4.5.4. The line labeled “nested loop join” is the performance
estimation of nested loops-style join implemented in [5]. The same parameters as handshake join are
used for performance comparison: the size of the input buffer is 512 tuples and it also runs at 100MHz.
The y-axis of Figure 4.5.4 represents the maximum throughput of input streams that can be handled by
each join operator without dropping any input tuple.
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Figure 4.5.4: Maximum input throughput.

Three critical points where an overload can occur should be considered to understand Figure 4.5.4.
The first point is between input ports and join cores. As shown in Figure 4.5.3, two input streams (R
and S) flow into the join cores. The second point is between the join cores and the merging network
where each join core transfers its sub-results to the merging network. Finally, the third point is between
the merging network and the output port. It is the fact that the throughput of the join cores should not
depend on match rates. On the other hand, the output rate of the join cores does vary depending on match
rates even if the throughput of the input streams remains the same. Furthermore, the parallel execution
of joins results in a high output rate because a larger number of results can be produced per unit time
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(compared to nested loops-style join evaluation) even though the total number of results is not affected
by the execution method. With increasing match rates, the join cores produce a considerable number of
results, and therefore the second point tends to overload. In addition, the bandwidth of the output channel
strictly limits the throughput of the merging network, and this causes an overload in the third point. In
fact, what determines the throughput of the entire system is not the join cores but the merging network,
especially at a high match rate. This is because the merging network becomes a critical bottleneck as
match rate increases.

On the other hand, low match rates lead to low output rates of the join cores. In such cases, the load
of the merging network decreases, and the merging network is no longer the critical bottleneck of the
overall system. When a new input tuple arrives in the system, matching processes can be completed in a
shorter period of time than the nested loops-style join, taking advantage of the parallel execution of the
join cores. That’s why the handshake join can achieve higher throughput than the nested loops-style join
when match rate is low.
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Chapter 5

Discussion on Buffer Size Tuning

There is a close relation between the size of the FIFO buffers and the frequency of interruption caused
by the admission control. Theoretically, the admission control never suspends the join cores provided
that there is enough space in the buffers. On the other hand, limitations of hardware resources should be
considered in practice, and allocation of finite buffer space has become an important design issue. It is
necessary to clarify how buffer sizes affect the overall performance of the architecture. Chapter 5 gives
some discussions on buffer size tuning, particularly static and adaptive tuning of the buffers for join and
merge units included in the handshake join architecture.

In order to investigate the effect of the buffer sizes, we use a cycle-accurate simulator of the architec-
ture as a simulation platform. The buffer sizes can be easily modified and this enables us to evaluate the
architecture for different buffer size configurations more easily. A huge memory block can be allocated
for each buffer of join core or merger by using the software model. As a result, it is also possible to
evaluate the architecture in the ideal condition regarding buffer sizes.

The same parameters as in Section 4.5.2 are used in the simulation except for the FIFO buffers. The
size of the input buffer is 512 tuples, and there are 64 join cores one of which can store up to 8 tuples for
each stream. Input and result tuples are 64-bit and 96-bit wide, respectively.

5.1 Static Tuning

As shown in Table 4.1, there are 416 BRAMs each of which can store up to 36Kbit data in a XC6VLX240T-
1 chip. That is to say, we can allocate up to 211 tuples for each join core and merger when BRAM
resources are equally allocated among all of the FIFO buffers which are included in join cores and merg-
ers. From this point of view, the total number of cycles required for completion of the join operation is
evaluated for different buffer sizes (2i where i = 2, . . . , 11).

The evaluation results are shown in Figure 5.1.1. The simulations are performed at the 100% match
rate. The x-axis of Figure 5.1.1 represents the buffer sizes of each node (i.e., join core or merger). These
numbers indicate the maximum number of result tuples that can be stored in each FIFO buffer. The
y-axis of Figure 5.1.1 stands for the total number of cycles required for completion of the handshake
join operation. This means that all of the result tuples generated by each join core are transferred to the
output port as a single output stream. Thus, no result tuples remain in any of the FIFO buffers when the
operation is completed.

According to the results, the numbers of cycles required for the completion of handshake join are
1464443, 1054029 and 1054012 when the buffer sizes are 22, 23 and 24 respectively. As shown in
Figure 5.1.1, results indicate that the total number of cycles is unchanged when the buffer size of each
node is equal to or more than 24 tuples.
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Figure 5.1.1: Results of the simulation for different buffer sizes (2i where i = 2, . . . , 11) at 100% match
rate.

What determines the total throughput of the system is not the join cores but the merging network
at a high match rate. This is because the merging network becomes a critical bottleneck as match rate
increases. Inputs and output of the merging network are critical points, which can become a bottleneck
for the overall system performance. The connection point between the join cores and the merging net-
work becomes a major bottleneck when the buffer size of each node is less than 24 tuples. It is possible,
however, to alleviate the bottleneck by increasing the buffer size up to 24 tuples. Once it has reached 24

tuples, the main bottleneck is shifted to the output of the merging network since the bandwidth of the
output channel strictly limits the throughput of the merging network. As a result, the increased buffer
size no longer alleviates the bottleneck; thus, the total number of cycles is constant when the buffer size
is equal to or more than 24 tuples.

Table 5.1: Buffer size configurations

Level of the tree #. of nodes config1 config2 config3

0 (root node) merger × 1 22 210 28

1 (nodes at depth 1) merger × 2 22 26 27

2 (nodes at depth 2) merger × 4 22 25 26

3 (nodes at depth 3) merger × 8 23 24 25

4 (nodes at depth 4) merger × 16 24 23 24

5 (nodes at depth 5) merger × 32 24 22 23

6 (leaf nodes) join core × 64 24 22 22
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So far, the simulation model assumes the same sizes for each buffer of join core and merger. In
other words, BRAM resources are uniformly distributed among all FIFO buffers. As the next step, the
total number of cycles for non-uniform configuration is evaluated. The details of the three different
configurations are given in the Table 5.1. The first column represents level of the tree. Here, the depth of
a node is defined as the length of the path from the root to the node. As a special case, the depth of the
root node is 0. The set of all nodes at a given depth is called level of the tree. In these configurations, the
buffer size of all nodes at the same depth is equal, and each row of the Table 5.1 corresponds to the size
of each buffer in the same level.

The total buffer sizes of the each configuration 1, 2, and 3 are 1884, 1920, and 1792 tuples, respec-
tively. Note that the total buffer size is 2032 when the buffer size of each node is equal to 24. We compare
the number of cycles required for completion of the operation for these four buffer configurations under
different match rates in order to clarify the effect of the difference of the buffer allocation method.
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Figure 5.1.2: Results of the simulation for four different configurations at 20%, 40%, 60%, 80% and
100% match rates.

The results of the cycle-accurate simulation are shown in Figure 5.1.2. Results indicate that the buffer
allocation methods may have great impact on the performance of the handshake join architecture. It is
predictable from these results that the buffer sizes of nodes closer to the root should be relatively larger
than other nodes located in deeper levels so as to utilize the limited resources efficiently.

5.2 Adaptive Tuning

In the previous section, we focus on the static buffer tuning in order to investigate the relation between the
buffer sizes and the performance of the architecture under the condition of limited hardware resources.
In this section, we consider the possibility of adaptive buffer tuning for the architecture.

In this evaluation, we assume that the admission control mechanism never interrupts the handshake
join operation. Relatively large memory blocks are allocated for buffers of join cores and mergers. In
fact, the buffer size of each node is equal to or more than 216 tuples. These values guarantee the above
mentioned assumption.

In this simulation, the architecture is evaluated with input streams of three different characteristics
so as to investigate the relation between the characteristic of the input streams and the number of tuples
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inserted into each buffer. Input tuples which satisfy the join condition are located in the input buffer as
follows:

1. according to a uniform distribution,

2. according to a Gaussian distribution,

3. and burst inputs (consecutive tuples that satisfy the join condition).

The results of the cycle-accurate simulation are shown in Figure 5.2.1. In each graph, the x-axis
represents the cycles (elapsed time), and the y-axis stands for the number of tuples stored in the buffer at
each cycle. Each graph in Figure 5.2.1 corresponds to the nodes at depth 3 in the binary tree (merging
network). Results indicate that the number of tuples stored in the buffer differs from each other.

These data lead us to the conclusion that the adaptive buffer tuning can be applied to the architecture
because sufficient space is available in some buffers when some of the others store a relatively large
number of tuples. These observations imply that some load-balancing methods such as Dynamically
Allocated Multi-Queue Buffers [21] can be used for the purpose of adaptive tuning. In this work, an
“adaptive merging network” is proposed to address the problem. Details of the adaptive merging network
are discussed in the following chapter.
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(f) Gaussian distribution with 40% match rate
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(d) Uniform distribution with 40% match rate
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(e) Gaussian distribution with 20% match rate
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(c) Uniform distribution with 20% match rate
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(a) Burst with 20% match rate
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(b) Burst with 40% match rate
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Figure 5.2.1: Results of the simulation for input streams of three different characteristics at 20% and
40% match rates.
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Chapter 6

Design and Implementation of Adaptive
Merging Network

The handshake join operator presented in Chapter 4 can achieve high throughput rate compared to [5]
when the match rate is low. The merging network, however, suffers from congestion and it becomes a
critical bottleneck for the performance of the system if the match rate is increased. Consequently, the
performance is considerably degraded when the match rate is high. Chapter 6 proposes an alternative
merging network structure, namely adaptive merging network, to address the problem. Furthermore,
this chapter presents the design and implementation of the handshake join hardware with the adaptive
merging network, and compares it with the implementation presented in Chapter 4.

6.1 Design Overview

It is indicated in Chapter 4 that the handshake join operator can transfer all results without loss of output
tuples by implementing the binary tree network and the admission control mechanism. However, there
is a structural disadvantage concerning efficient use of buffers. There is only one path from each join
core to the output port because join cores are located at leaf nodes of the binary tree network and all
of the result tuples are forwarded towards the root node of the tree. This can cause a problem if the
output rate of a join core, which is a measure of how frequently result tuples are generated by a join core,
significantly differs from those of others.

In handshake join, each join core evaluates the join condition over the tuples in its sub-windows of
input streams. At the same time, result tuples are generated by each join core only if the join condition
is satisfied. Whether a join core generates a result tuple or not completely depends on nature of the input
tuples being evaluated (i.e., it is data dependent). Accordingly, the output rate of each join core can be
time-variant depending on dynamic characteristics of the input streams.

The variation in output rates has to be taken into account when designing architecture of merging
network for handshake join hardware even though it is ignored in Chapter 4. For simplicity, let us think
about the case that only one join core generates output tuples continuously within a certain period of
time. For example, let’s say that core2 in Figure 4.3.2 is the join core that generates outputs. In this
case, result tuples are first stored in the buffer of core2. After that, they are forwarded to merger2 and
stored in its buffer. Finally, merger2 transfers result tuples to merger1, and they are stored in the buffer
of merger1.

Although the total number of available FIFO buffers in Figure 4.3.2 is seven, only three of them can
be used for buffering results generated by core2. This means that more than half of buffers are unusable
when the number of join cores is four. Furthermore, the buffer utilization is significantly decreased if
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Figure 6.1.1: Adaptive merging network with four bufferless join cores.

the number of join cores is increased. Still, there is no problem provided that the output rate of core2
remains below the bandwidth of the merging network and the output channel.

However, the admission control mechanism suspends operations of the join cores if the available
bandwidth is not enough to transfer all of the results. In this case, new tuples of input streams are rejected
and join operations are suspended even though there are unused buffers in overall system. Consequently,
the merging network proposed in Chapter 4 has the potential to be a critical bottleneck for the throughput
performance.

It can be understood from the fact that the throughput performance of the handshake join operator is
strictly limited by the merging network even though it is stated in [1] that handshake join supports high
degrees of parallelism and ensures the scalability. The output rate can easily exceed the bandwidth of the
merging network since parallelized execution of join operations results in higher output generation rates.

In order to address the problem, an adaptive merging network is proposed as indicated in Figure 6.1.1.
The FIFO buffers are omitted from both join cores and mergers. In addition, a new layer of nodes and
the FIFO buffers are located between join cores and mergers.

As shown in Figure 6.1.1, there are bidirectional links between each adjacent node. It should be
noted that node1 and node4 are also connected by a wraparound link (shown as a broken line in Fig-
ure 6.1.1), and therefore, these nodes can be regarded as a ring structure. These links enable two-way
data transmission between neighboring nodes in the ring structure. As a result, contrary to the merging
network proposed in Chapter 4, each result tuple can take different paths through the merging network
to reach the output port of the root node (merger1 in Figure 6.1.1).

The problem regarding the hardware architecture of handshake join is discussed and an overview
of the architecture of the adaptive merging network is given so far. In the following section, an imple-
mentation of the proposed architecture is described in more detail, especially the difference between the
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handshake join with the adaptive merging network and one proposed in Chapter 4.

6.2 Implementation of the Proposed Architecture

6.2.1 Join Core

Join cores evaluate the join condition over the tuples in the windows and generate output tuples. Each
segment of the windows is implemented as a shift register. The common clock signal, which is distributed
over the whole chip, enables us to design the windows of the each input streams as large shift registers
benefiting from the underlying FPGA hardware. In addition, there is a one-bit valid flag field for each
tuple in the windows indicating whether or not the corresponding tuple field is valid.

Whenever a new tuple arrives, all of the join cores send their oldest tuple to the respective adjacent
cores simultaneously. Therefore, a newly arrived tuple can shift all tuples of the same stream throughout
the window. After that, each join core compares the key value of the received tuple with the key values
of all tuples in another segment of the window. Because of the data-flow model described above, join
cores require no centralized coordinator that manages overall data-flow among them.

The implementation of a join core is based on Chapter 4; however, the main difference is the existence
of the FIFO buffer that stores output tuples generated by the join core. In the proposed design, the join
cores forward the result tuples directly to the merging network as shown in Figure 6.1.1 instead of storing
them in the buffers.

6.2.2 Adaptive Merging Network

The adaptive merging network is the most important and notably different part of the handshake join
architecture proposed in this chapter compared to one proposed in Chapter 4. The simple binary tree net-
work only composed of the mergers is proposed in Chapter 4 as the merging network for the handshake
join operator. By contrast, a totally different network model is adopted here. The adaptive merging net-
work is composed of the binary tree network (without buffers), a layer of FIFO buffers and the ring struc-
ture directly connected to the join cores. With the proposed adaptive merging network, the handshake
join operator can accomplish much higher data throughput than ever achieved before (see Section 6.3.3
for more details).

Binary tree network

The binary tree network proposed in Chapter 4 (Figure 4.3.2) includes the FIFO buffers and it is respon-
sible for two main tasks:

1. to buffer result tuples coming from each join core,

2. and to generate a single output stream by combining streams of sub-results produced by multiple
join cores.

In contrast to the previous merging network, the binary tree network included in the proposed merging
network (Figure 6.1.1) has no FIFO buffers and it is no longer responsible for buffering results.

Each merger circuit has two input and one output ports for data transfers. That is, the one and only
task is to merge two streams of data into one. The mergers share a common clock signal with join cores.
The components included in a merger circuit are very simple: two input buffer registers and an output
buffer register with valid flags indicating whether or not the data stored in each register is valid.
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Figure 6.2.1: The connections of the ring structure in the proposed merging network.

The difference between the proposed merger and the one proposed in Chapter 4 is the existence of
the FIFO buffer that stores result tuples. As shown in Figure 6.1.1, each merger forwards the result tuples
from its two input ports directly to the output port instead of storing them in buffers.

Ring structure and FIFO buffers

The connections of the ring structure in the proposed merging network is shown in Figure 6.2.1. In this
proposed design, the bidirectional links are considered as two directed links between each pair of nodes.
Each node requires two input and two output ports to connect to adjacent nodes. Moreover, additional
input and output ports are required to connect to a join core and a FIFO buffer, respectively. Therefore,
a total of six ports are available for each node of the ring structure for data transfers. As shown in
Figure 6.2.1, node k has three input ports (S in, E in and W in) as well as three output ports (N out,
E out and W out).

Each node of the ring structure shares a common clock signal with join cores and mergers. It contains
a buffer register for each of the output ports, which are N out, E out and W out. These buffer registers are
used to transfer the result tuples coming from a join core connected to S in, and adjacent nodes connected
to E in and W in. It should be noted that each buffer register can store only one tuple at a time, and there
is no FIFO buffer in node k.

The proposed design adopts the idea of bufferless routing for the ring structure. The basic idea is to
always route a packet to an output port regardless of whether or not that output port results in the minimal
distance to the destination of the packet [22]. In our case, a packet means a result tuple generated by a
join core, and the destination of the packet is always N out port.

The routing algorithm adopted for the ring structure is based on the FLIT-BLESS (or simply BLESS)
proposed in [22]. The proposed ring structure satisfies the following two constraints required for BLESS:
Every node has 1) the same number of output ports as the number of its input ports, and 2) is reachable
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from every other nodes.
An arbitration policy is needed to determine to which output port an incoming tuple should be for-

warded. It is stated in [22] that the arbitration policy of BLESS is governed by two components: a
ranking component and port-selection component. The simple oldest-first policy is adopted as a ranking
policy, and for this purpose, a hop counter is added for each tuple. In every cycle, each node ranks all
incoming tuples comparing hop counts of the tuples.

On the other hand, the port selection is based on the number of tuples in the FIFO buffers. Each buffer
includes a counter that counts the number of stored tuples. In addition, these counters are connected to
the ring structure. The buffer counters of buffer k-1, buffer k and buffer k+1 are connected to the node k.
In every cycle, the node k compares the counters and determines the priority of output ports according to
the result of the comparison. For example, the priority of the output ports, in descending order, should
be E out, W out and N out if counter k+1 < counter k-1 < counter k.

After determining the ranks of the incoming tuples and the priority of the output ports, the node k
considers the tuples one by one in the order of their rank (highest rank first) and assigns to the output
port with highest priority that has not yet been assigned to any higher-ranked tuples. For example, let us
assume there is only one incoming tuple to the node k at a certain time. At the same time, the priority
of the output ports is, let’s say, E out, W out and N out in descending order. In this case, the incoming
tuple is forwarded to E out port because of its highest priority. It should be emphasized that all of the
operations described above can be completed in one cycle and all of the nodes in the ring structure
concurrently perform the same operation on each cycle in a synchronous manner.

6.2.3 Admission Control

The bandwidth of the output channel is not enough to transfer all result tuples when output rate is higher
than the available bandwidth of the channel. In addition, some of the result tuples may be lost due to
congestion (buffer overflow) losses when a large number of result tuples are generated within a short
interval of time.

In order to avoid the problems with regard to the bandwidth of the output channel and the limitation
of the internal buffer sizes, an admission control strategy is adopted in the proposed architecture based
on Chapter 4. That is, all of the generated result tuples are transferred to the output channel by rejecting
newly arrived tuples to the system when the output rate exceeds the available bandwidth of the channel,
and/or an internal FIFO buffer in the merging network is close to overflow. In other words, the admission
control provides a flow control mechanism between all join cores and the output port.

Each of the FIFO buffers implemented in the merging network has two state flags one of which is full
flag. It is asserted (set to logic 1) when the corresponding buffer is almost (or completely) full. We can
easily grasp the current states of the buffers by observing these flags. The admission control mechanism
implemented in the handshake join operator is summarized as follows: If any of the full flags has been
asserted, then

1. the newly arrived tuples are rejected,

2. and all of the join cores are suspended until all of the full flags are de-asserted (reset to logic 0).

The preceding rules guarantee that all of the result tuples generated by join cores will reach the output
port of the root node (merger1 in Figure 6.1.1) in the binary tree network.

6.3 Evaluation of the Proposed Implementation

The proposed architecture is implemented on a Virtex R©-6 FPGA ML605 Evaluation Kit including a
XC6VLX240T-1 chip as in Chapter 4. The specification of the FPGA used in the design is given in
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Table 4.1. Xilinx ISE 13.1 Logic Edition is used as an FPGA development environment.

6.3.1 Resource Usage and Signal Delay

The hardware resource usage and clock frequency are evaluated for five different configurations. The
different numbers of join cores (2i where i = 1, . . . , 5) and corresponding merging networks are instanti-
ated on the FPGA. The same parameters as in Chapter 4 are used during the instantiation process. The
window size of each join core is set to 8 tuples. The size of each FIFO buffer in the proposed merging
network is set to 8 tuples. Each input tuple consists of 64-bit data half of which is join key and the
remainder is allocated for payload field. A result tuple is composed of 32-bit join key and two payload
fields, a total of 96-bit data.

The maximum clock frequency of the prototype system is shown in Figure 6.3.1. The x-axis and the
y-axis represent the number of join cores and the clock frequency, respectively. As shown in Figure 6.3.1,
the graph is almost constant at 150MHz and the clock frequency is not declined with increased number
of join cores.

The hardware resource usage is given in Table 6.1. In addition, the percentage of the overall resource
consumption is shown in Figure 6.3.2. The y-axis of Figure 6.3.2 represents the percentage of the used
resources. As shown in Figure 6.3.2, all of the three graphs are almost linearly increased with the in-
creasing number of join cores. It should be also mentioned that up to 32 join cores and the corresponding
merging network (with admission control) can be instantiated on the FPGA. The results of Figure 6.3.1
and Figure 6.3.2 lead us to the conclusion that the proposed design is scalable in terms of the resource
usage and the signal delay.
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Figure 6.3.1: Maximum clock frequency.
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Figure 6.3.2: Overall resource consumption.

Table 6.1: Hardware resource usage

Join cores Slice Registers Slice LUTs Occupied Slices

2 4,371 4,594 1,277

4 8,358 8,784 3,394

8 16,347 17,130 6,436

16 32,323 35,051 14,095

32 64,526 68,216 24,717
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6.3.2 Resource Usage Comparison

Both of the baseline implementation of handshake join (presented in Chapter 4) and the proposed one
with the adaptive merging network (presented in Chapter 6) utilize two types of important resource
included in the FPGA. These are Block RAMs (BRAMs) and slices each of which contains lookup
tables (LUTs) and flip-flops (or registers). As shown in Table 4.1, the FPGA chip (XC6VLX240T-1)
includes 416 BRAMs and 37,680 slices. Each slice consists of 4 LUTs and 8 registers, resulting in total
of 150,720 slice LUTs and 301,440 slice registers.

The hardware resource usage is a significant factor for evaluating the overall design implemented on
the FPGA. From this point of view, two implementations are compared in terms of slice LUTs utilization,
slice registers utilization, occupied slices and BRAM utilization. The different numbers of join cores
from 2 to 32 are instantiated in the FPGA, and thus the two implementations are compared for five
different configurations. It should be also mentioned that all of the implementations include the merging
network (simple binary tree network or adaptive merging network) and the admission control mechanism.

Figure 6.3.3 indicates the results of the comparison of slice registers utilization and slice LUTs uti-
lization. In addition, Figure 6.3.4 indicates the results of the comparison of occupied slices and BRAM
utilization. In Figure 6.3.3 and Figure 6.3.4, the line labeled “baseline” represents the baseline implemen-
tation of handshake join presented in Chapter 4. Similarly, the line labeled “proposed” in Figure 6.3.3
and Figure 6.3.4 represents the proposed implementation of handshake join with the adaptive merging
network. Now, let us focus on the result of each comparison separately in more detail.
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Figure 6.3.3: Comparison of slice registers and slice LUTs utilization between the baseline implementa-
tion (presented in Chapter 4) and the proposed implementation (presented in Chapter 6).

Slice Registers Utilization

Figure 6.3.3 (a) shows the result of the comparison of slice registers utilization between the baseline
implementation (Chapter 4) and the proposed implementation (Chapter 6). The x-axis of Figure 6.3.3 (a)
represents the number of join cores (2i where i = 1, . . . , 5), and the y-axis of Figure 6.3.3 (a) represents
slice registers utilization in percentage.

As shown in Figure 6.3.3 (a), both lines labeled “baseline” and “proposed” linearly increase with
almost the same slope. The result is reasonable because slice registers are mainly used for implementing
join cores (especially windows implemented over the join cores). As mentioned in Chapter 4, each
segment of the windows of the input streams R and S is implemented as large shift registers that hold
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tuple data of the each stream. When it comes to implementing the shift registers in the FPGA, the slice
registers are utilized. In addition, both implementations of handshake join presented in Chapter 4 and
Chapter 6 adopt the same approach for implementing each segment of the windows included in the join
cores. This explains why both of the lines increase with almost the same slope.

Slice LUTs Utilization

Figure 6.3.3 (b) shows the result of the comparison of slice LUTs utilization between the baseline im-
plementation (Chapter 4) and the proposed implementation (Chapter 6). The x-axis of Figure 6.3.3 (b)
represents the number of join cores (2i where i = 1, . . . , 5), and the y-axis of Figure 6.3.3 (b) represents
slice LUTs utilization in percentage.

As shown in Figure 6.3.3 (b), both lines labeled “baseline” and “proposed” almost linearly increase
with the increasing number of join cores. Contrary to Figure 6.3.3 (a), however, the two lines increase
with different slopes. This leads to an important difference in slice LUTs utilization between the two
implementations, especially for a large number of join cores. For example, the proposed implementation
of the handshake join with the adaptive merging network requires 23 percent more slice LUTs compared
to the baseline implementation of the handshake join when the number of join cores equals to 32.

This difference comes from the complexity of the design of the adaptive merging network (especially
the routing algorithm implemented in the ring structure which require many comparators). As explained
before, each node of the ring structure included in the adaptive merging network has a total of six ports
as shown in Figure 6.2.1. The routing algorithm adopted for the ring structure is based on the idea of
bufferless routing, requiring two components: a ranking component and port-selection component.

In every cycle, the ranking component of each node ranks all incoming tuples by comparing hop
counts of the tuples. At the same time that the incoming tuples are compared to each other, the port-
selection component of each node compares three buffer counters connected to the node, determining the
priority of output ports according to the result of the comparison. All of the operations are completed in
just one cycle and all nodes in the ring structure concurrently perform the same operation on each cycle
in a synchronous manner, by taking advantage of the parallelism that FPGA hardware provides.

When it comes to implementing the comparators in the FPGA, the slice LUTs are utilized. In gen-
eral, slice LUTs are used to implement arbitrary Boolean-valued functions including comparison that
is the case for the ring structure included in the adaptive merging network. As shown in Figure 4.3.2,
the merging network of the baseline implementation of the handshake join is composed of the mergers
and their corresponding connections whereas the proposed implementation of the handshake join with
the adaptive merging network (Figure 6.1.1) includes the ring structure requiring the additional LUTs
to implement the functionality of the routing logics (i.e., ranking component and port-selection com-
ponent). This explains why the proposed implementation requires more slice LUTs than the baseline
implementation. We can regard the difference of the slice LUTs utilization as necessary overhead in
order to implement the adaptive merging network.

Occupied Slices

Figure 6.3.4 (a) shows the result of the comparison of occupied slices between the baseline implementa-
tion (Chapter 4) and the proposed implementation (Chapter 6). The x-axis of Figure 6.3.4 (a) represents
the number of join cores (2i where i = 1, . . . , 5), and the y-axis of Figure 6.3.4 (a) represents occupied
slices in percentage.

As shown in Figure 6.3.4 (a), both lines labeled “baseline” and “proposed” almost linearly increase
with the increasing number of join cores. Contrary to Figure 6.3.3 (a), the two lines in Figure 6.3.4 (a)
increase with different slopes similarly to Figure 6.3.3 (b). This leads to an important difference in
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Figure 6.3.4: Comparison of occupied slices and BRAM utilization between the baseline implementation
(presented in Chapter 4) and the proposed implementation (presented in Chapter 6).

the number of occupied slices between the two implementations, especially for a large number of join
cores as in Figure 6.3.3 (b). For example, the proposed implementation of the handshake join with the
adaptive merging network utilizes 19 percent more slices compared to the baseline implementation of
the handshake join when the number of join cores equals to 32.

Slices are the fundamental components included in an FPGA, used as the basic building-block com-
ponents to implement desired functionality on the FPGA. As mentioned before, each slice includes LUTs
and registers. In general, slice LUTs are required to implement Boolean-valued functions and slice reg-
isters act as temporary storage areas inside the FPGA. The FPGA used in present work has 37,680 slices
each of which includes 4 slice LUTs and 8 slice registers.

When it comes to synthesizing the logic designs onto the FPGA using Xilinx ISE, all of the LUTs
and registers required to implement the design are located inside the slices. In other words, all LUTs
and registers are packed into slices as slice LUTs and slice registers, respectively. During the packing
process, all of the LUTs and registers are assigned to the slices, but not necessarily utilizing all slice
LUTs and slice registers in a slice.

For example, a slice with 4 slice LUTs and 8 slice registers can be used for just one register. In
this case, 4 LUTs and 7 register of the single slice are not utilized; however, any slice that is used even
partially (in this example, only one register) is counted in the occupied slices. That’s why the percentage
of the occupied slices (Figure 6.3.4 (a)) is greater than the slice registers utilization (Figure 6.3.3 (a))
and/or the slice LUTs utilization (Figure 6.3.3 (b)). For example, the proposed implementation of the
handshake join with the adaptive merging network occupied 65 percent of total slices even though it
utilizes only 21 percent of the slice registers and 45 percent of the slice LUTs when the number of join
cores equals to 32. Similarly, the baseline implementation of the handshake join occupied 46 percent of
total slices even though it utilizes only 19 percent of the slice registers and 22 percent of the slice LUTs
when the number of join cores equals to 32.

As explained before, the proposed implementation requires almost the same amount of slice registers
as the baseline implementation. On the other hand, however, it needs more slice LUTs than the baseline
implementation, particularly 23 percent more slice LUTs compared to the baseline implementation of
the handshake join when the number of join cores equals to 32. As a result, the proposed implementation
uses 19 percent more slices compared to the baseline implementation mainly because of the significant
difference in the slice LUTs utilization between the proposed implementation and the baseline implemen-
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tation. This explains why the proposed implementation requires more slices (or results in more occupied
slices) than the baseline implementation.

Block RAM Utilization

Figure 6.3.4 (b) shows the result of the comparison of Block RAM (BRAM) utilization between the
baseline implementation (Chapter 4) and the proposed implementation (Chapter 6). The x-axis of Fig-
ure 6.3.4 (b) represents the number of join cores (2i where i = 1, . . . , 5), and the y-axis of Figure 6.3.4 (b)
represents the total number of BRAMs included in each of the handshake join operator.

As shown in Figure 6.3.4 (b), both lines labeled “baseline” and “proposed” linearly increase with the
increasing number of join cores. The two lines in Figure 6.3.4 (b) increase with different slopes, and this
leads to an important difference in the number of BRAMs between the two implementations, especially
for a large number of join cores. It should be emphasized that the proposed implementation of the hand-
shake join with the adaptive merging network requires fewer BRAMs than the baseline implementation
of the handshake join. It can be easily noticed that the result presented in Figure 6.3.4 (b) is contrary
to what is shown in Figure 6.3.3 (b) (slice LUTs utilization) or Figure 6.3.4 (a) (occupied slices). For
example, the proposed implementation requires only 64 BRAMs whereas the baseline implementation
needs 126 BRAMs when the number of join cores equals to 32. In this case, the baseline implementation
consumes nearly two times as many BRAM resources as the proposed implementation consumes.

As explained before, the baseline implementation of the handshake join suffers from the structural
disadvantage concerning efficient use of the FIFO buffers implemented based on BRAMs. As shown
in Figure 4.3.2, each merger includes a FIFO buffer and there is only one path from each join core to
the output port. This is because join cores are located at leaf nodes of the binary tree network and
all of the result tuples are forwarded towards the root node (i.e., merger1) of the tree. The baseline
implementation adopts the binary tree network (Figure 4.3.2) as its merging network, and this approach
leads to a bottleneck for overall system when the output rate of a join core significantly differs from those
of others.

In order to alleviate the problem, the adaptive merging network is proposed as indicated in Fig-
ure 6.1.1. As shown in Figure 6.1.1, the FIFO buffers are omitted from both join cores and mergers.
Instead, a new layer of nodes and the FIFO buffers are located between join cores and mergers. This ap-
proach significantly reduces the total number of BRAMs required to implement the FIFO buffers. That’s
why the proposed implementation of the handshake join with the adaptive merging network consumes
fewer BRAM resources than the baseline implementation.

6.3.3 Performance Evaluation

In the performance evaluation, the same evaluation model as in Chapter 4 is adopted as shown in Fig-
ure 4.5.3. Before starting the join operation, a number of input tuples are generated according to different
match rates which indicate the ratio of the tuples satisfying the join condition. After that, input tuples are
transferred to the handshake join operator and join operation is applied to the input tuples in a continuous
manner.

The join operator generates result tuples if the join condition is satisfied while processing the input
tuples. The result tuples are transferred to the output port as a single stream by the merging network
and they are stored to the output buffer. It should be noted that all of the result tuples generated by join
cores are transferred to the output buffer owing to the admission control mechanism. This is confirmed
by counting the number of results stored in the output buffer.

Figure 6.3.5 shows the number of result tuples, and the total number of cycles required to complete
the join operation. In this evaluation, the handshake join operator consists of 16 join cores, and the size

39



of the input buffer is set to 128 tuples per input stream. The input tuples generated according to the match
rate are located in the input buffer in random order.
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Figure 6.3.5: The number of result tuples, and the total number of cycles required to complete the
operation.

The x-axis represents the match rate from 10% to 100%. The y-axes in left and right represent the
number of total cycles and the number of result tuples, respectively. The line labeled “baseline” is the
performance estimation of the handshake join presented in Chapter 4. The same number of result tuples
is generated by both of the join operators, and it is indicates as a bar chart in Figure 6.3.5.

The proposed model is evaluated by both a cycle-accurate simulator and the FPGA platform that
is used to implement the architecture. Precisely the same results, which are labeled “simulation” and
“actual”, are obtained as shown in Figure 6.3.5. Results indicate that the baseline increases sharply if the
match rate is increased. By contrast, the total number of cycles required for the proposed architecture
only increases in accordance with the number of result tuples.

The input throughput performance is shown in Figure 6.3.6. This is the maximum throughput data
rate that can be handled by each join operator without dropping any tuples. In this evaluation, the
handshake join operator consists of 64 join cores, and the size of the input buffer is set to 512 tuples
per input stream. The lines labeled “baseline” and “nested loop join” represent the handshake join
(Chapter 4) and the nested loops-style join [5], respectively. It should be noted that the size of the input
buffer for the nested loops-style join [5] is also set to 512 tuples for regulating the condition.

The proposed model is evaluated by a cycle-accurate simulator with input streams of two different
characteristics. The input tuples generated according to the match rate are located in the input buffer as
follows:

1. in random order,

2. and as burst input (consecutive tuples that satisfy the join condition).

The results are labeled “proposed model (random input)” and “proposed model (burst input)” in Fig-
ure 6.3.6.
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Figure 6.3.6: Input throughput with 64 join cores.

As shown in the graph, the baseline implementation (Chapter 4) can achieve higher throughput rate
than nested loops-style join [5], only when the match rate is lower than 40%. On the other hand, the pro-
posed model can achieve far higher throughput rate than nested loops-style join [5] even if the match rate
is increased. In particular, the proposed implementation achieves more than 5.2 times higher through-
put compared to the baseline implementation (Chapter 4) at the highest match rate (i.e., 100%). It also
outperforms the nested loops-style join [5], demonstrating up to 16.3 times higher throughput without
dropping any tuples. Furthermore, the proposed architecture can handle high input rates compared to the
implementations of Chapter 4 and [5] despite burst inputs which can be considered as the worst case. To
the best of our knowledge, this is the best performance for handshake join operator implemented on an
FPGA. These data lead us to the conclusion that the proposed architecture can considerably outperform
both the handshake join (Chapter 4) and the nested loops-style join [5].
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Chapter 7

Conclusion

Chapter 7 gives conclusions and identifies future work.

7.1 Summary

In this thesis, a complete design and implementation of handshake join is presented based on [1]. In
handshake join, it is necessary to take into account the result merging logic, and the problems with
regard to the limitation of the bandwidth of the output channel and the size of the buffers included in join
cores and mergers. The three design issues mentioned in the introduction are addressed by the proposed
design including the binary tree network and the admission control mechanism. The proposed additional
mechanism contributes to solving the buffer overflow problem in the handshake join operator.

The proposed implementation is evaluated in terms of the hardware resource usage, the maximum
clock frequency, and the throughput performance. The result shows that the proposed implementation
achieves scalability up to 64 cores as mentioned in [1], even though it includes the merging network
and the admission control mechanism. The performance evaluation results show that the handshake join
handles considerably high input rate compared with nested loops-style join [5] when the match rate is
low. Moreover, simulation results indicate a new intuition regarding static and adaptive tuning of the
FIFO buffers included in join cores and mergers.

Furthermore, this research proposes an adaptive merging network for hardware implementation of
the handshake join by examining the weakness of the naively implemented merging network based on
[1]. Moreover, a complete handshake join operator is implemented with the proposed merging network
on an FPGA. Result collection is a crucial issue for the handshake join operator especially at high out-
put rates since the merging network becomes an overwhelming bottleneck for overall performance. In
fact, it is an important limiting factor for the design of handshake join hardware. The suitable network
architecture and the careful design are key requirements to improve the operation performance; there-
fore, the significantly improved network structure is proposed in order to achieve far higher throughput
performance.

The improved architecture is evaluated in terms of the hardware resource usage, the maximum clock
frequency, and the throughput performance. The result of evaluation for clock frequency shows that the
proposed architecture achieves scalability up to 32 cores as mentioned in [1], even though it includes the
adaptive merging network with the admission control mechanism. The performance evaluation results
show that the proposed architecture handles considerably high input rate compared with the baseline
implementation of handshake join (presented in Chapter 4) and the nested loops-style join [5].
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7.2 Future Work

Future work is as follows. First of all, the current design of join cores will be improved in several as-
pects. In the proposed design, each segment of the windows for input streams is implemented using shift
registers. As a result, the total size of the window is severely limited by the available hardware resources.
An alternative implementation technique should be considered to handle large windows. Furthermore,
a load balancing strategy for join cores can be implemented to enhance the overall performance. For
example, if certain cores are overloaded, the overloaded cores would transfer some of their loads to the
neighboring cores.

Secondly, the proposed implementation of handshake join tolerates output latency in order to handle
higher input rates. The latency, however, is not mainly related to the execution strategy (whether or not
join processes are executed in parallel). The longer latency occurs in the merging network after results
are produced in each join core; therefore, an improved network structure can offer much better latency
characteristics than the proposed one.

Finally, the performance of the proposed implementation will be compared to another implementa-
tion of window joins (e.g., CellJoin). It should also be evaluated through practical application, determin-
ing suitable size of the FIFO buffers included in the handshake join hardware.
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