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CRYPTOGRAPHIC SCHEMES WITH MINIMUM
DISCLOSURE OF PRIVATE INFORMATION IN
ATTRIBUTE-BASED ENCRYPTION AND MULTIPARTY
COMPUTATION

TAKASHI NISHIDE

ABSTRACT

Modern cryptography can serve as a building block for privacy preserving and enhancing tech-
nologies and it enables us to realize various kinds of online services on the network which cannot
exist unless privacy issues are solved.

In this dissertation, we focus on two technologies called Attribute-Based Encryption (ABE) and
Multiparty Computation (MPC).

We propose two ABE schemes where an encryptor can hide a decryption policy that can contain
sensitive information in terms of privacy enhancement and the expressiveness of the proposed
schemes has more desirable properties compared with the existing schemes.

In MPC, we improve thef@iciency of the existing scheme and propose mdieient protocols,
in terms of round and communication complexities, for comparison, equality, and interval tests of
secret inputs which are integer arithmetic primitives. In addition, we propose an MPC protocol

for distributed key generation of the threshold Paillier cryptosystem without a trusted third party.
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Chapter 1

Introduction

Privacy is a problem. With the widespread use of computers, various kinds of data including
private information are digitalized and stored in the computers. Furthermore, such data are ac-
cessed or shared through the network or the Internet. Once the private data leak out and spread
across the network, it is virtually impossible to recover the data. Thus, the more open computer-
ized environments we have, the more problems related to privacy we have.

On the other hand, private information is valuable. If we can utilize private information with the
minimum disclosure of it when necessary, it will be useful for the real-world applications. Mod-
ern cryptography can serve as building blocks for solving online privacy and security problems.
Actually it is not only about hiding information but also about secure information sharing and
privacy-enhancing techniques. In additon to its theoretical beauty, it can have a practical impact
on the real world and has potential to change the way people interact in the digital world.

In this dissertation, we consider two main subjects among privacy applications. One is
Attribute-Based EncryptiofABE) and the other idultiparty Computatio(MPC).

In order to protect private data, it is crucial for us to have control over who can access important
or sensitive data. Typically an access control policy on digital data is enforced by a software mech-
anism, but the server computers where the data are stored might be compromised by malicious
outsiders and then we will lose control of privacy.

Obviously data encryption can alleviate the privacy concerns. However, if the encrypted data

must be shared among multiple people in an appropriate way, the management of cryptographic
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keys becomes complex. If the data holder (i.e., the encryptor) encrypts her file for each potential
decryptor she wants to share the file with, she must store multiple encrypted files for one file on

the server and it will require huge data storage. On the other hand, the encryptor can share one
key per file with potential decryptors and store one encrypted file per file on the server, but this

will also lead to the complex key management for both the encryptors and decryptors because
keys must be generated and shared with the decryptors each time files are created. Furthermot
the encryptor may not be able to know the identities of the potential decryptors when she encrypts
her files in the distributed setting. Therefore, it is a non-trivial task to share encrypted data with

the simple key management and this is where ABE comes in.

ABE enables us to share encrypted data with encryptor-specified access control policies and the
policies are described with attributes of people rather than identities of people. Thus the encrypted
data are not intended for specific individuals and ABE can enforce attribute-based access contro
on encrypted data in a cryptographic way. In this dissertation, we consider hiding even encryptor-
specified access control policies for privacy enhancement. Suppose Alice is looking for her partner
who matches the criteria she specified. Then she can broadcast her message encrypted by AB
to people and the people who could decrypt the message can contact her. In such a situation sh
might want to hide her criteria also in addition to the message because of privacy concerns. In
Chapter 2, we deal with such ABE and construct ABE schemes where the encryptor can hide the
access control policies with more flexible properties compared with the existing schemes. The
results in Chapter 2 were published as [NYOO08].

In MPC, we consider secure data sharing. Usually sensitive data are valuable and if we can
collect sensitive data and extract meaningful information by computing some agreed function
without revealing the individual sensitive data, it may be beneficial to the individual data holders.
MPC enables a set of parties with private inputs to jointly compute an agreed function of their
inputs and obtain only the output without revealing the private inputs. By utilizing MPC, we can
realize secure computation without relying on a trusted third party which can be a single point
of failure. For example, in the famous problem called Yao’s millionaires’ problem [Yao82], two
millionaires want to know who is richer without revealing their wealth and this can be solved
by using MPC. Though theoretical results (e.g., [Yao86, GMW87, BGW88, CCD88]) show any
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function can be computed securely without revealing the private inputs fliceeecy of such
general schemes is not good enough for practical use. Therefore, improvintiitieney by
constructing protocols for specific use is meaningful and necessary. For example, irQB{ZD

an MPC protocol for the specific auction system was implemented and tested and it showed the
viability of large-scale MPC for a real-world application. In this dissertation, we focus on MPC for
integer arithmetic and building on [DFKO6], construct MPC protocols for comparison, equality,

and interval tests of secret data, which are important building blocks. We discuss these protocols
in Chapter 3 that are the results of [NOOQ7]. In our protocols, the parties participating in MPC
do not need to know any private inputs and can serve as computing agents for input holders (as
the client-server modeh [DI05]). This means the following. In the Yao’s millionaires’ problem,
each input holder (millionaire) knows his private input value and the input holders perform MPC.
However, in our protocols all the private input values have only to be given by the input holders
and shared among the parties participating (which we can call servers) in MPC and the servers
can perform MPC without knowing any private inputs. This computing model is very general
and the input holders can request the servers to perform MPC with their private inputs, which
can be considered as a kind of online service provided by the servers performing MPC. In such a
scenario, secret data are always distributed and the risk of data leakage is reduced.

In Chapter 4, we also consider an MPC protocol for distributed key generation of the threshold
Paillier cryptosystem [FPSO00]. Typically MPC is realized by using Shamir secret sharing [Sha79]
or threshold homomorphic cryptosystems and the Paillier cryptosystem is one of the most used
homomorphic cryptosystems. The distributed generation of an RSA modulus (needed also for
the Paillier cryptosystem) is a non-trivial and time-consuming task and often MPC based on the
threshold Paillier cryptosystem assumes that the public and secret keys are generated by a trusted
third party or a secure hardware box. Building on [BF97, FS01, ACS02], we show how the MPC
protocols for generating an RSA modulus in a distributed way can be adapted to the case of the

threshold Paillier cryptosystem.



Chapter 2

Privacy Enhancing Attribute-Based

Encryption

In this chapter, we introduce attribute-based encryption schemes with a privacy enhancing func-
tionality. We propose attribute-based encryption schemes where encryptor-specified access struc-
tures (also called ciphertext policies) are hidden. By using our schemes, an encryptor can encrypt
data with a hidden access structure. A decryptor obtains her secret key associated with her at-
tributes from a trusted authority in advance and if the attributes associated with the decryptor’s
secret key do not satisfy the access structure associated with the encrypted data, the decryptor
cannot decrypt the data or guess even what access structure was specified by the encryptor. We
prove security of our construction based on the Decisional BilineffreEiellman assumption
and the Decision Linear assumption. In our security notion, even the legitimate decryptor cannot
obtain the information about the access structure associated with the encrypted data more than the

fact that she can decrypt the data. The results in this chapter were published as [NYOO08].



2.1 Introduction

2.1.1 Background

In the distributed setting, we need to enforce access control polices to protect various resources
In such settings, it may be suitable to specify access control policies based on attributes rathel
than individual identities, because an identity may not have enough information about its entity.
Attribute-based encryption (ABE) is a mechanism by which we can realize such access control in
a cryptographic way. There are two kind of ABE schemes, key-policy and ciphertext-policy ABE
schemes.

In the key-policy ABE schemes [GRB6, OSWO07, SWO05, KSWO08], ciphertexts are associ-
ated with sets of attributes and users’ secret keys are associated with access structures. |If th
attributes associated with the ciphertext satisfy the access structure of the secret key, the secre
key holder can decrypt the ciphertext successfully. Also the concept of searchable and predicate
encryption [BWO07, SB&07] is related to key-policy ABE in the sense that successful decryption
is conditional on access structure associated with secret keys.

On the other hand, in the ciphertext-policy ABE (CP-ABE) schemes [BSWO07, CNO7, KSW08,
LS08], the situation is reversed. That is, attributes are associated with secret keys and acces
structures are associated with ciphertexts and called ciphertext policies. The access structures al
described with the attributes and therefore the concept of CP-ABE is closely related to Role-Based
Access Control.

In this work, we focus on CP-ABE and construct a CP-ABE scheme where we can hide
encryptor-specified access structures associated with ciphertexts. Our scheme can be consider:
as a recipient-anonymous targeted broadcast and the relation of our scheme to a normal CP-ABE
scheme is similar to that of anonymous identity-based encryption (IBE) to normal IBE. For exam-
ple, suppose a company wants to hire certain qualified people who satisfy the policy the company
specified and the policy may contain the useful information about the company’s business strategy.
The company can post a message encrypted by our CP-ABE scheme on a public bulletin boarc

to seek applications. By doing so, the company can keep the important policy confidential. Since
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the policy is hidden, the rival companies cannot know what kind of policy the company used to
hire its employees.

In the ABE schemeg;ollusion-resistancés an important property. We do not want the secret
key holders to be able to combine their secret keys to decrypt ciphertexts neither of them can
decrypt. By building on the previous schemes [BSWO07, CNO7], we can also realize collusion-

resistant CP-ABE schemes.

2.1.2 Our Contributions

We construct two CP-ABE schemes with partially hidden ciphertext policies in the sense that
possible values of each attribute in the system should be known to an encryptor in advance and
the encryptor can hide what subset of possible values for each attribute in the ciphertext policy
can be used for successful decryption. In our schemes, encryptors can use wildcards to mean that
certain attributes are not relevant to the ciphertext policy in a hidden way. The security proof of
our first construction is given under the Decisional BilineaffiBiHellman assumption and the
Decision Linear assumption. Since these assumptions are general, we can use a large variety of
elliptic curves (including both asymmetric and symmetric bilinear pairings) to implement our first
scheme though we use the symmetric notation for ease of exposition. The security proof of our
second construction is given in the generic group model and the second construction needs DDH-
hard groups, but with a property inherited from [BSWO07], the second construction is more flexible
than the first construction in that new attributes can be added in the ciphertext policy securely with
the existing public parameters being unchanged even after the system setup is done. We mention
this aspect in Sect. 2.7 in more detail. We describe our constructions in the multi-valued attribute
setting where an attribute can take multiple values and this setting is a generalization of the access
structures used in [CNO7]. In our security notion, even the legitimate decryptor cannot obtain the

information about the ciphertext policy more than the fact that she can decrypt the data.



2.1.3 Related Work

Bethencourt, Sahai, and Waters [BSWO07] proposed the first CP-ABE scheme. Their scheme al-
lows the ciphertext policies to be very expressive, but the security proof is in the generic group
model and the policies need to be revealed in the ciphertexts because decryptors must know hov
they should combine their secret key components for decryption. Cheung and Newport [CNO7]
proposed a provably secure CP-ABE scheme and their scheme deals with negative attributes ex
plicitly and supports wildcards in the ciphertext policies but the policies need to be revealed as
in [BSWO07]. Kapadia, Tsang, and Smith [KTS07] also proposed a CP-ABE scheme and their
scheme realizes hidden ciphertext policies that have the same expressiveness as [CNO7], but the
scheme is not collusion-resistant and needs an online semi-trusted server that must know the at
tributes’ values every user in the system has and re-encrypt ciphertexts for each user when the
user retrieves the ciphertexts. Such an online semi-trusted server can be a performance bottlenec
in the system while, in our schemes, encryptors can just post or broadcast ciphertexts. Lubicz anc
Sirvent [LS08] proposed another CP-ABE scheme that has the same expressiveness as [CNO7
and only 3 pairing computations are needed for decryption, but the ciphertext policies need to be
revealed for decryption. Shi et al. [SBQ7] proposed a predicate encryption scheme that focuses
on range queries over huge numbers, the dual of which can also realize a CP-ABE scheme wher
an encryptor can specify a number range in the ciphertext policy. The security proof of (FBC

is based on the security notion weaker than ours, which is catleth-revealing securitin
[SBC+07] and the number of attributes must be small because the decryption cost is exponential
in the number of attributes. Boneh and Waters [BWO07] proposed a predicate encryption scheme
based on the primitive callgdidden Vector Encryptioor HVE for short. The scheme in [BWO07]

can realize the same functionality as ours by using the opposite semantics of subset predicates de
scribed in [BWO07] (see Sect. 2.2.3.1 for the details). However, it needs bilinear groups the order
of which is a product of two large primes, so it needs to deal with large group elements and the
numbers of both attributes and possible values for each attribute specified in the ciphertext policy
are fixed at the system setup while, in our constructions, the number of possible attribute values in

the ciphertext policy can be increased and furthermore in our second construction, the number of
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attributes in the ciphertext policy can be increased securely even after the system setup with the
existing public parameters being unchanged.

Recently, Katz, Sahai, and Waters [KSWO08] proposed a novel predicdten@@iona) encryp-
tion scheme supportingner productpredicates and their scheme is very general and can realize
both key-policy and ciphertext-policy ABE schemes. Their scheme can also realize hidden cipher-
text policies that can be more expressive than ours. However, their scheme is based on a special
type of bilinear groups the order of which is a product of three (or two) large primes while ours
are not. Therefore, their scheme needs to deal with large group elements and requires new com-
plexity assumptions for the security proof. By using the dual of the predicate corresponding to
polynomial evaluation, the scheme in [KSWO08] can realize the same access structure of ciphertext
policies that our schemes can support (see Sect. 2.2.3.2 for the details) and then the ciphertext size
of our scheme®(>;!; nj) is comparable to that of [KSWO08] whereis the number of attributes
in ciphertext policies and; is the number of possible values for each attributéox example, if
attributei is booleann; = 2. In the CP-ABE scheme of [KSWO08], the maximum size of the subset
of attribute values for each attribute specified in the ciphertext policy for successful decryption is
fixed at the system setup while, in our constructions, the size can be increased. Also, the number
of attributes specified in the ciphertext policy is fixed at the system setup while, in our second
construction, the number of attributes in the ciphertext policy can be increased securely even after
the system setup with the existing public parameters being unchanged. However, when the num-
ber of possible attribute values is huge, the scheme in [KSWO08] is more advantageous than ours
because it can enjoy the smaller ciphertext size and still realize the wildcard functionality.

Chase [ChaQ7] proposed a multi-authority ABE where multiple authorities generate secret keys
for their monitored attributes. The technique of [Cha07] can be applicable to our schemes too.
Abdalla et al. [ACD+06] proposed an identity-based encryption scheme where an encryptor can
use wildcards to specify recipients of the ciphertext, but the positions of the wildcards and other
ID components need to be revealed in the ciphertexts.

We summarize the comparison of majoffeient schemes in Table 2.1.



2.2 Preliminaries

2.2.1 Bilinear Maps

We assume that there is afieient algorithmGenfor generating bilinear groups. The algorithm
Gen on input a security parametef, butputs a tupleG = [p, G, Gt,g € G, €] where log(p) =
O(x). A functione: G x G — Gr is a bilinear map. Herelg andGr are multiplicative groups
of prime orderp, generated by ande(g, g) respectively. The bilinear maphas the following

properties:

1. Bilinearity: for alla,b € Z,, &(g?, ¢°) = &(g, g)*°.
2. Non-degeneracy(g, g) # 1.

2.2.2 Complexity Assumptions

We describe complexity assumptions used in our security proofs.

2.2.2.1 The Decisional Bilinear Diffie-Hellman (DBDH) Assumption

We use the decisional version of the bilinear DH assumption [BFO1, Jou00%, 2173,z € Zj,

be chosen at random amde G be a generator. The DBDH assumption is that no probabilis-
tic polynomial-time algorithm can distinguish the tuptgd*, g%, g=, &(g, 9)“2*%*] from the tuple

[9, 9%, 0%, g%, &(g, 9)*] with non-negligible advantage.

2.2.2.2 The Decision Linear (D-Linear) Assumption

The D-Linear assumption was first proposed in [BBS04]. ke, 73,2,z € ZI*O be cho-
sen at random and € G be a generator. The D-Linear assumption is that no probabilistic
polynomial-time algorithm can distinguish the tuptg ¢, g%, g2=, g=*, g=*#] from the tuple

[0,0%, g2, g2%, g?*, g7] with non-negligible advantage.

—-10-



2.2.3 Access Structure for Ciphertext

In the CP-ABE scheme, an encryptor specifies an access structure for a ciphertext, which is called
a ciphertext policy. If a decryptor has a secret key whose associated set of attributes satisfies
the access structure, she can decrypt the ciphertext. The access structures used in [BSW07] are
the most flexible and expressive. For example, we can use an access structure suchNI3 ((A

B) OR (C AND D)) in [BSWO07]. This means that a recipient must have attributes A and B
simultaneously or attributes C and D simultaneously in order to decrypt the ciphertext. Therefore,

if a recipient has a secret key associated with a set of attripiiés C}, she can satisfy the access
structure and decrypt the ciphertext. However, if the recipient has a secret key associated with a
set of attribute$A, C}, she can not satisfy the access structure or decrypt the ciphertext. Actually
AND, OR, and threshold gates can be used for expressing the access structures in [BSWO07].

However, the security proof of [BSWO07] is in tlgeneric group modelln order to obtain a
reduction-based security proof, Cheung and Newport proposed another CP-ABE scheme [CNO7]
which is proved to be secure undgandardcomplexity assumptions. The price of obtaining such
security proofs is that the expressiveness of ciphertext policies in [CNO7] is somewhat restricted
as compared with [BSWO07]. However, the expressiveness is not too restrictive and still remains
useful.

The access structure and the attribute set associated with the secret key used in [CNO7] are as
follows. Let's assume that the total number of attributes in the systenaun the attributes are
indexed agAj, Ay, ..., A,..., Ay} or we may use justto refer toA;. We use the notation such
asL =[Ly,...,Ly] =[1,0,1,...,0] in order to describe attribute-value pairs for a user, which we
call the attribute list. For example, the user has the value A{p0 for A,, 1 for Ags, ..., and O for
A, inthis case. A trusted authority generates a secret key for the user based on the user’s attribute
list.

In order to specify the access structure for a ciphertext, we use the notation sWh=as
[Wa,...,W] = [1,1, %% 0] wheren = 5, which we call the ciphertext policy. The wildcad
can be used in the ciphtertext policies and it plays the role of “don’t care” value. This can be

considered as aAND-gate on all the attributes. For example, the above ciphertext policy means
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that the recipient who wants to decrypt must have the value A f@ndA, and 0 forAs, and the
values forAz andA,4 do not matter in théND-gate. If the recipient has the secret key associated
with, let us say, [11, 1, 0, 0], she can decrypt the ciphertext, but not if the secret key is associated
with [1,1,1,0, 1].

Formally, given an attribute lis. = [Li,Lp,...,L,] and a ciphertext policyW =
[Wi,Ws, ..., W], L satisfiesW if, for all i = 1,...,n, Li = W, or W, = %, and otherwise
L does not satisfied/. We use the notatioh = W to mean that. satisfies\V.

In our constructions, we generalize the access structures in [CNO7]. In [CNO7], each attribute
can take two values 1 and 0, but in our generalized access structures each attribute can take tw
or more values and eadN; in W can be any subset of possible valuesA@r More formally, let
Si = {Vi1,Vi2,...,Vit,...,Vin} De a set of possible values fé; wheren; is the number of the
possible values foA;. Then the attribute list for a user isL = [Ly,Lo,...,L;,...,Ly] where
Li € Sj and the generalized ciphertext poli&yis W = [Wy, Ws, ..., W, ..., W,] whereW; C S;.

The generalized ciphertext polity means, let us say,

(A1 =Vvi1 VAL =Vi3)
/\(A2:V2,2)/\...
/\(Ai :Vi,SV---VAi:Vi,ni)/\---

A (An = Vn’]_ V An = Vn,z Vv An = Vn73).

When the encryptor specifies a wildcard #yy, it corresponds to specifying/ = S; for A;j. The
attribute listL satisfies the ciphertext policy iff L € W, for 1 < i < n. We achieve recipient

anonymity by hiding what subs®¥ for eachA; is specified in the access structure of AéD-

gate of all the attributes.

2.2.3.1 Realization of CP-ABE with [BWO07]

We sketch how the scheme in [BWO7] can realize the access structure of the ciphertext
policy considered in this work by using HVE. For ease of exposition, suppose there are
two attributes A1, A, in the system andA; can take valuessi,vi2 and A, can take

values vo1,V22,Vo3.  When an encryptor encrypts a message, the encryptor specifies a
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vector corresponding tov{i,Vi2,V21,V22,V23) as a ciphertext policy. For example, if
(V11,V12,V21,Vo2,V23) = (1,0,1,0,1), this means4; = vi1) A (A = Vo1 V Ay = V3). A
decryptor withA; = v11 A Ay = Vo3 obtains her secret key the vector of which corresponds to

(1, =, %,%,1). The decryptor can decrypt the ciphertext if the vectors of both the ciphertext and
the secret key match up except the wildcards. In this scheme, the length of the vectors (5 in
the example above) is fixed at the system setup. Therefore, the numbers of both attributes and

possible values for each attribute specified in the ciphertext policy are fixed at the system setup.

2.2.3.2 Realization of CP-ABE with [KSWO08]

We sketch how the scheme in [KSWO08] can realize the access structure of the ciphertext policy
considered in this work by using the dual of the predicate corresponding to polynomial evaluation.
Similarly, for ease of exposition, suppose there are two attribues, in the system and; can

take valuess; 1, vi2 andA; can take valuesy 1, Vo2, Vo 3. In this scheme, decryption succeeds if

the vector for the ciphertexéf, a, .. ., a,) and the vector for the secret kexi(xo, . . ., X,) satisfy

the condition thap! ; ajx = 0.

When an encryptor encrypts a message with the ciphertext palicy (v11) A (A2 = o1 VA,

V2.3), she prepares two polynomiallgx) = ¢1X+Co and fa(x) = dpx?+d; X+ dg such thatf;(vy 1)
0, f2(v21) = 0 andfa(v23) = 0 and specifies the vectat;( o, dy, d1, dp) as the ciphertext policy.

A decryptor withA; = vi1 A Ay = v, 3 obtains her secret key the vector of which corresponds to
(ve1,1, v§,3,v2,3, 1). For example, when the encryptor specifies a wildcard for attribytie the
ciphertext policy, she simply usds(x) = 0 whered, = d; = dy = 0. In this scheme, the length

of the vectors (5 in the example above) is fixed at the system setup. Therefore, the maximum size
of the subset of attribute values for each attribute specified in the ciphertext policy for successful
decryption is fixed at the system setup. Also, the number of attributes specified in the ciphertext
policy is fixed at the system setup. However, when the number of possible attribute values is
huge and the maximum size of the subset of attribute values specified in the ciphertext policy is
small, the scheme in [KSWO08] is more advantageous than ours because it can enjoy the smaller

ciphertext size and still realize the wildcard functionality.
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2.2.4 Syntax of CP-ABE

Our CP-ABE schemes consist of the following four algorithms.

Setup (1¥). This algorithm takes the security paramateass input and generates a public k&

and a master secret k@yK.

KeyGen (MK, L). This algorithm take$/1K and an attribute list as input and generates a secret

key S K_ associated witlh.

Encrypt (PK, M, W). This algorithm take$?K, a messag®l, and an ciphertext policyv as

input, and generates a ciphert€xt.

Decrypt (CT, SK)). This algorithm take€T andS K_ associated with. as input and returns
the messag# if the attribute listL satisfies the ciphertext polidy specified forICT, that
is,L E W. If L £ W, it returns_L with overwhelming probability.

2.2.5 Security Model

We describe the security models for our CP-ABE. Based on [SBC BW07, KSW08], we
use the following security game. A CP-ABE scheme is selectively secure if no probabilistic

polynomial-time adversary has non-negligible advantage in the following game.

Selective Game for CP-ABE

Init:  The adversary commits to the challenge ciphertext polidigd/V, .
Setup: The challenger runs thgetupalgorithm and give®K to the adversary.

Phase 1: The adversary submits the attribute lidor aKeyGenquery. If L E WoAL E W;) or
(L ¥ Wo A L £ W), the challenger gives the adversary the secretkigy. The adversary

can repeat this polynomially many times.

Challenge: The adversary submits messadég M; to the challenger. If the adversary ob-
tained theS K. whose associated attribute listsatisfies bottiWy andW; in Phase 1, then
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it is required thatvip = M. The challenger flips a random cdirand passes the ciphertext

Encrypt(PK, My, W) to the adversary.

Phase 2: Phase 1 is repeated. My # M, the adversary cannot subntitsuch thatL
WoALEW.

Guess: The adversary outputs a gudsof b.

The advantage of an adversary in this game is defin@élr{bé =b] - %| where the probability is

taken over the random bits used by the challenger and the adversary. Since the adversary must
commit to the challenge ciphertext policies before the setup phase, this model can be considered
to be analogous to the selective-ID model [CHKO03, CHKO04] used in identity-based encryption
schemes. In the non-selective-ID model, the adversary can specify the challenge ciphertext poli-
cies during the challenge phase. In the game, the adversary can subuaih that. = W, and

L E W, if possible and then the adversary can decrypt the ciphertext. This definition captures
that the adversary cannot obtain the useful information about the ciphertext policy more than the
fact that she can decrypt the ciphertext. The above notion of security is caditath-concealing
securityin [SBC+07].

2.3 Proposed Schemes

We construct two CP-ABE schemes that achieve recipient anonymity. In [CNO7], the ciphertext
policy needs to be revealed in the ciphertext so that a decryptor can know which secret key com-
ponents should be used. Furthermore, in order to support wildcards for ciphertext policies, the
public key components for the wildcards are prepared in [CNO7] and the decryptor uses the secret
key components corresponding to the wildcards if the wildcards are specified in the ciphertext
policies. In our constructions, we can hide how the ciphertext policy is specified successfully.
First we show the construction of [CNO7] and later explain the intuition behind our approach we
take to make it recipient-anonymous. We assume, for notational simplicity, that the total number

of attributes in the system isand the attributes are indexed{as2,...,i,...,n}.
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2.3.1 Construction of [CNO7]

The four algorithms are as follows:

Setup (1¥). A trusted authority generates a tugke = [p,G,Gr,g € G,€e] « Gen1¥), and
randomw € Zj. For each attributé where 1< i < n, the authority generates random
valuesa;, q, &', € Z. The authority compute = (g, g)" andA = P A = ga,Ai* =od.
The public keyPK consists oKkY, p, G, Gr, g, €, {Ai,R,Ai*}lsign% The master secret key

MK is (W, {&, &, & }1<i<n)-

KeyGen (MK, L). LetL = [Li,Ls,...,Ly] be the attribute list for the user who will obtain
the corresponding secret key. The trusted authority picks up random \&laeg;, for
1<i<n, setss=3",s, and compute®o = g* 5. For 1< i < n, the authority also
computes P, D] = [g8/%,g8/a]if Ly = 1, and D;,D;] = [g8/%, g%/ ] if Li = 0. The
secret key5 K_ is (Do, {Dj, D }1<i<n)-

Encrypt (PK, M, W). An encryptor encrypts a messaljee Gt under a ciphertext policW =
[W1,Wo, ..., W,]. The encryptor picks up a random value Zy, and set< = MY' and
Co =d'. Also for 1< i < n, the encryptor computes; as follows: ifW = 1,C; = A[; if
W = 0,C;i = AT; if W = ,C; = A". The ciphertex€T is (C, Co, {Ci}1<i<n). The encryptor
needs to reveadlV in CT so that recipients can know which secret key components should
be used for eac;.
Note that ifW is hidden inCT, the recipients need to try all the possible combinations of
the secret key components for decryption and it takes exponential timenihich seems

inefficient or impractical if we have a large number of attributes.

Decrypt (CT, SK.). The recipient can checkV to know whetherL = W. If L W,
she can proceed. The recipient decrypts @e (C, Co, {Cit1<i<ny by using herSK_,

(Do, {Di, D; }1<i<n) associated with the attribute list as follows:
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1. Forl<i<n,

Di ifW #x
D =
D if W = =,
2. _
C

M

" &(Cy. Do) 11, &(C,. D))’

2.3.2 Main ldea

We describe how to make the construction of [CNO7] recipient-anonymous. As mentioned earlier,
we cannot have anfigcient construction just by hidingv when the number of attributasis
large. To achieve our goal, the recipients need to be able to deCilyptithout knowingW
and we also want to support wildcards in a hidden way. For that, we remove the public key
component$A’}i<i<n for the wildcards and the secret key compongbty<<, are not included
in SK_. Furthermore, instead of the ciphertext componé¢@isi<i<n, {Ci,a}lgsn are generated
with Cy = ¢" as follows: Iet{Ci,G} = {AI.”,K{Z}; if W = 1, we setr; = r andr, is random:; if
W = 0,y is random and, = r; if W = %,y = r, = r. Thatis, ifC; = A orC; = A}, these
ciphertext components are/éll-formed and can be used for successful decryption and otherwise
“malformed (or random). Each decryptor us€s for decryption ifL; = 1 and use€i if Li =0
without knowing what is specified foA;. By generating the ciphertext like this, we can realize
the functionality of wildcards. We can generalize this idea to adapt to the multi-valued attribute
setting.

Finally to make it hard to distinguish the well-formed components from the malformed compo-
nents, we use the linear splitting technique in [BWO06, SBT] and make our first construction

provably secure as shown in Sect. 2.4.
2.3.3 Our First Construction
The four algorithms are as follows:

Setup (1¥). A trusted authority generates a tupgke = [p,G,Gt,g € G,eg] « Gen(1¥) and
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randomw € Zj. For each attributé where 1< i < n, the authority generates random

values{a, bj; € Zphistsn, and random point§Ai; € Ghi«<n, *1. The authority computes

Y = e(g’ g)W The pUbIIC keyIDK ConSIStS OKY’ p’ Ga GT, g’ € {{ 'aj’t Aik?it,l}lﬁtﬁni}lﬁiﬁn>' The

o
master secret keW K is (w, {{aj, bi t}1<t<n }1<i<n)-

KeyGen (MK, L). LetL =[Lj,Lo,...,Ln] = [Viy,Vou,-- -, Vat,] D€ the attribute list for the user
who obtains the corresponding secret key. The trusted authority picks up random values
S,4di € Zyfor1 <i <n, setss = >.s, and compute®y = g¥ 5. For 1< i < n, the
authority also computef o, D1, Di2] = [g% (A )3Pudi gudi gPidi] whereL; = viy,.

The secret ke K_ is (Do, {{D; j}o<j<2}1<i<n)-

Encrypt (PK, M, W). An encryptor encrypts a messaljee Gt under a ciphertext policW =
[W1,Ws, ..., W,]. The encryptor picks up a random value Zy, and set< = MY' and
Co = ¢'. Alsofor 1 <i < n, the encryptor picks up random valugs: € Zy}i<t<n, and
computes{Ci,t,l,Ci,t,z}lstsni as follows: ifVi,t e W, [Ci,t,l, Ci,t,z] = [(Ait?i{t)ri,t’ (Aﬁit,t)r—ri,t]
(well-formed; if viy ¢ Wi, [Cit1,Cit2] are random rhalformed. The ciphertexCT is

(C,Co, {{Ci11. Ci12)1<t<n J1<i<n)-

Decrypt (CT, SK.). The recipient tries decrypting ti&T,
(C, Co, {Ci 1, Ci 2} 1<t<n J1<i<n) Without knowingW by using hesS K, (Do, {{D; jJo<j<2}1<i<n)
associated with the attribute likt as follows:
1. Forl<i<n,

[Ci1.Ci,] = [Ciy1,Ciy 2] whereLi = viy,.

6Hin=1 e(Ci/,l’ Di,l)e(ci/,z’ Di,2)
&(Cy, Dy) [T, e(C,, Di,O) .

If the attribute listL satisfies the hidden ciphertext poli®y of the CT, the recipient can de-
crypt theCT correctly. For the recipient to know whether the decryption was successful without

knowing the ciphertext policyV, we can use the technique used in [BWO7] in practice. As in

*1n the asymmetric bilinear group4;; must be generated such thfg = g%t wherec;; €r Z;; andc; ¢ is known to

the authority so that the authority can wgein KeyGen

—-18-—



[BWOT7], the encryptor picks up a randdkre Gt and derives two uniform and independgribit
symmetric keysky, k;) from k. The final ciphertext consists dk;, Encrypt(PK, k, W), E,(M))
where Encrypt(PK, k, W) is the ciphertext ok encrypted undePK andW, and Ey (M) is the
ciphertext ofM encrypted undeky by using a symmetric encryption scheme. The recipient can
usek; to check whether the decryption was successful after decryptivitere the false positive
probability is approximately /2. If successful, the recipient can decryytby usingk, derived

from k. The security proof is given in Sect. 2.4.

2.3.4 Second Construction with More Flexibility

We can also apply the technique in Sect. 2.3.2 to [BSWO07] and make it recipient-anonymous. With
a property inherited from [BSWO07], this scheme is more flexible though the security proof is in the
generic bilinear group model. The scheme in [BSWO07] uses a symmetric bilinear group while we
use an asymmetric bilinear group. That is, we ass@eq1*) outputsG = [p, G1, G, Gt,01€
G1,02€ Gy, €] wheree : G; x G, — Gt is a bilinear map. We also use the Externattigt
Hellman (XDH) assumption used in, for example, [BBS04, Sco02, CHLO05] to achieve recipient
anonymity, which holds on MNT curves [MNTO1]. In the XDH assumption, it holds that the
Decisional Difie-Hellman (DDH) problem is hard i, and this implies that there does not exist

an dficiently-computable isomorphisth: G; — G,. The four algorithms are as follows:

Setup (1¥). A trusted authority generates a tugke = [p, G1, G, Gt,01 € G1, g0 € Gy, €] and
randomw, 8 € Z;. For each attribute where 1< i < n, the authority generates random
values{a; € Zphistn, and computes point&A; = gi“"}lstsni. The authority computes
Y = e(g1,92)" andB = ¢. The public keyPK consists okY, B, p, G1, G2, G, 91, 02, €
{Aithstn h1<i<n). The master secret kewK is (w, B, {{&i t}1<t<n }1<i<n)-

KeyGen (MK, L). LetL =[Lj,Lo,...,Ln] = [Viy,Vou.-- -, Vat,] D€ the attribute list for the user

who obtains the corresponding secret key. The trusted authority picks up random values

W+S

s 4 € Zyfor1 < i <nand compute®, = gZT. For 1< i < n, the authority also computes
S"Lai,tiAi

[Di1. Di2] = [, ,ggi] whereL; = vi;. The secret ke K_ is (Do, {Dj 1, Di 2}1<i<n)-

Encrypt (PK, M, W). An encryptor encrypts a messa@§e € Gt under a ciphertext policy
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W = [Wi, Wa, ..., Wy]. The encryptor picks up a random value Z; and set = MY"
andCp = B'. Also for 1 < i < n, the encryptor picks up random valugse Z;
such thatr = Zi”:lri, setsCi; = gg and computesCi2}i<t<n, as follows: ifvi; € W,
Cit2 = Airjt (well-formed; if viy ¢ W, Ci 2 is random fnalformed. The ciphertexCT is
(C.Co.{Ci1, {Cit2}1cten J1<i<n)-

Decrypt (CT, SK.). The recipient decrypts theT,
(C,Co,{Ci1, {Cit2}1cten J1<i<n) by using hetS K., (Do, {D; 1, Di 2}1<i<n) associated with the
attribute listL as follows:
1. Forl<ic<n,

C/, = Ciy.2 whereL; = viy.

é:Vninzl e(Ci,l’ Di,l)

M= .
&(Co. D) [1iLy e(Ci,,z’ Di,z)

Under the XDH assumption, it is hard to guess fr@m what subseW, the encryptor specified
for each attributé\; in the ciphertext policy. The security proof will be similar to that of [ BSW07]

and given in Sect. 2.6. We discuss the flexibility of this scheme in Sect. 2.7 in more detail.

2.4 Overview of Security Proofs for First Construction

We prove that our first scheme is selectively secure under the DBDH assumption and the D-Linear
assumption. We will give the high-level arguments of the proofs here and the detailed proofs of
the lemmas are given in Sect. 2.5.

Suppose the adversary commits to the challenge ciphertext pdligiés; at the beginning of
the game. We use the notatidvy = [Wy 1, Wh2, ..., Whi, ..., Wl

The proof uses a sequence of hybrid games to argue that the adversary cannot win the origina
security game denoted I8y with non-negligible probability. We begin by slightly modifying the
gameG into a game&sy. Gamess andGg are the same except for how the challenge ciphertext is
generated. 16, if Mg # My, then the challenge ciphtertext compon@ris a random element of

Gt regardless of the random cdin The rest of the ciphertext is generated as usud¥lglt= My,
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then the challenge ciphertext@y is generated correctly. That i5,= Gy in this case.

Lemma 1 Under the DBDH assumption, for any polynomial time adversdryhe djference of

advantage ofA in gameG and gamés is negligible in the security parameter

Next, we modifyGy by changing how to generate the ciphertext componéis:, Ci2}1<t<n }1<i<n
and define a sequence of games as follows. Note th@, wheref > 0, the challenge ciphtertext
componen€ is generated as iBq.

Forv;; such thaty;; € Woj Aviy € Wy;) or (viy € Wo, AVt € Wy;), the componentCi 1, Ci 12}
are generated as in the real scheme through the sequence of all the games.

If there isvi; such thati; € Wo; A Vir € Wy;) or (vix ¢ Woi A Vi € Wy;), the components
{Cit11,Cit2} generated properly in gant@,_, are replaced with the random values in the new
modified gameG, regardless of the random com Every time we replace such components
{Cit1, Cit2} with the random values, we define a new modified game. We repeat this replacement
one by one until we have no component that satisiiasd Wo; A Vit € Wii) or (viy ¢ Woi A
Vit € Wy;). In the last game of the sequence, the advantage of the adversary is zero because the
adversary is given a ciphertext chosen from the same distribution regardless of the randbm coin

By replacing the well-formed ciphertext component$sin; with the random values i®, in
this way, we can embed a D-Linear challenge in the ciphertext such that the distingui€her of

andG, leads to the distinguisher of the D-Linear challenge.

Lemma 2 Under the D-Linear assumption, for any polynomial time adversédyyhe djfference

of advantage afA in gameG,_; and game5, is negligible in the security parameter

By considering the sequenég Gy, G;, ... of games starting with the original gan@& no

polynomial adversary can win the gai@avith non-negligible advantage by the lemmas above.
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2.5 Proofs of Lemmas

2.5.1 Proof of Lemma 1

Proof: We prove our lemma by assuming that a polynomial adversatyas non-negligible
differences between its advantage in gai@eand its advantage in gan. We build a simulator
B that can play the DBDH game with advantage

Given a DBDH challenged, g%, g%, g%, Z] by the challenger wherg is eithere(g, g)»%2= or

random with equal probability, the simulatBrcreates the following simulation.

Init:  The simulatorB runs A. A gives B two challenge chiphertext policieg =
[Wo.1, ..., Won], W1 = [Wi1,...,Win]. Then8B flips a random coirb € {0, 1}.

Setup: To provide a public keyPK to A, B setsY to e(g, g)2%2. This impliesw = zz,. For
each attribute where 1< i < n, B generatesA t}1<t<n, such thatA; = gt if viy € Wh;
andAi; = g29tif viy ¢ Wy wherefa;i; € Zphisten, are random. ThemB publishes public

parameters as in the real scheme by pickingaup bi t}1<t<n, at random for I<i < n.

Phase 1: Asubmits an attribute lidt = [L,, ..., L] in a secret key query. We consider only the
case wheré = Wy A L = W;. The reason for this is by our definitionlif= Wy A L E Wi,
then the challenge messadéds, M1 will be equal. In this case, the gam@andGg are the
same, so there can be ndfdrence of advantage o in G andGy. Therefore, 8 simply
aborts and takes a random guess.

WhenL [ Wo A L £ W, there must b& € {1, ..., n} such that k(= k) ¢ Whk-
For1<i<n, Bpicks ups € Z; atrandom. It then setk = z12 + 5 and for everyi # k,
setss = §. Finally it setss = LS =+, s. The Do component of the secret
key can be computed as

Do=g"®=gt% =g 2hs,

Fork, 8 computes the component®yo, D 1, Dx 2] = [g%(Axy, )%t gt gdaucti] as
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follows:

by g, A
Do = g% (Akg, )
— gzlzz+Sk (A tk)ak.tk Byt Ak

— gzlzz+sK (gzlak,tk )ak,tk Byt Ak

= gslk (g% ) Pt Bicgy A

wherely is chosen at random such that

V)

No=-——2
k.t ak,tk bk,tk

’
+ Ay

and randomi, is known to3.

B can compute the componeni3yf;, Dy 2] easily.

Fori # k, 8 can also computd; o, D; 1, Di 2] easily.

Challenge: A submits two challenge messagds andM;. If Mg = M1, 8 simply aborts and

takes a random guess for the reason given above. OtheBristsC = MpZ andCy = g%

which impliesr = z; and generates, fok, the ciphertextC, Co, {{Cit1, Cit2}1<t<n J1<i<n)-

Whenv;; € Wy, B can generat¢Ci1,Ci2} correctly becausé; does not contain un-

knownz and whenvi; ¢ Wy, {Cit1,Cit2} can be simply chosen at random.

Phase 2:

Guess:

Phase 1 is repeated.

A outputs a guesk’ of b. If b¥ = b, 8 outputs 1 and otherwise outputs 0. By our

assumption, the probability thal guesse® correctly in games has a non-negligible

difference from that of it guessirgcorrectly inGo. WhenZ = (g, 9)2%2%=, A is in game

G and wherZ is random,A is in gameGy. Therefore the simulatd8 has advantagein
the DBDH game.

23—



2.5.2 Proof of Lemma 2

Proof: We prove our lemma by assuming that a polynomial advergbimas non-negligible dif-
ferencee between its advantage in gai@e ; and its advantage in gan@®. We build a simulator
8 that can play the D-Linear game with advantage

Given a D-Linear challengeg[g®, g2, Z, g=*, g®*#] by the challenger wherg is eitherg®=
or random with equal probability, the simulatBrcreates the simulation. Note that this D-Linear
assumption is equivalent to that of Sect. 2.2.2.2.

As mentioned in Sect. 2.4, B,_1, the ciphertext component€;, ;, 1,Ci,, 2} are generated as
in the real scheme, whereas,@, the components are random regardless of the randombcoin

and we assume that;(;, € Wi, A Vi,t, € Wo;,) Without loss of generality.

Init:  The simulatorB runs A. A gives B two challenge chiphertext policiegy =
Wo1,...,.Wonl,W1 = [Wi1,...,Wyip]. Then 8 flips a random coinb € {0,1}. If
b = 0, 8 aborts and takes a random guess. The reason for this is by our definition if
b = 0 where (,;, € Wii A Vi1, € Wo;i), we haveG,_1 = G, because the distribution of
the challenge ciphertext in gan@®_; is the same as that of gar®, so there can be no

difference of advantage 1 in G,_; andG,. We proceeds assumitg= 1.

Setup: To provide a public keyPK to A, B setsY to eg, g)" wherew is known toB. For
each attribute where 1< i < n, B generatesA t}1<t<n, such thatA; = gt if viy € Wh;
andAi; = g2%tif viy ¢ Wh; Where{a;; € Zghst<n, are random. Them publishes public
parameters as in the real scheme by pickingajp b t}1<t<,, at random for 1< i < n
with the exception that, fo&, ;, andb;, ;,, B setsa;,;, = z; andb;,;, = z and can compute
AN = iR andAib

it

e = grietBier without knowingzs, z.

oo
Phase 1: A submits an attribute lidt = [L4,...,Ly] in a secret key query. If;, # v, B can
generate the corresponding secret key easily.
Let'sassumé;, = Vi, ,. B needs to compute the secret key compondhig[D;, 1, Di, 2] =
[g3 (A )Pt e, gPecte] whereay, y, = 22, b

it = 22
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B can computdd;, o as

Di[ O = gS[ (AU t{)aie’t[bi[.l[/lié
— gSZ(Ai(t()lez/li[
— gsf (g(li[,t[)ZlZZ/lif

= gqf
wheres, is chosen at random such that
S, =S, — @i, 424,

and randorrq’[ is known to8. B can compute the components;[, D;, ] easily without
knowingz, z.

Here we can assumel: Wo A L = Wy because, = Vi, 1, AVi,1, € Wi_pj,. Thatis, we have
L = Wi_p and thereford = W, so there must blee {1, ..., n} such thaty(= Vky,) € Wok-
Then B generatesyo, Dk 1, Dk 2] as follows: 8 setssc = s, + aj,,z1224;, Wheres, is

random and known t® and computes

Do = g%(Ayy, )2 Deuc

— g$'1<+<li e di, (gzlfYkA,tk )ak,tk Bt Ak

= gsf< (gt ) et Bicty A

wherel, is chosen at random such that

ai, 1, 224i,

A=A, — —————
k
QU t At bk,tk

and randomy; is known toB. B can compute the components];, Dy ;] easily without
knowingz.

Also, fori # i, k, 8 can computel); o, D; 1, D; 2] easily.
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Finally by computing

i#ig,k
= %’i — 24, + % + @i, 1, a2o4i, + Z S
i#ig,k
=g, +5+ ), s,
i#ig,k

the componenDy = g"~* of the secret key can be computed.

Challenge: A submits two challenge messagds andM;. B setsCy = g=** which implies
r = zz+2z. If Mg # My, B setsC to be random and iy = M, B setsC = Mpe(g, g&+%)W.
B generates, foW,, the ciphertext componentCi 1, Cit2}1<t<n }1<i<n @S ING,_1 with the

exception that the componenG, 1, 1, Ci, 1,2} are computed as

Cit1= (Aiif{;()”“f = (A?,)* = (gh®)™,

Ci 2= (Ajf’t‘)r_””‘f = (@M ®)® = Z%e
without knowingz,zs, z;z;. This implies that;,;, = zz andZ = g»® and if Z = g#%, the
components are well-formed arfdlis in gameG,_;.

Phase 2: Phase 1 is repeated.

Guess: A outputs a guesk’ of b. If b¥ = b, 8 outputs 1 and otherwise outputs 0. By our
assumption, the probability th&l guesse® correctly in gameés,_1 has a non-negligible
e difference from that of it guessirgcorrectly inG,. WhenZ = g2%=, A is in gameG,_1
and wherZ is random,A is in gameG,. Therefore the simulata8 has advantagein the

D-Linear game.
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2.6 Security Proof for Second Construction

Generic Bilinear Group Model. The generic group model was introduced in [Nec94, Sho97] and
extended to the bilinear group setting in [BB04, BBGO05]. Under this model, eleme@ts 6,

andG+ of prime ordem are assumed to be encoded as unique random strings so that only equality
may be tested between the group elements by the adversagy. 1€ — {0, 1}* be the random
encoding of elements @, i.e., an injective map and the&h, = {£1(X) : X € Zp}). If g1 € Gris a
random generator @k, £1(x) can be considered to be the random string representatgineof; .
Similarly we definet,, &1 for Go, Gr. In order to perform the group and pairing operations, the
adversary needs to interact with an oracle that performs the group and pairing operations using
those random strings. That is, the adversary communicates with the operation oracle using only
the&-representations of the group elements. In this model, the adversary can make the following

oracle queries.

Multiplication:  Givenék(a), £&k(b) by the adversary, the oracle retugh&+b) wherek € {1,2, T}.

Exponentiation by a constant: Given &(a) and c(e Zp) by the adversary, the oracle returns
&(ca) wherek € {1,2, T} andc is a constant known to the adversary.

Pairing: Given &1(a), &2(b) by the adversary, the oracle returés(ab) that corresponds to
e(£1(a), £2(0)).

Homomorphism: Givené,(a) by the adversary, the oracle retugiga). Inverse homomorphism

gueries are impossible because of the XDH assumption.

As in [BBGO05, BSWO07], we prove the following theorem.

Theorem 1 Letés, &, &1, Gy, G, Gt be defined as above. For any adversatylet g be a bound
on the total number of group elements it receives from queries it makes to the operation oracle and
from its interaction with the non-selective-ID CP-ABE game. Then we have that the advantage of

the adversary in the game @(q—:)

Proof: We can create a simulat@ that interacts withiA as follows:
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B maintains three liststg, = {(frs,&10) 1 € = 1,...,711}, Lg, = {(far,é20) 1 € = 1,..., 72},
Loy = {(fre.ére) € =1,...,77}. Theitemsfyi,, f2,, fr, contain rational functions or constants.
B usesfyiy, Ty, fro to store the group operation queries ttfamakes and ., &2, £ tO Store
the query results. That i, = £1(f1e), €20 = é2(f2r), andérp = & (Fr ).

At the beginning of the CP-ABE gamé setsfi; = 1, f,3 = 1, ft1 = 1 and chooses their
corresponding random strings, 21,711 That is,é11, €21, andéyy correspond t@s, gz, and
e(01, 02) respectively. AlsaB updates the lists by adding the tuples corresponding to public key
component(gs, gz)W,gg, and{{gi‘*‘}lgﬁni}lggn. Note that, in the real non-selective-ID CP-ABE
game, the challenger chooses random real values for the variabl@s{a; }1<t<n, }1<i<n) and
maintains them in the lists. However, in the simulatiBrdoes not choose real values for the
variables and instead maintains multi-variate rational functions in the lists. At the end of the
simulation,B chooses each random value for each variable using lazy evaluation and reveals all
the tuples in the lists so that can verify the consistency of the game. To start the g&reends
to A the chosen random strings in the lists. Wheneflemakes the oracle queries, secret key
queries, and challenge quefyupdates its lists as follows. Note that wheneeadds new tuples

to the lists, the new random strings are returnedito

Multiplication: A inputség(a) andéx(b) wherek € {1,2, T}. 8 checks thaty(a) andég(b) are in
the listLg, and returnsL if they are not. TheB computesf = a+b mod p. If f is already
in the listLg,, then® returnsé(f). Otherwise B chooses a new random stritig( f) and
adds a new tuplef(&(f)) to the list.

Exponentiation by a constant: A inputséyk(a) and a constant wherek € {1,2,T}. B checks
thaté&g(a) is in the listLg, and returnsL if it is not. ThenB computesf = camodp. If f
is already in the listg,, thenB returnsé(f). Otherwise,B chooses a new random string
&(f) and adds a new tupld (£«(f)) to the list.

Pairing: A inputsé&;(a) andé&z(b). B checks that;(a) andé&(b) are in the listsLg, andLg,
respectively and returns if they are not. The8 computesf = abmod p. If f is already
in the listLg,, then8 returnsér(f). Otherwise B chooses a new random strigg(f) and
adds a new tuplef(&1(f)) to the list.

Homomorphism: A inputsé,(a). B checks that,(a) is in the listLg, and returnst if it is not.
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If ais already in the listg,, then®B returnsé;(a). Otherwise,8 chooses a new random
stringé;(a) and adds a new tuple,(¢:1(a)) to the list.

Secret Key Query: A inputs an attribute list. = [Li,Lo,...,Ln]l = [Vit, Vot ---»Vat,)
for the j-th query. $ adds to the listLg, new tuples corresponding t& K.
<g:+%, {gjj)+a‘”ti A g;‘(j)}lsism that include new variables) andA"’s.

Challenge Query: A inputs({Mo, Wp) and(M1, W;) whereW, = [W1,..., W] andi € {0, 1}.
We assume thatly = &7(mg) and My = &r(my) already exist in the liskg,. In the real
game, the challenger chooses random{0, 1} to encryptM, for W,. However,B creates
the ciphertextC, Co, {Ci 1, {Ci12}1<t<n }1<i<n) as follows:

ForCop, 8 adds a tupledr, £1(6r)) to the listLg, wherer is a new variable. FO{C; 1}1<i<n,
B adds tuplesr(, £1(ri)) to the listLg, wherer;'s are new variables amd= Y, r;.

If Mo = M3, B adds to the lists, atuple fro +wr, & (mg +wr)) for C. Note thatmg = my
in this case. IfMg # My, 8 adds to the list g, a tuple ¢z, £7(6g)) for Ewhereeg is a new
variable.

For {{Cit2}1<t<n J1<i<n, If Vix € Woi A Vi € Wi, B adds a tupledri, £1(aisri)) to the list
Lg,. If vir € Wo; A Vigx ¢ Wy, B adds a tuplery, £1(rit)) to the listLg, wherer;;’s are
new variables. If\i; ¢ Wo; A vir € Wy;) or (Vir € Wo; A viy ¢ W), B adds a tuple

(Oari> £1(0a,r;)) tO the listLg, whered, .'s are new variables.

After A terminates and returns a guéss {0, 1} of b, B chooses randotme {0, 1} and subsitutes

my, + wr for 6z if 6z was used inLg, and substitutes;r; for 65 ,, Whereviy € Wy A Vit ¢ Wi_p;.

Finally, 8 chooses random values frdfy for all the variables and reveals all the evaluated tuples

in the lists.

Analysis of 8's Simulation. The 8’s simulation is perfect if substituting the chosen random
values for all the variables does not create any equality relation (i.e., unexpected collision) among
intermediate rational functions that is not an equality of rational functions. If no unexpected
collisions occur, the success probability @fis % because th&’s simulation is perfect. Such

unexpected collisions occur only when

fke = fe INZp for somed, £, yet fy, # fip as rational functions wheiee {1,2, T}.
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The probability that such unexpected collisions occucdf, Lg, or Lg, is at mosto(q—;) by the
Schwartz-Zippel lemma [Zip79, Sch80] as in [BBG05, BSWO07].

Next we show that no new equalities between rational functions suély as f,» are created
even if 8 substitutes variablesy, + wr anda;ri’s for variables such a8 and6,,’s at the end
of the simulation as described earlier. That is, we show that it cannot happefy that fy ;-
beforeB’s variable substitution buly , = i, afterB’s variable substitution. This means that we
must show thatA cannot construct a query fdi(= fy, — fx) wheref # 0 beforeB’s variable
substitution and = 0 after®’s variable substitution. As in [BSWO07], we will show thagt can
never construct queries fefg:, g2)™"" or (g1, g2)”’#t"’s by an exhaustive case analysis whegre

andyr are any terms.

Case of wr:  When B substitutesn, + wr for 8=, it means thatA cannot obtairs K such that
L E Wo A L E W, becauseMy # M;. Therefore, A cannot decrypt the ciphertext even if
B substitutesy;ri’s for 6,,r,'s. As proved in [BSWO07], in this case cannot construct a
query fore(ga, g2)"™".

Case of g ;ri:  Fix any a;r; that appears whe#8 applies variable substitution at the end of the
simulation. Obviously;A cannot construct a query fgt’*", so if gi"" is testable (i.e.A
can test whethet, ., = a;1ri), A must be able to construct a query &g;, o). If A
can do so,A can test whethef, ,, = a;r; by comparingst(y7a;;ri) with & (y765,r;). In
other words, ifgi“'tri is testable,A must be able to construct a query #g:, 92)” wherey
is a non-zero rational function including the variabje,, and becomes zero (or vanishes)
whenay,r; is substituted fob, ,, and other variables are also substituted appropriately in
v. Note that if it can happen th&t , # fr, before®’s variable substitution anér, = fr
after 8's variable substitutionA can construct such a query f&g:, g2)” wherev = fr, —
fr.». Therefore, we show thall can never construct such a query &, g>)” and no new
equalities between rational functionslig, are created aftes applies variable substitution

at the end of the simulation.

Suppose tha# could construct such. To cancek; ir; in v that appears afte substitutes

Daa .M . :
aiti for 6, A needs to paig; (= &1(ri)) with g;(J AT g (D) 4 ai:A")) or to pair
o 1Y) . .
97" (= &1 ¢ ri)) with g;'( AT (D) ¢ ai:A")) to create a term im that includes; i
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wheret # t'.

o , D1a a0 - - :
If A pairs g3*" (= &(aipri)) with g;“)“’“’ﬁlj (= &(S) + aaY)), A needs to pair
_ L0 i : o :
g‘f“"'(: £1(0a,r;)) with gZ" 4 (= gz(ai,t,/li(”)) to makev vanish, but this is impossible
v () i - -
because," A (= &(apAV)) is not available.

D) _ . ’
It A pairsgl (= £1(r)) with g5 (= &,(s +a,A1)), A needs to cance(g;. g,)5"" (=

£r(S9r))). In this case A might be able to obtair(gy, go)"" (= &1 (wr)) ande(gs, g2)s"" (=
£1(s9r)) becauseA can make a secret key query 81 such that. = Wo A L E W,
On the other hand, we know thegt; € Wy A Vviy ¢ Wipi. This means thaA cannot
haveS K_ such thatl. £ Wop A L E W; andL; = vi;. That is, A cannot haveS K_ such
that S K. can decrypt the ciphertext arld = vi;. By the argument similar to that of
[BSWO07], there is’(# i) such thatA cannot canced(g;, gz)rvaw?,‘) (= gT(ri,ap,t//li(,j))) even

if A obtainse(gy, @)V (= &r(wr)) and e(gr, 62)S"" (= &r(sr)). ThusA cannot cancel
(01, gz)s“)ri (= &r(s9r;)) and cannot construct a query for a non-zero rational function

that becomes zero whexyr; is substituted foby, ;..

Therefore, no new equalities between rational functifs= fx in the lists are created where
ke {1,2, T} even if B substitutes variablesy, + wr anda;;r;’s for variables such aé andf,,,’s
at the end of the simulation. Thus the probability that the unexpected collisions occur is still at

mostO(q—;). This concludes the proof. O

2.7 Adding Attributes after Setup

In our schemes, it is easy to add new possible valigs of each attributéd; in the ciphertext

policy even afteiSetupis executed, because we have only to add the public key components for
the new values of; and the existing public parameters can remain unchanged. That s, the access
structure for the ciphertext policy can be extended accordingly though the ciphertext size is also
increased. However, in our first scheme, it cannot be done securely to simply add new attributes
Aj’s in the ciphertext policy with the existing public parameters being unchangedSstap

is executed and some users already have their secret keys. The reason is as follows. Suppose

there are three attributes;, A,, Az in the system wheetupis executed and a user obtains her
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secret keyS K_ where the attribute list = [L1, Lo, L3] = [1, 1, 0]. After that, a new attributé 4

is added in the system and the corresponding public key componemnts, fare generated and
published. Then an encryptor may specify a ciphertext paty: [Wi, ..., Wy] = [*,%*,0,1],
requiring the legitimate recipients to have the value 14gr In this case, the user who has the
aboveS K_ can decrypt the ciphertext encrypted under the ciphertext p@éi@ven if she does

not have the secret key componentfqy, becausé satisfies Wi, W, W] partially and it enables

the user to combine all the secret key components to reconstrac!, s in the exponent

for decryption. The similar situations can also happen in [CNO7, KSW08, BWO7 +8B|af

we consider the setting where new attributes may be added in the ciphertext policy dynamically
after Setupis executed. As mentioned in [OSWO07], we may be able to prepare redundant filler
attributes reserved for future use, but it increases the ciphertext size unnecessarily.

The second scheme can avoid this situation with the property inherited from [BSWO07] and
we can add new attributes in the ciphertext policy securely &&tupis executed where the
existing public parameters can remain unchanged. Note that in this scheme, the encryptor splits
randomr in the ciphertexCT such thatr = Y., r; and it forces decryptors to have the secret
key components for all the attributes specified in the ciphertext policy even if the attributes in
the ciphertext policy were added after the decryptors obtained their secret keys. If a user wants tc
decrypt the ciphertext with the ciphertext policy including newly added attributes, she must obtain
a new secret key including the newly added attributes from the trusted authority again.

Additionally, in the second scheme, an encryptor can specify a variable-length ciphertext policy.
For example, the encryptor can specify the ciphertext pacy [Wi,, Wi,, ..., W ] wherem < n
andn is the number of all the attributes in the system. Since there are several attributes that do not
appear in the ciphertext policy, the partial information on the ciphertext policy is leaked. That is,
it means that the wildcards are specified for the attributes not appearing in the ciphertext policy.
However, it may be acceptable to the encryptor in some cases and it can reduce the size of the

ciphertext.
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Table. 2.1 Comparison of fierent schemes

Expressiveness olf Anonymity | Complexity | Type of bilin- | Add attrs af-
policy assumption | ear group ter setup

[BWO7] AND-gates on| yes cDBDH, group of | no
multi-valued C3DH composite
attributes with orderN = pq
wildcards

[BSWO07] || all boolean for-| no generic group| any yes
mula model

[CNO7] AND-gates on| no DBDH any no
postive and negat
tive attributes with
wildcards

[KSWO08] || all boolean for-| yes new assump- group of | no
mula tions based compos-

on composite| ite order
order group | N = pgr

This workl1 || AND-gates on| yes DBDH, any no
multi-valued D-Linear
attributes with
wildcards

This work2 || AND-gates on| yes generic group| DDH-hard yes
multi-valued model group
attributes with
wildcards
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Chapter 3

Multiparty Computation for Integer

Arithmetic Primitives

Damgardet al. [DFK+06] showed a novel technique to convert a polynomial sharing of sacret
into the sharings of the bits afin constant rounds, which is called the bit-decomposition protocol.
The bit-decomposition protocol is a very powerful tool because it enables bit-oriented operations
even if shared secrets are given as elements in the field. However, the bit-decomposition protocol
is relatively expensive.

In this chapter, we present a simplified bit-decomposition protocol by analyzing the original
protocol. Moreover, we construct moréieient protocols for a comparison, interval test and
equality test of shared secrets without relying on the bit-decomposition protocol though it seems
essential to such bit-oriented operations. The key idea is that we do computation o séthet
candr wherec = a+r, cis arevealed value, ands a random bitwise-shared secret. The outputs
of these protocols are also shared without being revealed.

The realized protocols as well as the original protocol are constant-round and run with less
communication rounds and less data communication than those of{D&]K For example, the
round complexities are reduced by a factor of approximately 3 to 10. The results in this chapter

were published as [NOQ7].
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3.1 Introduction

3.1.1 Background

Securemultiparty computatiofMPC) allows a set of mutually distrustful parties to jointly com-
pute an agreed function of their inputs in such a way that the correctness of the output and
the privacy of the parties’ inputs are guaranteed. That is, when a function is represented as
(Yi,...,¥n) = T(Xg,...,X%y), each party with its private input; obtains only the outpuy; but
nothing else.

A great deal of work (e.g., [Yao82, GMW87, BGW88, CCD88, BMR90, FKN94, JJ00]) has
been done in this research field. By using generic circuit based protocols, it is shown that any
function can be computed securely [BGW88, GMW87]. However, the general protocols tend to
be indficient; hence the main aim of our research is to constriictient protocols for specific
functions.

When we are interested in integer arithmetic, there are two choices to represent a function:
an arithmetic circuit over a prime field, and a Boolean circuit. Inputs (and outputs) in the
arithmetic circuit are represented as elemenifor a ring), while inputs in the Boolean circuit
are represented as bits. The input encoding has an influence offitheney of computation.
Addition and multiplication of shared secrets can be perfornfigciently in the arithmetic circuit,
whereas not in the Boolean circuit. On the other hand, bit-oriented operations like interval tests,
equality tests, and comparisons of shared secrets are easy in the Boolean circuit, whereas they a
non-trivial tasks in the arithmetic circuit.

To bridge the gap between arithmetic circuits and Boolean circuits, Danegatld DFK +06]
have proposed the MPC protocol called bit-decomposition in the secret sharing setting (e.qg.,
[BGW88, GRR98]). Also, Schoenmakers and Tuyls [ST06] have proposed a similar protocol for
MPC [CDNO1, DNO3] based on threshold homomaorphic cryptosystems (THC) [DJO1, FPSO0Q].
In the bit-decomposition protocol, a sharing of an element in the field (or an encryption of an
element in the ring in the threshold homomorphic setting) is converted into sharings (encryptions)

of bits.
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The bit-decomposition protocol is very useful and has many applications because it enables bit-
oriented operations to be performed in the arithmetic circuit without performing the entire com-
putation bitwise. For example, when computa®gy using the techniques in [ACS02, DFR6],
or the Hamming distance betwearandb where shared secre#sandb are elements iZ,, the
bit-decomposition protocol is essential because we need the bitwise sharings of the shared secrets.
Other important applications are comparisons, interval tests and equality tests of shared secrets.
For example, in the comparison protocol, a single shared bit is computed such that it indicates the
result of a comparison between two shared secrets. In the Boolean circuit, it is relatively easy to
compare two shared secrets because the bits of the secrets are shared. That is, in the comparison
protocol based on the Boolean circuit (which we call the bitwise less-than protocol in Sect. 3.3.5
as in [DFK+06]), we can check the secrdidi$ by bit privately and compare the two shared secrets
even without revealing the bit position that determines the comparison result. Therefore, even if
inputs are given as sharings of elements in the field, the comparison can be performed easily with
the bit-decomposition protocol.

Thus the bit-decomposition protocol is a very powerful tool because changing the represen-
tations of shared secrets enables us to gain the benefits of both Boolean circuits and arithmetic
circuits. However, the bit-decomposition protocol involves expensive computation in terms of
round and communication complexities.

In this dissertation, we present a simplified bit-decomposition protocol by analyzing the orig-
inal protocol. Moreover, we construct moréieient protocols for the main applications of the
bit-decomposition protocol, which are interval tests, equality tests, and comparisons, without re-
lying on the bit-decomposition protocol though it seemed essential. For example, the equality test
protocol is an important subprotocol in [CD01, OK05, MF06], so it will be meaningful to con-
struct dficient protocols for these applications without relying on the bit-decomposition protocol
if possible. For the equality test, we present deterministic and probabilistic protocols.

In our constructions, the outputs of the protocols are also shared without being revealed, so
they can be secret inputs for the subsequent computation. Therefore, our protocols can be used as

building blocks in the more complex computation.

—37-—



3.1.2 Our Contributions

We construct constant-round protocols for bit-decomposition, interval test, comparison, and
equality test, building on the subprotocols in [DF86]. The proposed bit-decomposition
protocol runs with less communication rounds and less data communication than the original
protocol [DFK+06]. Therefore, the interval test, comparison and equality test protocols are also
improved inevitably by using the proposed bit-decomposition protocol. However, we present
new protocols dedicated to them without relying on the bit-decomposition protocol. By using
our protocols, given shared secrets as elemerifg,inve can perform the interval tests, equality
tests, and comparisons of the shared secrets nfiogeatly than the bit-decomposition based
protocols. For the equality test, we propose two kinds of protocols. One (Proposedl) is a
deterministic protocol and the other (Proposed?) is a probabilistic protocol with a negligible error
probability and a much smaller round complexity. The key idea is that we do computation on
secreta with c andr wherec = a+r, cis a revealed value, andis a random bitwise-shared
secret.

In Table 3.1, we summarize the results of the round and communication (comm.) complexities
of each protocol wheré is the bit length of primep of the underlying field for linear secret
sharing schemes arldmust be chosen such that the error probab(lgj'k is negligible. Here
“BD-based” means that the protocol is based on the proposed bit-decomposition protocol. As
shown in Table 3.1, we can see that these bit-oritented operations can be realized with smallel
complexities than those of the bit-decomposition based protocols by constructing them without
the bit-decomposition protocol. For example, the round complexities are reduced by a factor of
approximately 3 to 10.

Our protocols (except the probabilistic equality test protocol which is only applicable to the
secret sharing setting) are applicable to both the secret sharing setting (IBF&nd the threshold
homomorphic setting [ST06] though we describe our constructions based on the secret sharing

setting.
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Table. 3.1 Comparison of RouridCommunication Complexities

Protocol Round Comm.
Bit-Decomposition| [DFK+06] 38 93¢ + 94¢log, ¢
Proposed 25 93¢ +47(log, ¢
Interval Test [DFK+06] 44 127¢ + 94¢1og, £ + 1
BD-based 31 127 + 47¢1og, £ + 1
Proposed 13 11 + 1
Comparison [DFK+06] 44 205 + 18&log, ¢
BD-based 31 205 + 94¢log, ¢
Proposed 15 27¥% +5
Equality Test [DFK+06] 39 98¢ + 94¢log, ¢
BD-based 26 98¢ +47Clog, ¢
Proposedl 8 81¢
Proposed?2 4 10k

3.1.3 Related Work

Damgardet al. [DFK+06] have shown a novel technique to convert a polynomial sharing of an
element inZ, into sharings of bits in constant rounds. Also Shoenmakers and Tuyls [STO6] have
shown a similar conversion technique for multiparty computation based on threshold homomor-
phic cryptosystems [CDNO1, DNO3]. These protocols are the first to bridge the gap between
arithmetic circuits and Boolean circuits.

Toft [Tof07] has proposed another version of a probabilistic equality test protocol indepen-
dently of and concurrently with our probabilistic equality test protocol. Both the protocols use the
property of quadratic residues in a probabilistic way.

Recently, as a practical approach (rather than theoretical constant-round protocols), in
[BDJ+06, FJO6, Tof05], the implementation for multiparty integer computation, including the

bit-decomposition and comparison, is described with non-constant-round protocols where shared
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secrets are assumed to befwiently small compared with prime of the underlying secret
sharing scheme, whereas we do not assume that shared secrets are upper bounded by a cert:

value as in [DFK-06]. We mention this aspect in Sect. 3.7.

3.2 Preliminaries

We assume that partiesP;, ..., P, are mutually connected by secure and authenticated channels
in a synchronous network and the indefor eachP; is public among the parties. Lgtbe an
odd prime and’ be the bit length op. Z is a prime field. When we writa € Z,, it means that
€{0,1,...,p—1}. We use §]z, to denote a polynomial sharing [Sha79] (see Sect. 3.3.1.1) of
secreta € Z, which is equal to a finite field,. We also use the simplified notatioa] | instead
of [a]r, if the context is clear. The polynomial sharing [ means thag is shared among the
parties where, is a random polynomialy(X) = a+ a;x+ axx? + - - - + ax! mod p with randomly
choserg; € Zy for 1 <i <t,t < 5, andfy(i) is thePy’s share ofa. An adversary can corrupt up
to t parties. We describe our protocols in the so-called “honest-but-curious” model, but standard
techniques will be applicable to make our protocols robust.
Let C be a Boolean test. When we writ€],, it means tha€ € {0,1} andC = 1 iff Cis true.
For example, we use[< b], to denote the output of the comparison protocol.
Because the multiplication protocol is a dominant factor of the complexity, as in {DBK
we measure the round complexity of a protocol by the number of rounds of parallel invocations of
the multiplication protocol [GRR98] and we also measure the communication complexity by the
number of invocations of the multiplication protocol. The round complexity relates to the time
required for a protocol to be completed and the communication complexity relates to the amount
of data communicated among the parties during a protocol run. Though our measurement of
complexities basically follows that of [DFKD6], the complexity analysis in [DFKO6] is rough.
In this dissertation, we reevaluate the round and communication complexities of the protocols in

[DFK+06] to compare our protocols with those of [DFB6] based on the same measurement.
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3.3 Building Blocks

3.3.1 Core Primitives

3.3.1.1 Shamir Secret Sharing

The concept of secret sharing was proposed in [Sha79]. By using this scheme, a secret is shared

among multiple parties, and can be reconstructed by collecting a certain number of secret shares.
Now we describle how to constructiaH1, n) threshold secret sharing scheme. In order to share

a secres, the dealer o generates a polynomidlwith g chosen at random frog@, 1, ..., p—1},
f(X) = s+ aiXx+aX* +---+ax modp

where 0< s< pandpis a prime. The parties are numbered from higheren < p is assumed.
The dealer sends the secret shi(i¢ to thei-th partyP; through the secure channel. Any subset

S of t + 1 parties out oh total parties can reconstrust= f(0) by using Lagrange interpolation

where
f() = > f()15; modp
ies
and )
s _ X=1
28 = i/g\m =0t
The value/l;f’,i Is a Lagrange cdicient. The important thing to note is that the adversary can

obtain no partial information even if he colledtsecret shares. This can be confirmed as follows.
Suppose the adversary has colledtedcret shares of a subs&t Then for each possible guess

Syuess @ valid polynomial (x) exists such that,

[(¥) = (Z f(i)ai’iu‘(’}] + (Sguesstzg ) mod p.

ies’
Therefore, the adversary cannot guess the correct secret. This scheme can also be used over any

extension fieldF .
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3.3.1.2 Homomorphic Cryptosystem with Threshold Decryption
We sketch the concept of threshold homomorphic cryptosystems (THCs) for completeness. An

additively homomorphic public key cryptosystem (e.g., [Pai99]) has the following properties.

o E(my + myp) = E(my) X E(mp)
e E(cm) = E(M)°
e E(-m)=E(m)?

whereE(m) is the ciphertext o andc is a public value. The above computation can be done
without knowing the plaintextsy, m,, mor the decryption key.

In MPC based on THCs, the decryption key is shared among the parties by using secret sharing
as in [DJO1, FPSO00] and the threshold decryption can be done only if the threshold number of
parties cooperate and the decryption key itself is never revealed even after the decryption is done
correctly. With these properties, a shared secret in the secret sharing setting corresponds to a
encryption of the secret and the reconstruction of the secret by Lagrange interpolation correspond:
to the threshold decryption and therefore we can realize the same MPC functionality in both the

secret sharing and threshold homomorphic settings.

3.3.2 Distributed Computation with Shared Secrets for Addition and Multipli-

cation

We utilize the classical BGW protocol [BGW88] based on Shamir secret sharing [Sha79]. Let’s
assume now that parties have two shared secratandb as ], = {fa(1), ..., fa(n)} and o], =
{fo(1),..., fo(n)}. Then the parties can obtain { a mod p],, [camod p],, and |+ b mod p],

easily wherec is a public constant as follows: To compute+{ a mod p],, [camod p],, and

[a + b mod p],, eachP; has only to locally compute + fa(i) mod p, cfa(i) mod p, and f4(i) +

fo(1) mod p respectively. Therefore, these can be doffieiently without communication among

n parties. When we writec+ a], = ¢+ [a]p, [calp, = c[a]p, and |+ b], = [a], + [b] p, these mean

that the parties perform these operations. We alsoyysier example, Iikezﬁzl[a]p to denote

[aq]p + [a@2]p + [@g] p-
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Multiplication to obtain fb mod p], is a bit more complex and it requires the parties to com-
municate with each other (see Sect. 3.3.3 for the details). When we afjte$ [a], x [b]p, it

means that the parties perform the multiplication protocol to comg@iltenfod p] .

3.3.3 Multiplication Protocol

3.3.3.1 In Secret Sharing Setting

The multiplication protocol in [BGW88] was very complex and a simple afidient multiplica-

tion protocol was proposed in [GRR98]. We sketch the multiplication protocol in [GRR98].

Let's assume that the parties have timdegree polynomial sharinga]f, = {fa(1),..., fa(n)}
and p], = {fy(1),. .., fo(n)} such that

faX) = a+ax+---+ax modp

and

fo(X) = b+ bix+---+byx modp

and they want to computetadegree polynomial sharin@lp mod p],. We consider at2degree

polynomial fop(X) = fa(X)fo(X). Then we can notice that,(0) = ab and fap(i) = fa(i) fo(i).

Therefore, 2+ 1(< n) shares can reconstruadb. That is, by using Lagrange interpolatiab can

be reconstructed with the Lagrange ff‘mbents/lgi as follows.

ab = fa(0) = > A5, fan(i),
ieS

X—1’
S _
%=1 i— i

i7eS\{i}

whereS can be any subset such ti&tc {1,2,...,n} and|S| = 2t + 1. Note that the Lagrange

codficients can be computed by anyone because they involve no secret information.

BecauseP; can computefp(i) = fa(i) fp(i) locally, fori € S, we let P; resharefyy(i) by a

t-degree polynomial sharind4(i)] . Finally, the parties can computal , by

[ablp = " A5 [ fan()] .

ieS
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3.3.3.2 In Threshold Homomorphic Setting
We also sketch the multiplication protocol in [DNO3] for completeness.

Now let's assume that there are two ciphertéxts) andE(b) and that parties want to compute
E(ab). Let N be the plaintext domain for a homomorphic cryptosystem. First each Bapigks
upr; € Zy at random and broadcadigr ;) andE(r jb). Letr = Zi”:lr_i. All parties can now
computeE(r) = E(XL,ri) andE(rb) = E(X[L, rib). Next, the parties cooperate to decrypt
E(a + r) by threshold decryption without revealing the decryption key itself. Then all parties can
computeE(b = (a + r)) = E(b)*" because + r is public. The final resulE(ab) can be computed
as

E(ab) = E(b* (a+r))  E(br)™ = E(b * (a+r1)) * E(=br).

3.3.3.3 Round and Communication Complexities

We explain the dference between the round and communication complexities with a concrete
example. Let’s assume that the parties compaitex [b] , X [c]p X [d],. If the parties perform the
multiplication protocol sequentially, the parties obtaat]|, [abd,, and gbcd, in order. Then

the round complexity of this computation is 3 rounds and the communication complexity is 3
invocations of the multiplication protocol. On the other hand, the parties can also corapjyte [
and [cd], in parallel, and finally computeapcd . Then the complexity of this computation is 2
rounds and 3 invocations. We will evaluate the round complexity of a protocol by performing the

multiplication protocol in parallel as much as possible.

3.3.4 Bitwise Sharing

The concept of bitwise sharing is to shase € Zy(= {0,1,...,p — 1}) in the form of
{[ac1lps- - - [@0]p} such thata = Y 32a wherea € {0,1). We use &g to denote
{[ac-1lp. - - - [aa] p. [a0] p}-
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3.3.5 Subprotocols

We describe several subprotocols in [BB89, DFIS] necessary for our constructions. All these
subprotocols run in a constant number of rounds. By combining these subprotocols, we will
construct our interval test, equality test, comparison, and bit-decomposition protocols that also

run in a constant number of rounds.

3.3.5.1 Joint Random Number Sharing

The parties can share a uniformly random, unknown numipBB89] as follows: EachP; picks

upr; € Zp at random and shares it by a sharimg]f = {fi(1),..., fi(n)} wheref;(0) = r; and

fi is a random polynomial. That if; distributesfi(j)’s to otherPj's. From each;],, the
parties computer], = YiL,[ri],. We assume that the complexity for this is almost the same
as the complexity of 1 invocation of the multiplication protocol. We denote this subprotocol as

3.3.5.2 Joint Random Bit Sharing

The parties can share a uniformly randama {0, 1} as follows: The parties compute ¢r Zp]p,
perform the multiplication protocol to obtain?], and reveat?. If r? = 0, the parties retry. If

r2 # 0, the parties compute = Vr2 such that O< r’ < 2. This can be done in polynomial
time because is an odd prime. Then the parties sal[ = 271(r"![r]p + 1). It is clear that
r'~Ir € {-1,1}; hencea € {0, 1}. The total complexity is 2 rounds and 2 invocations. We denote
this subprotocol asier {0, 1}] . In the threshold homomorphic setting [CDNO1, DNO3], this can

be computed aa = @ ,b; whereb; g {0, 1} is generated b¥; (see [STO6] for the details).

3.3.5.3 Unbounded Fan-In Or
Given [a,_1]p, .. .,[a0]p Whereg; € {0, 1}, the parties can compute/i"L‘olai]p in a constant num-
ber of rounds. For this, as in [DFKO6], we can use the same technique to evaluate symmetric
Boolean functions as follows:
The parties computed, = 1 + zf;g[a]p. Note that 1< A < ¢ + 1. Next, the parties define
a {-degree polynomiaf,(x) such thatf,(1) = 0 andf,(2) = f,(3) = --- = f,(€ + 1) = 1. f/(X)
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can be determined by using Lagrange interpolation. Notefi{&) = V'i":‘(}ai. Then the parties
try to obtain i":‘(}ai]p by computing f.(A)], from [A], and f,(X). This can be done in a constant
number of rounds by using an unbounded fan-in multiplication and the inversion protocol [BB89]
as follows:

Let's assume thaf;(x) is represented af$(xX) = ag+a1X+- - -+a,x" mod p. To obtain [f,(A)]p,
the parties compute] p, [AZ]p, . .., [A‘], because ,(A)]p = ao + i, ai[Al,.

For 1<i < ¢, the parties generat@[ecr Zp]p and b €r Z]p in parallel, computeBi], =
[bi]lp x []p, and reveaB;. Note that p;'], can be computed a& '], = B ![b/], at the same
time (inversion protocol).

Next, the parties compute in parallel

[c1]p = [A]p [bzl]p
[C2lp = [Alp x [b1]p X [B5']p

[calp = [Alp X [b2]p x [D5]p

[ce-1]p = [Alp X [be-alp X [b; 1]

[celp = [Alp % [be-alp X [07]p

and reveal alt;’s.

Then the parties can comput/éilp = (]‘[L:1 C)[bi]p.

If A =0, information abouf\ is leaked. That is why we used], = 1+ ¥/ J[a], to guarantee
thatAis not zero.

The complexity of computing each component is as follows: 2 rounds ama/8cations for
[bi]p’s, [B]p's, andB;’s and 2 rounds andfanvocations forc’s. [byj] IO><[bi‘+11]ID forl<i<¢-1can
be precomputed agi], x [b/, ,]p in the second round in parallel withi[; x [b] . Therefore, the
total complexity is 3 rounds (including 2 rounds for random value generation)@ainedcations.

Note that we can compute unbounded fan-in And and Xor similarly because a symmetric
Boolean function depends only on the number of 1's in its inputs. Also note that the random

values necessary for this protocol can be generated in advance rather than on demand when th
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subprotocol is used as a building block in the larger protocol, thus reducing the round complexity.
Actually all the random value generation (for bits and numbers) can be done in the first 2 rounds

(3 rounds in the setting [ST06] by using an unbounded fan-in Xor).

3.3.5.4 Prefix-Or

Given [a]p,...,[a]p Wherea € {0, 1}, the parties can compute the Prefix-®(]f, ..., [be],
such thab; = \/‘jzlaj in a constand number of rounds. As in [D¥B86], this can be done by using
the technique from [CFL83a] as follows:

For notational convenience, let's assume that A2 for an integerl and index the bitsy as
aj = ayi-1)+j fori, j = 1,..., 4. Other cases can be adapted quite straightforwardly.

First the parties computex], = Vj‘:l[a.-,j]p fori = 1,...,4in parallel by using unbounded
fan-in Or where the size of problems.snstead off. Then the parties compute similarly], =
Vik:l[xk]p fori =1,...,4in parallel. Now we can notice thgt = 1 iff some blocKay 1,. .., &}
with i” <i contains &y j = 1.

Next, the parties setf{], = [xi]p, and fori = 2,...,4, set [fi], = [yilp — [Vi-1]p- Now we
can notice thaf; = 1 iff {g;1,...,a 4} is the first block containing &;; = 1. Letig be such that
fi, = 1. The parties can computfi, 1]p, - - - » [&,.1]p} BY [@i.]p = 2ty filp X [a&.j]p in parallel
without revealingo.

Next, the parties comput@i, 1]p. - - -, [Bi,.1] p} Whereb; j = \/lj(:laio,k by using unbounded fan-

0, ]
in Or in parallel.

Finally, the parties se], = [yi]p — [fi]p. Thens = 1iffi > io. If we index the bits of Prefix-
Or by asb;; = byi-1)+j as we did fora, the Prefix-Or can be computed &g], = [bag-1)+jlp =
[bilp = [filp x [biyj]p + [S]p in the end.

When we use several invocations of unbounded fan-in Or, all the necessary random values in
unbounded fan-in Or can be generated in the first 2 rounds. Therefore, the total complexity is 7
rounds (including 2 rounds for random value generation) arfdiribcations! Similarly the

Prefix-And can also be computed by using the same technique.

*1 The evaluation in [DFK-06] is 17 rounds and 20nvocations by generating random values on demand.
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3.3.5.5 Bitwise Less-Than

Given two bitwise sharingsalg and p]g, the parties can compute [< b], without revealing

(a < b) itself. The basic idea is the same as the circuit for the millionaire’s problem. We will give
an outline of this subprotocol based on the description in [BE.

ForO<i < ¢-1, the parties compute], = [a®bi]p = [ai] +[bi]p—2[a k], in parallel and then
compute ], = V{Z{[cj]p by using Prefix-Or, and setp = [di - dis1]p where Br-1]p = [dr-1]p.
Finally, the parties computaf< b], = Y -5([&]p x [bi]p) in parallel.

The complexity of computing each component is as follows: 1 round amgbcations forc;’s,

7 rounds and 17invocations for the Prefix-Or, and 1 round afiéhvocations fory -3 ([e]p %
[bi]p). Becausec’s can be computed in parallel with random value generation in the Prefix-
Or, the total complexity is 8 rounds (including 2 rounds for random value generation) @nd 19
invocations. We usea[ <g b], in order to stress that andb are bitwise-shared. Note thathf
is known, the complexity is 7 rounds (including 2 rounds for random value generation) &nd 17

invocations by saving the invocations fQis andzf:‘&([e.] o X [bi]p)-

3.3.5.6 Joint Random Number Bitwise-Sharing

The parties can bitwise-share a uniformly random, unknown numisrch that 0< r =
Zf;& 2'r; < pas follows: The parties generate each bitek {0, 1j]pforO<i < - 1in parallel,
compute f <g p]p by using the bitwise less-than protocol and reveat (). If r > p, the parties
retry.

The complexity of computing each component is as follows: 2 rounds ama/@cations for
ri's and 7 rounds and Y7nvocations for the bitwise less-than protocol (note thas known).
Becausei’s can be generated in parallel with random value generation in the Prefix-Or of the
bitwise less-than protocol, the complexity is 7 rounds anflid@cations. As in [DFK-06], we
assume that at least one of four generated candidates is legs @éimaithe amortized complexity
is 7 rounds (including 2 rounds for random value generation) afichv6cations. We denote this

subprotocol asf[er Zp]g.
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3.3.5.7 Bitwise Sum
Given two bitwise sharingsa[g = {[ar-1]p, - .., [a0]p} and ] = {[b-1]p, . . .. [bo] o}, the parties
can compute the bitwise sharind]§ = {[d/]p, - ... [do]p} such thatd = a + b over the integers
(not mod p). By using the method of [CFL83Db], the bitwise sum protocol can be performed in
constant rounds (see [DRK6] for the details).

Based on [DFK-06] (see unbounded fan-in carry propagation in Sect. 6.4), the complexity of
the bitwise sum protocol is evaluated as follows: If the Prefix-And is computedwabinds and
y X ¢ invocations, the complexity of the bitwise sum protocol is upper boundedoy 2 + 1
rounds and (3(+ 6) + 1)¢log, ¢ invocations. Assuming that all the random values are generated
in the first 2 rounds and that the complexity of the Prefix-And is 5 rounds (not including 2 rounds
for random value generation) andélifvocations, the total complexity is 15 rounds (including 2
rounds for random value generation) and W, ¢ invocations 2

We denote this subprotocol adj§ = [a]g + [b]s.

3.4 Existing Protocols [DFK+06, STO6]

Damgarcet al.[DFK+06] have shown a novel technique to convetpfinto [a]g. This technique

is called the bit-decomposition protocol (Fig. 3.1). Note that we can obahirfiom [a]g easily

by computing 8], = Zfz‘(} 2‘[a]p mod p. Also, Schoenmakers and Tuyls [ST06] have proposed
a similar bit-decomposition protocol (call8&ITREP gate) in the context of multiparty computa-
tion [CDNO1, DNO3] based on threshold additively-homomorphic cryptosystems.

The complexity of computing each component in [DFI6] is as follows: 7 rounds (includ-
ing 2 rounds for random value generation) and #ocations for f er Zp]g, 13 rounds and
47tlog, ¢ invocations for {l]g (bitwise sum), 5 rounds and 4nvocations for {,, that is,

[d <g p]p, and 13 rounds and 4Tog, ¢ invocations for fijg (bitwise sum). The total complexity
is 38 rounds (including 2 rounds for random value generation) atid 98¢ log, ¢ invocations.

By using the bit-decomposition protocol, any bit-oriented operation can be performed in arith-

*2 The evaluation in [DFK-06] is 37 rounds and 330g, ¢ invocations by generating random values on demand.
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The parties converg], into [a]g.

1. The parties generatg]g and obtain [], eventually.

2. The parties compute]|, = [a], — [r]pand reveat =a—-r modp € {0,1,...,p-1}.

3. The parties computé]g = [r]g + [C]g = {[d(]p. - - -, [do] p}-

4. Note thatd can be represented ds- a+ gpwhereq € {0, 1}. The parties can compute the
bitgasfdlp =[p<d], =1-[d <g p]p.

5. Considerg = (2 — gp) mod Z and its bitwise sharinggls = {[Qr-1]p,---,[Tolp}. Let
(fr_1, ..., fo)2 be the bit representation of 2 p such that 2— p = /-3 2'f; and f; € {0, 1.
Then the parties can computgig by [0i]p = fi[q]pforO<i < ¢{-1becausg=0ifq=0
andg =2’ - pif q=1.

6. The parties now have the two following bitwise sharingks | [a+qplg and [g]s = [(2° -

qp) mod Z]g. Therefore, the parties can computgs[= [d]g + [g]g Whereh = a + g2°.

7. By discarding the sharind\f], from [h]g, they can obtaind]g.

Figure. 3.1 Bit-Decomposition [DFK06]

metic circuits where inputs are given as polynomial sharings (rather than bitwise sharings) of
elements irZ,,.

However, the bit-decomposition protocol is not cheap, so we try to construct a simplified bit-
decomposition protocol and construct mofieogent protocols for interval tests, equality tests, and

comparisons without relying on the bit-decomposition protocol.

3.5 Simplified Bit-Decomposition Protocol

In the original bit-decomposition protocol, we need 2 invocations of the bitwise sum protocol (in
Steps 3 and 6 in Fig. 3.1). We can notice that the first invocationdigr¢dan be eliminated by
changing the way in which we compuig | based on the following observation.

In Step 4 of the original protocol, the parties compufie = 1-[d <g p], whered =r +c, cis

public, andr is bitwise-shared. Therefore, the conditioth,< p) can be changed into & p — c).
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The parties converg], into [a]g.

1. The parties generatg]§ and obtain [], eventually.

2. The parties compute], = [a], — [r]p and reveat = a—r modp € {0,1,...,p - 1}. If
c = 0, the parties are successfully done becatiggi$ equal to §]g by a coincidence.

3. If ¢ # 0, next, the parties compute the Qjt[g]lp, = [p<r+c]p=1-[r <g p—c], by
using the bitwise less-than protocol.

4. Note thatcan be representedas- c+r—qpover the integers wherge {0, 1}. Therefore,

we also have 2-a = 2/ +c—qp+r over the integers. Considgr= (2 +c—qp) mod Z and

=)

its bitwise sharing@s = {[@r_1]p.- - -, [Golp)- Let (Fr1,..., To)2 be the bit representatio

of 20 + c— psuchthat 2+ c- p = X3 2'f and fi € {0,1}. Also, let (f/_,, ..., f})2 be
the bit representation af such thatc = zf;g 2‘f~i’ and fT’ € {0,1}. Then the parties ca

=)

compute §]g by [Glp = (fi — F)Idlp + f/ for 0 < i < ¢~ 1 becaus@ = cif q = 0 and
g=2+c-pifg=1.
5. The parties now have the two following bitwise sharing$g [and gl = [(2f + ¢ -

gp) mod Z]g. Therefore, the parties can computs] = [r]g + [J]g Whereh = a + 2.

6. By discarding the sharind\{], from [h]g, they can obtaind]s.

Figure. 3.2 Simplified Bit-Decomposition

The parties haver[g andp — c is public, so f < p — ¢) can be computed by using the bitwise
less-than protocol without computind]g = [r]s + [C]s, thus eliminating one invocation of the
bitwise sum protocol.

Since we have eliminatedi]z, we need to specify how to computa]§ in the rest of the
protocol. Fortunately, we can usg4 itself to compute &]g by using the bitwise sum protocol.

The simplified bit-decomposition protocol is given in Fig. 3.2.

3.5.1 Complexity of Bit-Decomposition Protocol

The complexity of computing each component is as follows: 7 rounds (including 2 rounds for

random value generation) and{7@vocations for f €r Zp]g, 5 rounds and ¥7invocations for
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[d]p, thatis, f <g p—Cc],, and 13 rounds and 4Tog, ¢ invocations for b]z. The total complexity

is 25 rounds (including 2 rounds for random value generation) atid- 93¢ log, ¢ invocations.

3.6 Proposed Protocols Without Bit-Decomposition

3.6.1 Interval Test Protocol

In the interval test protocol, given public constaotsc, € Z, (wherec; < ¢;) and shared secret
a € Zy, the parties compute] < a < c;], without revealing ¢, < a < ¢y) itself,

If the parties use the bit-decomposition protocol, the parties comp]gdrpm [a], and com-
pute [c; < a< ]y =[C1 <g a]p X [a <g C2]p.

The basic idea of our construction is as follows: We randomaizgc = a+r and reveat where
r is a bitwise-shared random secret. We obtain an appropriate integyat fign] from c, ¢, and
c;. Then computingd; < a < ¢;] is reduced to checking whetherexists in the appropriate

intervalrigy < < rpign (for example, see Fig. 3.3) by the bitwise less-than protocol.

3.6.1.1 Procedure
The parties generate [eg Zy]g and obtain ], eventually. Next, the parties compuig | =
[a]lp +[r]pand reveat =a+r modpe {0,1,..., p—1}. Atthis point, no information aboutis
leaked fromc because is uniformly random and unknown to the parties. Now we can think that
ae{-(p-c-1),...,-1,0,1,...,c—1,c} because € {0,1,...,p—1}.

First, we consider the case whare < ¢ < ¢, does not hold. When, < c (see Fig. 3.3),

obviously, we haveq; < a < ¢p) = 1if (fow =)C—C2 < I < C—Cy(= rnign). Similarly, whenc < ¢;

(see Fig. 3.4), iffjlow =)C+ p—C2 < I < C+ P — Ci(= rhigh), we have-(p—c1) < a < —(p - Cy).
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This means thattf < a < ¢;) = 1. Therefore, the parties compute, by using the bitwise less-than

protocol,

[c1 <a<C]p =[riow <g I]p X [l <B Ihighlp-

Next, we consider the case whare < ¢ < ¢, holds (see Fig. 3.5). In this case, o, =
)C—C—1<7r1 <C+p-C+ 1(= rhgn), we have—(p - ¢3) < a < ¢;. This means that

(¢, < a< ) =0. Therefore, the parties compute
[Mlow < T <Thighlp=[C—C1—1<gr]px[r<gC+p-C+1]p
by using the bitwise less-than protocol and set

[c1 <a<c]p=1—[row <T <Thigh]p.

3.6.1.2 Complexity of Interval Test Protocol

If we use the bit-decomposition protocol straightforwardly, the complexity of computing each
component is as follows: 38 rounds (including 2 rounds for random value generation)&nd 93
94¢log, ¢ invocations for §]g, 5 rounds and (17x 2) invocations for §; <g a], and fa <g ¢7]p,

and 1 round and 1 invocation foc,[ <g a], x [a <g Cy]p. The total complexity is 44 rounds

(including 2 rounds for random value generation) andf:294¢ log, ¢ + 1 invocations.
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On the other hand, in our construction, the complexity of computing each component is as
follows: 7 rounds (including 2 rounds for random value generation) adignv6cations for f eg
Zp]g, 5 rounds and (17x 2) invocations for fow <p r]p and [ <g rnign]p, and 1 round and 1
invocation for fow <g rlp X [I <g rhign] p- The total complexity is 13 rounds (including 2 rounds

for random value generation) and ¥101 invocations.

3.6.2 LSB Protocol for Special Case of Interval Test Protocol

In order to construct our comparison protocol later, we consider compLaingg]p. Though
it is possible for us to use the technique in Sect. 3.6.1, we compute §], more dficiently
by using special properties (gfand apply this subprotocol (called the LSB protocol here) to our

comparison protocol. By a simple observation, we can notice that

ae{O,l,...,p%l}@(Zamodp)O:O,

and that

+1,....,p-1} e (2amodp)y =1

where §)o is the least significant bit (LSB) of € {0,1,...,p - 1}. Thatis, ifa < g no wrap-
around modulg occurs when @ mod p is computed and@&mod p is even. On the other hand,
if a > g a wrap-around modulp occurs when & mod p is computed and@mod p is odd.
Therefore, if we can computex)p], from [X],, we can use it to compute K g] p-

To compute [K)o]p from [X]p, we randomizex by ¢ = x + r and reveat wherer is a bitwise-

shared random secret. Then we can obtafy]f, from (c)o and [()o] p.

3.6.2.1 Procedure

The parties want to computexjo], from [X],. The parties generate [egr Zp]g and obtain
[r]p eventually. Next, the parties computel { = [X]p + [r]p and reveakc = x +r modp €

{0,1,..., p—1}. If nowrap-around modulp occurs whertis computed, we have)p = (€)o®(r)o

and if a wrap-around modulp occurs whert is computed, we have(y = 1 — {(C)o @ (r)o}. Fur-
thermore, we can use K r) to know whether or not a wrap-around modyd@ccurred wherc

was computed. That is, it(< r) = 0, it means that no wrap-around modyd@ccurred, and if
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(c <r) =1, it means that a wrap-around modyl@ccurred becausec {0,1,...,p— 1}.

From these facts, the parties can computy]} as
[(X)olp = [c < I]p X (1= {(C)o ®[(r)o]p}) + (1 - [C < r]p) X {(C)o ® [(r)o] p}
=[c<g r]p +{(Co ® [(No]p} — 2[c <g ITp X {(C)o ® [(No] p}- (3.1)
The interpretation of Eq. (3.1) is that i &g r) = 1, we have (£ {(c)o @ [(r)o]o}) and otherwise
we have{(c)o @ [(r)o] p}. Because is public, note thatd)o @ [(r)o], can be computed as
[(r)olp if (C)o=0
1-[(Nolp if(Cho=1.

Also note that the parties already have{], because is generated byr[er Zp]g.

(©o @ [(r)o]p =

By using the LSB protocol, the parties can compuaie [g’]p from [a], as

[a < 21p = 1~ (220l

3.6.2.2 Complexity of LSB Protocol

The complexity of computing each component is as follows: 7 rounds (including 2 rounds for
random value generation) and{7@vocations for f €r Zp]g, 5 rounds and ¥7invocations for

[c <g I']p, and 1 round and 1 invocation fat kg r]p % [(r)o] p- The total complexity is 13 rounds

(including 2 rounds for random value generation) and-93 invocations.

3.6.3 Comparison Protocol

In the comparison protocol, given two shared seceels € Z, the parties computea[< b,
without revealing & < b) itself. For example, we can compute [max{)], = [a], + [a <
b]p x [b - a]p by using the comparison protocol.

If the parties use the bit-decomposition protocol, the parties compjgeapd b]g from [a],
and ], and computed <g b], as in [DFK+06].

It seems diicult for us to comparea andb directly without using the bit-decomposition proto-
col. Therefore, we compageandb indirectly via the value og by computing & < %’] o [0 < Lz’] P

and a—bmodp < 5]p.
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Table. 3.2 Truth Table fora(< b)

w=(@a<p/2) | x=(b<p/2) | y=(@-bmodp<p/2) || z=(a<b)

*

R |, |O|O|O|F
R |, |O|O|F, | O
| O |k | O

O|Fr,r | Ok |O|PF

3.6.3.1 Procedure
By a simple observation, we can notice that< b) is determined fromg < g), (b < g), and
(@a—-bmodp< g). This observation can be confirmed by the truth table (Table 3.2).

When we denotea(< 5), (b < §), (a—bmod p < ), and & < b) asw, x, y, andzrespectively,

thenzis represented as
Z= WXV WXy V WXy
=W1-X)+1-w)(1-x)2-y)+wx1-Y)
=W(X+Y—2xy)+1—-y—X+Xy. (3.2)

Therefore, if the parties can compug & 5],.[b < 5]p, and p— bmodp < ], they can
compute & < b], from Eq. (3.2) by using addition and the multiplication protocol. We can use

the LSB protocol to compute all three of these values.

3.6.3.2 Complexity of Comparison Protocol

If we use the bit-decomposition protocol straightforwardly, the complexity of computing each
component is as follows: 38 rounds (including 2 rounds for random value generation)>and 2
(93¢ + 94¢log, ¢) invocations for §g and p]g and 6 rounds and ¥d9nvocations for & <g b],.

The total complexity is 44 rounds (including 2 rounds for random value generation) afid-205

18&log, ¢ invocations.
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On the other hand, in our construction, the complexity of computing each component is as
follows: 13 rounds (including 2 rounds for random value generation) an@3f + 1) invocations
for [a < 5]p, [b < $]p, and B —bmodp < %], and 2 rounds and 2 invocations for Eq. (3.2).
The total complexity is 15 rounds (including 2 rounds for random value generation) afid 579

invocations.

3.6.4 Equality Test Protocol

In the equality test protocol, given two shared seceets € Z,, the parties computea[= b],
without revealing & = b) itself.

Becaused = b], can be computed by[- b = 0],, we focus on computinga[= 0]p.

If the parties use the bit-decomposition protocol, the parties comglgérpm [d], = [a— b,
and compute/{fz‘g(l — d;)]p by using an unbounded fan-in And as in [D¥66]. In the secret
sharing setting, it is also possible to use secure exponentiatio®], = 1 - [d] p_l asin [CDO01]
but this require®(log, p) rounds. In [BB89], the equality test protocol called normalization was
proposed to compute extended inverses, but it req@i¢pd) invocations and it will be impractical
for largep.

In our construction, we use a very simple observation that the randomizétiah+ r) of d is

equal tor if dis zero.

3.6.4.1 Procedure

First the parties generate ¢r Z,]g and obtain f], eventually. Next, the parties computd{ =
[a]lp + [r]p and reveak = a+r modp € {0,1,...,p— 1}. We can note that = r iff a = O.
Therefore, the parties compute whether all bits afe the same as]g. Let (C,-1, ..., Cg)2 be the

bit representation of. Then the parties computeJ,forO<i<¢-1as

, [ri]p if c=1
[c]p =
1-[ri]p, ifci=0.
We can note that] € {0,1} and thatc! = 1 iff ¢; = r;. Finally, the parties computa[= 0], as

[AfZ3¢]p by using an unbounded fan-in And.
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3.6.4.2 Complexity of Equality Test Protocol
If we use the bit-decomposition protocol straightforwardly, the complexity of computing each
component is as follows: 38 rounds (including 2 rounds for random value generation) &nd 93
94¢log, ¢ invocations for @]z and 1 rounds and¢{5invocations for [\i":‘ol(l — d)]p.- The total
complexity is 39 rounds (including 2 rounds for random value generation) afigt 98¢1og, ¢
invocations.

On the other hand, in our construction, the complexity of computing each component is as
follows: 7 rounds (including 2 rounds for random value generation) addni®cations for f]g
and 1 rounds and¢sinvocations for [\fz‘gc{]p. The total complexity is 8 rounds (including 2
rounds for random value generation) and 8ivocations.

3.6.5 Probabilistic Equality Test Protocol

We consider another version of the equality test protocol with a very small round complexity.
We focus on computinga[ = 0], again. In our construction, we assume tpat 3 mod 4 or

p = 5mod 8. These imply that Legendre sym()q}) =-1if p=3mod 4 and tha(t%) =—1if

p = 5mod 8. The basic idea is based on the property of quadratic residues as follaws:alf
zero, we always ha\,(%) = (%) wherec = a+r, r is arandom secret amds a revealed value. H

is not a zero, we ha\,(e%) 2 (%) with non-negligible probability. By checking wheti‘(eg) = (%)
secretly with sfficiently many trials, we can perform the equality tesiaan a probabilistic way.

Here note that we need to generate random sedned special way to compu(%) secretly.

3.6.5.1 Procedure
First we describe the case pf = 3 mod 4. The case gb = 5 mod 8 can be obtained quite
straightforwardly as we mention later.

The parties generat®j[ er {-1, 1}]p, [rj €r Zp]p, and [] €Rr Zp]p for 1 < j < kin parallel
wherek is chosen such that the error probabi(i%)k is negligible. The valu®; can be generated

by a joint random bit sharing. Next, the parties compute far 1< k in parallel,
[cilp = [a]p x [ri]p + [bj]p x [Fi]p X [Fi]p
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and reveal all the;’'s. Note thatb,-r]2 is uniformly random and unknown to the parties, so no
information about is leaked fronc;.

Actually we can confirm the probabilities as follows:

Prlojr}? = 0] = Prfr; = 0] =

Pr[b,-r]2 =y] = Prlbj = 1] X Prfr{ = £y] = 5 X if yis a quadratic residue;

NI
P Slk Tlk

N N

Pr[bjr]2 =yl =Prlb; = -1] x Prrj = + V-y] = % X o = o if yis a quadratic nonresidue

Also note that ifa = 0, ar; is always a zero and thataf+ 0, ar; is uniformly random.
If c; is a zero, the parties discard thegand retry. The probability that; happens to be a zero
is % and negligible in the practical setting (e.g.> 2%?).

Assuming that; is not a zero, we can notice that

Cj bjriz .
a=0= (6) = Y = b; with prob. 1 and that

Cj . 1
a+0= (BJ) = bj with prob. 5.

The case of = 0 is obvious. Whem # 0, ¢; is uniformly random whethds; is -1 or 1 because
arj is uniformly random, so the probability th{a%) =Db;is %

Then the parties compute for<l j < k,
27 (bl +1) i (C—pi) =1

[Xj]p = .
—27([blp-1) if (2)=-1

Note thatx; € {0, 1} and thatx; = 1 iff(%) = b;. Finally, the parties computa [ 0], = [/\'j‘zlx,-]IO
by using an unbounded fan-in And, assuming that at least orgsa$ O if a # 0 with suficiently
largek.

The error probability thatg = 0) = 1 whena # O is (%)k and it can be negligible if we use
suficiently largek.

Similarly, whenp = 5 mod 8, the parties compute and reveal far 1 < k

L . /.12
cj = arj + bjr;

mod p
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instead ofc; = ar; + bjri> mod p whereb; = ~27}(b; - 3).
Note thath g {2, 1} becausé; €r {~1,1}. Therefore, noting tha(t%) = -1, we can notice
that
C. /1’2
a=0= (6') = (J—pj) = b; with prob. 1 and that

Cj : 1
az0= (BJ) = bj with prob.é.

The rest of computation can be done as we diddfer 3 mod 4.
Though we assumed, for simplicity, that= 3 mod 4 or thatp = 5 mod 8, actually we can

extend the idea to adapt to arbitrary primes if we gendsats {y, 1} such tha(%) = -1

3.6.5.2 Quadratic Residuosity Test Protocol
Incidentally, by using the random sectqtj2 in Sect. 3.6.5.1, we can also construct a quadratic
residuosity test protocol where, givem¢ Z;]p, the parties can computéﬁ)] p as follows:

Here we assume that= 3 mod 4 for simplicity. The parties generateq], in the same way

asb,—rj2 is generated in Sect. 3.6.5.1, and reveal br?a. If cis a zero, the parties retry. The
parties can computﬁ)]p as(%) [b]p becausé%) = (%) (é‘p) = b(%)

3.6.5.3 Complexity of Probabilistic Equality Test Protocol

The complexity of computing each component is as follows: 3 rounds (including 2 rounds for
random value generation) and vocations for €;],’s and 1 rounds andkbinvocations for
[/\'J.‘:lxj] p- The total complexity is 4 rounds (including 2 rounds for random value generation) and

12k invocations.

3.6.5.4 Slight Improvement
We can utilize the theorem of [Per52] used in [Tof07] and slightly improve flieiency of our
probabilistic equality test protocol by computing]f, asc; = a+ b,-r]2 instead ofc; = arj + bjrgz.
Therefore, we need k(Gnvocations instead of ¥n total.

This follows from the Perron’s theorem below about the distribution property of quadratic
residues. Based on this property, we still have that the probability(%)it: bj is roughly%

whenc; = a+ b;ri? anda # 0.
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Theorem 2 ([Per52, Bau02]) i. Let p = 4k — 1. Letrq,ro,...,rx be the2k quadratic
residues modul@ with O and leta be a non-zero number. Then among gkenumbers
{r1 +a,...,rx+ a}, there arek quadratic residues (possibly includif@y andk quadratic
nonresidues.

ii. Letp=4k—1. Letns, ny,...,Nx 1 be the2k — 1 quadratic nonresidues modufmand let
a be a non-zero number. Then among &ke- 1 numbergn; + a,...,Nx_1 + a}, there are
k quadratic residues (possibly includify andk — 1 quadratic nonresidues.

iii. Let p=4k+ 1. Letry,...,rx be thezk + 1 quadratic residues modulp with 0 and
let a be a quadratic residue. Then among tAle+ 1 numbers{r; + a,...,rx1 + a},
there arek + 1 quadratic residues (includin@) and k quadratic nonresidues. ki is a
guadratic nonresidue, there akequadratic residues (not includin@ andk + 1 quadratic
nonresidues.

iv. Letp = 4k + 1. Letny,...,nyx be the2k quadratic residues modulp and leta be a
guadratic residue. Then among tBenumbergn; + a,. .., ny + a}, there arek quadratic
residues (not includin@) and k quadratic nonresidues. H is a quadratic nonresidue,

there arek + 1 quadratic residues (includin@) andk — 1 quadratic nonresidues.

3.6.6 Application of Equality Test Protocol

We consider private multiparty look-up tables (mLUT) [AC06, FGMOQ7] as an application of our
equality test protocols and show how otfi@ent equality test protocols can contribute to provid-
ing one possible realization of private mLUT.

The functionality of private mLUT is as follows: parties have an array of shared secrets
([a1] p [@2]p. - - - » [ak] p) @and a shared index, and compute the output shariray] .

The private mLUT is an important building block for secure protocols of private distributed
constraint satisfaction problems [NZ05] and private stable matching problems [Gol06, FGMQ7b].
In [FGMOQ7], the technique callechultiparty oblivious transfewas developed, which is a gener-

alization of Naor-Nissim indirect indexing [NNO1]. On the other hand, in [AC06], the equality
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test protocol is used and the output shariag | can be computed as

k
D li=alpx[al
i=1

where our equality test protocols can be used because of the attractive property that the output:
are also shared. In this case, the equality test protocol can be executed in parallel, so our round

efficient probabilistic and deterministic protocols can realize roufidient private mLUT.

3.7 Implementation

In the real implementation, we can use (odd-even) parallel prefix computation [LF80, JAO3] based
on carry propagation and generation for the bitwise less-than and bitwise sum protocols as in
[BDJ+06, FJO6, Tof05] where the complexity of bitwise less-than is roughiyi@y,(¢) rounds

and ¥ -1 invocations (2- 1 invocations if one of the two operands is known) and the complexity

of bitwise sum is roughly 2 log¢) — 1 rounds and &- 2 log,(¢) — 4 invocations (4 - 2 log,(¢) — 4
invocations if one of the two operands is known). Also, instead of joint random number sharing,
we can use non-interactive pseudo-random secret sharing by Cramer, Damgard and Ishai [CDI05
in the secret sharing setting in order to reduce the round and communication complexities. In Table
3.3, we summarize the number of invocations of main subprotocols in each protocol. Whether
we use constant-round subprotocols or non-constant-round subprotocols as building blocks, out
constructions are mordfeient according to Table 3.3. Though, in the comparison protocol, we
need 3 invocations of joint random number bitwise-sharing compared with 2 in {DBK this

can be done in advance and our protocol seems more advantageous in real applications.
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Table. 3.3 Number of Invocations of Subprotocols

Protocol Random Bitwise-Sharing Bitwise Less-Than| Bitwise Sum
Bit-Decomposition| [DFK+06] 1 1 2
Proposed 1 1 1
Interval Test [DFK+06] 1 3 2
Proposed 1 2 0
Comparison [DFK+06] 2 3 4
Proposed 3 3 0
Equality Test [DFK+06] 1 1 2
Proposedl 1 0 0
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Chapter 4

Multiparty Computation for
Distributed Key Generation of Palllier

Cryptosystem

In this chapter, we focus on the distributed key generation (DKG) protocol for the Paillier
cryptosystem [Pai99]. The threshold Paillier cryptosystem is a typical threshold homomorphic
cryptosystem (THC) used for multiparty computation (MPC). A special type of RSA modulus
([RSAT8]) is necessary for the threshold Paillier cryptosystem and often such an RSA modulus
is assumed to be given by a trusted dealer (i.e., authority) that also distributes the shares of the
decryption key.

In order to remove such a trusted dealer, again we can make use of multiparty computation
based on secret sharing. There are several known techniques used for generating an RSA modulus
in a distributed way and we show how such techniques can be combined and adapted to the setting
of the threshold Paillier cryptosystem without a trusted dealer. The results in this chapter were

unpublished results due to the author.
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4.1 Introduction

Many MPC protocols using THCs are Paillier-based construnctions (e.g., [CDNOL@BEFP
DNO3, HNO5, HNO6, ST06, Gol06, FGMO7b]). Therefore, the DKG protocol for the threshold
Paillier cryptosystem is one of the most important applications of MPC because we can remove
the trusted dealer and it is the main purpose of MPC.

Related Work. The DKG protocol (e.g., [Ped91]) for discrete-log based cryptosystems (e.g.,
[EIG85]) is relatively easy and simple. However, the DKG protocol for RSA-based cryptosystems
is a non-trivial task. Boneh and Franklin [BF97] proposed the first DKG protocol for the RSA
cryptosystem. Unfortunately it cannot be applied to the threshold RSA cryptosystem [Sho0QO0]
because for a technical reason the RSA modulus for [Sho00] must be a special type of RSA mod-
ulus that is a product of two large safe primes where a pg@e2p’ + 1) is a safe prime ip’

is also a prime. For the same technical reason, the threshold Paillier cryptosystem [FPS00] alsc
needs an RSA modulus that is a product of two safe primes. Damgard and Koprowski [DK01]
proposed how to use an RSA modulus that is not a product of two safe primes in order to relax
the condition, but the security proofs of their scheme were based on the non-standard complexity
assumption. On the other hand, Fouque and Stern [FS01] proposed how to use an RSA modulu
that is not a product of two safe primes and the security proofs of their scheme were based solely
on the standard complexity assumption. Algesheimer, Camenisch, and Shoup [ACS02] proposec
a novel DKG protocol that can generate such a special type of RSA modulus directly. However,
finding safe primes can be very time-consuming and we are not aware whether there are infinitely
many safe primes, so it will be more flexible for us to be able to use a wider class of RSA moduli
as in [FS01]. Damgard and Jurik proposed a generalized Paillier cryptosystem [DJ01] and anothet
homomorphic cryptosystem [DJO3] that can be considered as a mix of EIGamal and Paillier cryp-
tosystems and both the threshold versions of [DJO1, DJO3] need RSA moduli that are products
of two safe primes. One advantage of [DJO3] over the Paillier cryptosystem is that because the
secret key of [DJO3] can be generated at random without the knowledge of the factors of the RSA

modulus, the RSA modulus can be system-wide and reused by any set of parties that performs
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MPC. Our distributed sieving protocol is applicable to both [DJ01] and [DJ03]. Damgard and
Dupont [DDO5] proposed how to use general RSA moduli for threshold RSA signatures with the
observation that resultant signatures can be verified with the public key after they are generated
from signature shares even if an adversary has a non-negligible chance of giving acceptable proofs
for bad signature shares. However, the technique in [DDO5] requires that we can recognize that
the threshold signature generation or threshold decryption is done correctly and the techinique
will not be applied to the context of our threshold decryption in the worst case because we may
not be able to recognize the correct subset of decryption shares in das€ dfather thart < 3)
wheren is the number of parties arids the number of parties the adversary can corrupt. Also,
our distributed sieving protocol will still be useful for [DD05] because it can guarantee'i}ﬁat
andq;z1 do not contain small factors wheke= pgis the RSA modulus and identify faulty parties
by making the error probability of zero knowledge proofs small.

Building on [BF97, FS01, ACS02], we show how the techniques from [BF97, FS01, ACS02]
can be utilized to realize the threshold Paillier cryptosystem as well as the threshold RSA signature

scheme without a trusted dealer.

4.2 Building Blocks

In addition to the building blocks introduced in Chapter 3, we make use of the following.

4.2.1 Original Paillier Cryptosystem

First we describe the original Paillier cryptosystem, which is based oDeleesional Composite
Residuosity AssumptiogfdCRA). That is, the semantic security of this cryptosystem is based
on the dfficulty of distinguishingN-th residues from nomN-th residues. The encryption and

decryption processes are as follows.

e N = pq(RSA modulus). We assume the bit lengthpak the same as that of
e The public keyPK is a pair of (N, g) wherg = N + 1.
e The decryption key Kis A(N) = lcm(p— 1, q— 1) whered is called a Carmichael lambda

function.
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e Encryption:

Given a plaintexi € Zy, the ciphertext is
¢ = E(m, x) = g"xN mod N?

wherex € Zy, is a random number.
Note that
E(My, x1) X E(Mp, %) = E(my + My, X1%2) mod N2,

e Decryption:
L(c'™ modN?)

N
L(g'™) mod N2) mod

m= D(c) =

whereL(u) = %!, ue{u<N?|u=1modN}.

Note thatL-function is not a modular computation.

Proof of correctness: From the definition of Carmichagdlfunction,
AN?) = lem(p(p?), ¢(g?)) = lem(p(p — 1), a(g - 1)) = NA(N),

wherey is the Eulery function.

Because of the property of Carmichadunction, we have

v

xeZ XN = yNAN) = 9 modN2.

NZ2»

Therefore ™) = (gMxN)AN) = gMMN) ) NAN) = gMN) mod N2,
As a result, we have
N) 2
D(c) = L(c'™ mod N?)
L(g'™) mod N2)
~ L(@™™N modN?)
~ L(g*™) modN2)
L(1 + A(N)mN mod N?)
= g=N+1
L@+ AN modng) - 9=N+1)
_ A(N)mmodN
~ A(N) modN
= mmod N.
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Actually, we can use ang if the order ofg is a multiple ofN in Zy.. Here we can use the

specialg = N + 1 whose order is exactly in Zy. without degradation of security [DJO1].

4.2.2 Threshold Paillier Cryptosystem

The threshold Palillier cryptosystem was proposed in [FPS00], which uses the technique similar to
the threshold RSA signature scheme [Sho00]. The decryption scheme is fidsérdi from that
of the original Paillier cryptosystem. We describe the- (L, n) threshold Paillier cryptosystem

[FPS00] with a trusted dealer.

Key Generation and Distribution Phase:

1. The trusted dealer generates an RSA modilespgwherep andg are safe primes. That
is, p=2p’ +1, andq = 2q + 1 wherep’ andq’ are also prime, and gcd(¢(N)) = 1.

2. The dealer picks ug € Zj, at random, and computes the following values,
m=p'q, 6=mEmodN, A=nl.

Becausel(N?) = lem(e(p?), ¢(9?)) = 2Nm, note that

v

*

*on XN =1 modNZ

XeZ

3. The public keyPK and the decryption ke KarePK = (N, g, 6) andSK = gmwhere
g=N+1.
The ciphertext of a messag#/ is defined as = g™x" mod N? wherex € Z7, is random.
4. In order to share the decryption kB = gm, the dealer generates a polynomiakith &

chosen at random frof®, 1, ..., Nm- 1},
f(X) = BM+ arX+ ax + - - - + ax modNm

and sendd (i) to each partyP; (1 <i < n) through the secure channel.
Also the dealer picks up a random value Zj, and publishes the verification key&K
andVK;s as

VK =v=r2modN?,
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VK = A0 mod N2,
These verification keys are necessary for the parties to prove that the decryption procedure

is done correctly. For a technical reaset () is used instead off ) for VK;.

Decryption Phase:
Now the parties decrypt a ciphertext gMxN mod N? whereM is the plaintext.

1. Each partyP; publishesc; = ¢®f) mod N? by using its secret share, which we call the
partial decryption. Alsd?; publishes the zero knowledge proof fbfi)) = log, VK =
logua (Ci)?. We accept only the partial decryptions with the valid zero knowledge proofs.
The reason we usi(i) = logua(ci)? instead off (i) = loge ¢ is to make sure that we are
working in Q2 as in [Sho00]. The structure Q- is explained in Sect. 4.2.2.1.

2. By combiningt + 1 valid partial decryptions of the subsgbf the parties, we can obtain

M = L(n ¢ modN?) x mod N

ieS

4A29

wherey; = A x AG; € Z, andL(u) = 4.

Proof of correctness:

[T = ¢ 2ies 0

ieS
— C4A2ieSAf(i)/l§.i
— C4A2m8
= (gM XN)4A2mB
— g4A2mgM ( VX, X2Nm =1 mod N2)
=1+ 4A’2mBMN modN? (- g= N+ 1).
Therefore,

L(] | * modN?) = 4A’mBM = M x 4A% mod N.
ieS
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A and@ are public information. Thus, we have

= L(nc "' modN

ieS

O

Note that anyone can verify that the dealer published the coviiécs as follows. By combin-
ingt+ 1VK’s of any subse§, we can obtain
HVKu. rlvAzf(l)/lol _ VAZ(mg+kNm) _ r2A2(rr)8+kNm) — rzAZmB mod N2
ieS ieS
for some integek.

Therefore, by checking |fr€A m3)’\‘ 1 modN?, we can verify the correctness gK;’s.

4.2.2.1 Why we need two safe primes
In this threshold scheme, the dealer has to generate two safe primes. The reason can be explained

as follows similarly as in [Sho0Q]. We denote Q. the subgroup of squaresj,. That s,
Que = (XEZ", | ( ) 18& (X) 1)
2 = 2 — | =
§ N b q

Where(g) is the Legendre symbol. By the Chinese Remainder Theorem,

xpxq;xq Nm

Quil = .

Also, Qy: is cyclic. Actually, by choosingq, , such that
Gq. = 9p2 mod p? (where gy is a generator ofZ; )
Gq,, = géz modq® (where g IS a generator otZZz),

the order 0fGq,, is Nm and generateQyq.

Therefore, the number of the generator€g is

o(Nm) = o(papd) = (p-1)@-1)(p' - 1)@ - 1)

When the dealer picks up a random valueZyz, and computes = r2 mod N?, vis a generator of

Qnz with overwhelming probability?™™ | and therVK; = v*f® mod N? completely determines

—71-



f(i) modNm Thus, if the order oGq , does not contain small factors, the probability that the
party P; can publish the bad partial decryption with a valid zero knowledge proof by finidiing

such thav K; = VA0 = A0 and f (i) # f’(i) mod Nmis negligible. This condition is important

to prevent the parties from disrupting the decryption phase and to identify the faulty parties. On
the other hand, if the order @q,, contains a small factat and it happens thaf = 1 mod N?,
thenVK; = VAT = AUI0O+K) wherek is some integer. This means that instead @, f (i) + k&

can be used for publishing the bad partial decryption. That is why we need two safe primes to
guarantee that the order Gfy, , does not contain small factors and to make the error probability

of zero knowledge proofs small.

4.2.3 Secret Sharing over the Integers

In Sect. 3.3.1.1 of Chapter 3, we introduced a polynomial secret sharing scheme over a prime
finite field. Here we need a secret sharing scheme over the integers [GJKR96, FGMY97, Rab98],
which is a variant of [Sha79]. Typically this scheme is used in the setting where the modulus is
also a (shared) secret. We describe the1, n) secret sharing over the integers.

Suppose the dealer wants to share a secedt-M, M]. Then the dealer of the secret generates
a polynomial,

f(X) = AS+ a1X + apX + - - - + aX

whereA = nl, random values; eg [-KA?M, KA?M] andK = 2°® with security parameter
chosen such that/K is negligible.

Now we assume that the adversary has collettret shares of a substc {1,2,...,n}.
We prove that with high probability a polynomiglx) exists such that(0) = As'(# As), r(i) = f(i)
fori € S, and the cofficients ofr(x) are in the correct range. i{x) exists for each guess, then
the adversary cannot guess the correct secret.

We consider a polynomidd(x) such thah(0) = A(s— s') andh(i) = O fori € S’. h(x) can be
computed by Lagrange interpolation as

h(X) = Z h(i) a5, .

ieS'uU{0}
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Therefore, if we say’ = {iy,io,...,Iit}

(x—i1)(x—i2)--- (x—iy)
(0-i)(0—i2)---(0—iy)

h(x) = A(s—9)

The codficient of X' of h(X) is
A(s—-9) .
== [DB(‘”] '
Becausq | jcs (—]) dividesA, the codficient of X' is an integer. The cdicient is bounded (in
absolute value)
S As-) < A(s- g)(:) - —Ai(lsx_(fz T),“ < AY(s— §) < 20°M.
BcS',|Bl=i ) )
Note that if we say(x) = f(x) — h(x), thenr(0) = AS, r(i) = f(i) fori € S, the codicients of
r(x) are integers, and in the range(KA?M + 2A%2M), KA2M + 2A?M]. The probability that the
codficients ofr(x) will not be in the correct range is upper bounded by a union bound,

y 20°M 2t
KA2M ~ K

which is negligible ifK is sufficiently huge (sa) = 21%°) becaust is typically small. Therefore,
for each guess’, with high probability, there exists a valid polynomidk). Thus, the adversary
cannot guess the correct secret. The proof here is a variant of the proof in [Rab98].

We usually use the following modified polynomial,
f(X) = A(AS+ arX + @X2 + - - - + & X)

whereA = nl anda; eg [-KAZM, KAZM].
The advantage of using this polynomial is that all the sh&(g%s become the multiples aof.

When we reconstruat?s by

A?s= f(0) = Z £(i)A5,

ieS
1‘(i)/l§'i is an integer becauddi) is a multiple ofA and the denominator oﬁgi dividesA. There-
fore, the intermediate computation can be done over the integers, not including the rational num-
bers. Note that the reconstructed secret we have when a secret gitegbared over the integers

is A2sinstead ofs.
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4.2.4 BGW Protocol Modulo a Non Prime

In Sect. 3.3.2 in Chapter 3, we assumed that all arithmetic operations were performed modulo a
prime. However, it is also possible for the parties to run the BGW protocol modulo a non prime
M as mentioned in [BF97]. IM has no prime divisors smaller thanwvheren is the number of
all the parties, then the BGW protocol can be used in the same way as in Sect. 3.3.2 because th
denominators of the Lagrange ¢ieients can have the inverses modio

Running the BGW protocol modulel containing small factors needs a slight modification. In
our setting considered in Sect. 4.4.1, we have only to conditigrat is a prime smaller tham
For example, let’s considevl = 3. If n > M(= 3), we cannot use Shamir secret sharing modulo
M because we cannot have enough points in the filjgdHowever, we can handle such a case by
using Shamir secret sharing over an algebraic extension fiéig dfiat can contain more than

points.

4.2.5 Joint Random Invertible Number Sharing

This protocol is due to [BB89]. By using the joint random number sharing in Sect. 3.3.5.1, the
parties generate two random sharinglg, fand ], compute §r], and reveabkr. If sr # 0, then
the parties can obtain the sharing[wherer is a random invertible number. Otherwise, the
parties repeat the protocol. This protocol can also be used over the extensidtfield

If the computation is done modulo a non prirve the conditionsr # 0 is replaced with
gcd(sr, M) = 1 and if this condition holds, the parties can obtain a sharnihg yvherer is an
invertible element in the ring .

Alternatively, each partf?; can pick up an invertible elemente Zy, (orr; € Fy) and compute

[rIm = TTiLalrilm (Or 1]z, = [Tilalrile)-

4.3 DKG Protocol [BF97]

The protocols [BF97, FMY98, MWB99] describe how to generate an RSA modulus and share

the secret key in a distributed way. [MWB99] describes the implementation and optimization of
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[BF97] in detail. [FMY98] has added robustness to [BF97] in order to cope with any minority
of malicious parties. For simplicity, we focus on [BF97] and its RSA modulus generation part
and we do not inlcude the optimization used in [MWB99, FS01] in our description though it can
also be used for us. We also need these protocols to construct our threshold Paillier cryptosystem

without a trusted dealer.

4.3.1 High-Level Overview

In [BF97], the parties perform the following basic steps to compute an RSA molitupq.

1. Every partyP; exceptP; picks up randomK — log,(n) — 1)-bit secretgy andg; such that
pi = g = 0 mod 4. P; also picks up randonk(- log,(n) — 1)-bit secretsp; andq; such
thatp, = = 3 mod 4 and setp; = 2<% + pi, g1 = 21 + ¢;. Heren is the number of
the parties. Clearly, shared candidapes Y./, pi andq = Y., g arek-bit integers. The
distributions ofp andq are not uniform but as shown in [BF97], the distributions have at
least k — log,(n) — 1)-bits of entropy. We assume thais odd anch = 2¢ + 1 for some.
The protocol here is designed to berivate. That is, any subset 6fr less tharf parties
cannot reveal the factorization bf.

2. The parties agree on some large pri@hereP > 2% > N, and all arithmetic operations
are done modul®.

3. By using the BGW protocol [BGW88], theparties compute

n n
N'=pa=(pr+-+Pn) X (@+-+a) = > pix ) qGmodP
i=1 i=1

without revealingp andq. BecauséN < P, the parties can computis.
4. The parties perform biprimality test for checkingNfis a product of two primes in a

distributed way. If the test fails, the protocol is restarted.

Note that after the computation is done, the parties have additive shapesrad g over the

integers.
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4.3.2 Distributed Computation of RSA Modulus N by BGW Protocol

We see how the parties compute and pubhsk= (3 pi) x (3 g) by using the classical BGW
protocol in detail.

1. Each partyP; generates two randofdegree polynomial$, gi € Zp[X] such that
fi(X) = pi + @ X+ axXC +--- + a,x modP,
9i(X) = g + bix+byx® + - + b,x’ modP.
Also, P; generates a randonf-2legree polynomiah; € Zp[X] such that
hi(X) = 0+ Ci X+ CoX% + - - - + Cp X mod P,

Note thatfi(0) = pi, gi(0) = g;, andh;(0) = 0. hj(X) is necessary for randomization in the
BGW protocol.

2. P; computes the following values:

pij = fi(J), o =ai(j), hij=M(j) for j=1,....n

Pi sends the tripl€p; j, g j, hi;) to P; through the secure channel.

3. After receiving the above triple from other parti®scomputes

n n n
N; = [Z pj,i) [Z Qj,i] + Z hji modP,
=1 =1 =1
andP; publishesN;.

4. Now we consider the following polynimial,

n

a(X) = [Z f,-(x)] [Z g,-(x)] + > hj(x) modP.
=1 =1

j=1
Note thatN; = a(i), anda(0) = N. Becausex(X) is a Z-degree polynomial, and we have
n (= 2¢ + 1) shares, we can compute @daents ofa(x) by using Lagrange interpolation.
Thus, we can obtain
N =a(0) = > Nia§; modP
ieS
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whereS = {1,2,...,n}.

Note that if the parties do not publidty, the parties can have in the additive sharing by
computingN; 45,; locally without revealingN. Thatis,N = YL, s wheres = NiAg; and

s is a share foP;. That is, we can convert a polynomial sharing into an additive sharing
easily in this way. This technique is callpadly-to-sumFGMY97] and we will use this

conversion in Sect. 4.5.

4.3.3 Distributed Biprimality Test for N

Boneh and Franklin showed how the parties can chedkig a product of two primes without
revealingp andg. Their novel distributed biprimality test consists of two parts. Here we assume
thatp = g = 3 mod 4. This condition can be assured by havgick up the secretp; = q; =

3 mod 4, and all other parties pick up the secgts g = 0 mod 4.

Biprimality Test 1:

1. The parties agree on a randgna Zy; such that the Jacobi symt(q%) =1.

N-p;-gp+1

2. Py broadcasts; =g~ # — modN. All other parties broadcast = g—m mod N.

3. The parties compute and check if
0 N-p—g+1 ?
V= nvi =g 4+ =+1modN.
i=1

If v # +1, the parties declare thBtis not a product of two primes.

Note that ifN is a product of two primes, then

N-p-g+1 (pflzl(qfl) #(N)

V=g * =g =g+ modN.

Sketch of proof: Suppose andqg are distinct primes. Then,

[3)-(3) ¢ ()-»
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Because";—1 andq;z1 are odd (" p=q= 3 mod 4), we have,

a1

o optiat  (Q) 2 g)

s =(gz2)z == =|=] modp,
] ) (p) (p g
w e (g\7 (g

# =(g7)z =(=] =(=]moda.
? @) (CI) (CI) |

Thus, it follows thatg@ = +1 modN. Therefore, ifN is a product of two primed\ is always

accepted by the patrties.
WhenN is not a product of two primes, we consider two subgra@@ndH of Z;, such that

G=ix| (5)=1.

N-p-g+1
4

H={x| xeG & X = +1 modNj}.

Note thatH is a subgroup o&. If N is a product of two primes, we knolt = G as we have seen
above. IfN is not a product of two primes, we can pro¥ < ' by showing the existence of
an elemenk such thatx e G & x ¢ H. The more details can be found in [BF97]. Therefore, we
have at Ieasg witnesses irG to rejectN which is not a product of two primes. We can repeat the

biprimality test1 to obtain the desired security level. O

Biprimality Test 2:

The parties perform the additional biprimality test2 to cope with the spbicighere

N=pg p=rl q=rP, di>1 g=1modr®™

andr; andr, are primes.
In this special case, it may happen tiat G, and the parties may accdgtfalsely thoughN is
not a product of two primes. In order to reject such a spéddjale consider a groufiy and its
subgroupH’ such that

Tn = (Zn[X/0OC + 1))/ Zy,,

H ={x | xeTy & xPaD =1y

The parties perform the Fermat testlig as follows.
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1. The parties agree on a randbma Ty.
2. Py broadcastsi, = hN*Prratl Al other parties broadcast = hP*a,

3. The parties compute and check if

n
U= n U = RN+PHa+l _ [(p+1)(@E+1) 2 1
i=1

If u# 1, the parties declare thhltis not a product of two primes.

Sketch of proof: Similarly, suppose andq are distinct primes. Then the polynomig&l+ 1 has
no root inF, andF, because = g = 3 mod 4. Thereforef,[X]/(x* + 1) andFq[x]/(x* + 1) are
quadratic extensions &, andFg. It follows that the order of', = (Z[X]/(X* + 1)) /Zyis p+ 1.
This can be confirmed by

(Zp[X]/OC+1))]  pP-1
1Z)| S op-1 -

ITpl = p+1

Similary,|Tq4| = q + 1. By the Chinese Remainder Theorel, = T}, x Tq. Hence
TNl = [Tpl X [Tql = (P + 1)(@ + 1).

Thus,
"he Ty, h™ = h(P+D@+1) — 1

Therefore, ifN is a product of two primes\ is always accepted by the parties.

If N is not a product of two primes, we can prg¥€| < @ by showing the existence of an
elementx such thatx € Ty & x ¢ H’. The more details can be found in [BF97]. Therefore, we
have at Ieas% witnesses iy to rejectN which is not a product of two primes. We can repeat

the biprimality test2 to obtain the desired security level. O

4.4 Relaxing Condition on Safe Primes

As we have seen in Sect. 4.2.2, the dealer needs two safe primes to generate an RSA modulus
N = pq for the threshold Paillier cryptosystem. Thatp= 2p’ + 1,q = 290 + 1 wherep/,

andq’ are also primes. The reason we need safe primes is to @gkea cyclic group and have
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the suficiently large number of generators @\.. By choosing a generator for the verification
key VK, eachVK; can completely determine the party’s secret share, and prevent the party from
publishing the false decryption. FurthermoreNifis a product of two safe primes, an element
chosen at random froQy: is a generator with overwhelming probability.

However, as mentioned in [FSO1], we can observe that eygramdqg’ are not primesQy. can
be cyclic if gcd’,q") = 1. Also, by making sure thgl’ andq’ do not contain the prime factors
that are not more than af$igiently large sieving bound&, we can ensure that the number of the
generators irQy: is large.

We show how these conditions can be assured by our improvements to the protocols in [FSO1].

4.4.1 Our Improved Distributed Sieving Protocol for p" and ¢

The basic idea behind [FS01] is to make sure that
gcd(p - 1,4B) = gcd(2p',4B") = 2,
gcd@ - 1,4B") = gcd(y,4B') = 2

whereB’ = 3x5x 7x11x ---x B (a product of all the primes up to a sieving bous)d When
these conditions holdy andg do not contain the prime factors up Band it ensures that we
have many generators Q.. In [FS01], it is suggested th& > 2.

In [FS01], the parties compute and publish

T=(p-1)+4BR

over the integers by using the simplified version of the GCD protocol in [CGS00] wRiasea
random secret integer chosen appropriately. By computingTgdé), the parties can check if
gcd( — 1,4B’) = 2 holds. However, this leaks the informatipn- 1 mod 48'(= T mod 4B').
Even if we computd = (p— 1)R+ 4B'R by using the GCD protocol wheRRandR are random
secret integers chosen appropriately, it can happen that gigf() # 2 though gcdf—1,4B’) = 2
when gcdR, 4B’) # 1. Then the good candidagewill be rejected. We avoid such a problem by
combining the trial division protocol in [ACS02] and the BGW protocol modulo a non prime
[BF97].
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The parties perform the following steps for bgifandq. Here we describe only the casepf

At the beginning, the parties have the shares suchgtkal, pi.

Proposed Distributed Sieving Protocol for p” and (':

1. The parties can easily share

/_p_l_pl_l n&_ ’ \ /_n
P2 "2 7 2‘p1+Zpi‘;

i=2 i=2
wherep/ is each party’s additive share over the integers.

2. Write B" = Mg ]‘[ﬁ‘:1 M; whereMy has no prime factors smaller tharand eachM; is a
prime smaller tham.

3. In order to check if gcq(, 2) = 1, the parties can run the trial division protocol as follows.
Note that actuallyp’(= "%1) is odd becaus® = 3 mod 4, so the parties do not need to
check if gcdg’, 2) = 1. We describe the protocol here for completeness.

0 al Each partyP; reshares its shang over the appropriate extension fiélg by a poly-
nomial sharing as in Sect. 3.3.1.1. Here we can assume that each party is assigned a
unique point in the extension fieky. wheren < 2".

00 b0 The parties can shapg overF, as in Sect. 3.3.2 by adding all the shares sent by other
parties.

0 cO The parties reveal, which is equal tqg¢’ mod 2 andifitis O, it means that gqul(2) =
2 and the candidatgis discarded.

4. In order to check if gcqy{, Mop) = 1, the parties run the trial division protocol as follows:

0 ad Each partyP; reshares its shang’ modulo Mg by a polynomial sharing as in Sect.
3.3.1.1. Here we can simply assume that each gy assigned a poirnt

00 b0 The parties can shag moduloMg as in Sect. 3.3.2 by adding all the shares sent by
other parties.

O cO The parties generate a random invertible numibéy, [ (see Sect. 4.2.5), compute
[rp’lm, and revealp” mod My. If gcd(rp’, Mp) # 1, it means thap’ contains some
factor of My and the candidatp is discarded.

5. Inorderto check if gcq(, M;) = 1 for 1 < j < u, the parties run the trial division protocol
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as follows:

0 al Each partyP; reshares its shang over the appropriate extension fiérsj,jv by a poly-
nomial sharing as in Sect. 3.3.1.1. Here we can assume that each party is assigned ¢
unigue point in the extension fielmjv wheren < M}’.

0 bd The parties can shang overFyy as in Sect. 3.3.2 by adding all the shares sent by
other parties.

00 cO The parties generate a random invertible numbmj{ such thatr € P’;,Ij (see Sect.
4.2.5), computerﬂo’]}?ij and reveatp’, which is equal tap” mod M;. If rp” = 0 mod

M;, it means thap’ contains factoM; and the candidatp is discarded.

Note that the trial division protocol can be run in parallel to reduce the round complexity.

4.4.2 Making sure that gcd(p’,q) =1

In order to make sure that gqa(q’) = 1, [FSO01] uses the observation that
ged(P - 1,g-1)igcdN — 1, ¢(N)).

Proof: We havep(N) = (p-1)q-1)=N-p-g+1=(N-1)—-(p-1)-(g-1). Therefore,

(N=1)-¢(N) = (p-1)+(a—-1). Thus, gcdl — 1, ¢(N)) = gcd(N — 1) — ¢(N), ¢(N)) =
gcd(P—1)+(q—1), ¢(N)). Nowwesaya=p-1, b=qg-1. Then,

gcd(p—1,9-1) = gcd@ b),
gcd(N — 1, ¢(N)) = gcd@+ b, ab).
Obviously, gcdé, b) divides gcdé + b, ab). O
In [FS01], the parties compute and publish
T =¢(N)+ (N-1)R

over the integers by using the simplified version of the GCD protocol in [CGS00] wRiasea

random secret integer chosen appropriately. By computingrgad(- 1), the parties can check if
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gcd@(N), N—1) = 4 holds. However, this leaks the informatigfN) modN—-1(= T mod N-1).
Because(N) < N-1, the informatiorp(N) is leaked. Even if we compu® = ¢(N)R+(N-1)R’
by using the GCD protocol whefRandR’ are random secret integers chosen appropriately, it can
happen that gcd(’, N — 1) # 4 though gcdg(N),N — 1) = 4 when gcdR N — 1) # 1. Then the
good candidat®& will be rejected. We avoid such a problem as we did in Sect.4.4.1.

In our setting, we have = 3 mod 4 andg = 3 mod 4, so we havelM — 1 and 4¢(N)(=
(p-1)(-1)). Onthe other hand, gca¢ 1,g- 1) = gcd(', 29") = 2x ged(p’, ). Therefore,
if ged(M2, £y = 1, we have gedt, q) = ged(®%, &) = 1.

Note that the parties haygN) in the additive sharing over the integers after the computation

of N. Actually,
n
¢(N)=N-p-q+1=> ¢
i=1

whereg; = N+ 1-p; —qp andg; = —p; — @ for 2 < i < n. Each partyP; can compute; locally.
Furthermore, the parties ha\ﬁé\'—) in the additive sharing over the integers becauge dnd 4y;
for2<i<n.

In order to check if gcdi%, w) = 1 holds, we can take the same approach we proposed in
Sect. 4.4.1. That is, in Sect. 4.4R,is a public value angy’ = p%l is a shared secret and here
NT‘l is a public value and@ is a shared secret. Therefore,’\"—g{—1 = 2% My 1‘[}‘:l ij whereMg
has no prime factors smaller tharand eachM; is a prime smaller than, the parties check if
gcd(@, Mp) = 1 and gcd@, M;) = 1for 1 < j < uhold by using our distributed sieving

protocol in Sect. 4.4.1. Note that the parties do not need to check if‘igéd() = 1 because
#00) (= (2k; + 1)(2, + 1)) is odd wherep = 4k; + 3 andq = 4k, + 3.

4.4.3 Generators of Qe

When gcdf’, ') = 1, andp’ andg do not contain the prime factors less thanthe number of

the generators dDy: is

ARy P | P | CONEA | N | FR
Hgenerators o) = ¢(pap) = papef(1- 3 (1- o) (1- & ]2~ 5 )1~

whereB;’s are primes, an8 < B; < By < Bz <---.

By picking upk’'-tuple verification keysVK,...,VKy) from Q2 at random, the probability
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that the tuple oW K’s generate®y: is high if we adopt large enough security paramekéend
B as shown in [FSO1].

4.5 Threshold Paillier Cryptosystem Without Trusted Dealer

We show how to construct the threshold Paillier cryptosystem without a trusted dealer building
on the protocols introduced in this chapter. We revisit the threshold Paillier cryptosystem with a
trusted dealer. As we have seen in Sect. 4.2.2, the dealer has to pick up a yardadm and
computed = mB mod N wherem = p’q’. Also, the dealer distributes the secret sharegifioby

using the polynomial
f(X) = M+ ar X+ aX® + - - - + ax modNm

In order to remove the dealer, the parties must com@uten3 mod N so that no parties can know
B orm, and shar@m over the integers instead of miNdnbecause no parties should knaw We
use the observations thafN) = (p—1)(g- 1) = 4mis a multiple ofm, and the parties havygN)

in the additive sharin@’; ¢i. We denotep(N) by ¢. In order to realize thet ¢ 1, n) threshold

Paillier cryptosystem, the parties perform the following steps.

Key Generation Phase:

1. Then parties perform the distributed RSA modulus generation protocol in Sect. 4.3, and
the additional protocol in Sect. 4.4.1 to make sure Qat is cyclic. As a result, they
publishN and havep in the additive sharing = Y.\ ; ¢i over the integers.

2. Each partyP; picks up a randong; € Zy,. By using the BGW protocol moduldl, the
parties compute and reveal

n n
9’ :ﬁgp = (Zﬁl)(z (,D|) mOd N
i=1 i=1
as they computetl = (31, pi)(2iL; ) mod P. & becomes part dPK.

3. Using the samg;’s, the parties compute the shares of
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over the integers by the BGW protocol. The parties, however, do not radgalitself.
Instead, they convert theé-Blegree polynomial sharing of By into the additive sharing of

A%Byp over the integers (poly-to-sum) where each stsagatisfies (assuming= 2t + 1)

A'pp = znl .
i=1

Becausesi < N, XL, 8 < nN, |¢il < N, andY, ¢ < N, each share g6 and; is
bounded byA(AN +t x AZNKn')(~ tASNKnf) whereK is chosen such that is negligible.
Therefore, eacls; is roughly bounded by (A3NKn") x n)2.

4. P; generates a polynomial,
fi(X) = A(AS + a1 X + -+ + 3 X),

to reshares in the ¢ + 1,n) threshold secret sharing over the integers wtegfe egr
[-KAZ((tASNK) x n)2, KA2((tASNK) x n)?].
Note that if we sayf (X) = 37, fi(X), thenf(0) = A%Byp.

5. P, computesfi(j) for 1 < j < n, and sends;(j) to P; through the secure channel.

6. After receiving the shares from other parti€g,computesf(j) = 2L, fi(j). f(j) is the
secret share ot ¢ 1, n) secret sharing of®8¢.

7. The parties agree di-tuple verification keysVK 1 modN?, ..., VK, modN?) chosen
at random, and each par8y publishes’-tuple VK;’'s

(VK1 = (VK)A"D modN2, ..., VK i = (VK )™ mod N?).

Decryption Phase:

Now the parties decrypt a ciphertext g™xN mod N? whereM is the plaintext.

1. P; publishes the partial decryptian = ¢®'® mod N? by using its secret share. Al$®

publishes the zero knowledge proofs for
f(i) = loges (Gi)? = logk ) VK =+ =100k, VK,

We accept only the partial decryptions with the valid zero knowledge proofs. The reason
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we usef (i) = loguu(c)? instead off (i) = logg ¢ is to make sure that we are working in

Qne.

2. By combiningt + 1 valid partial decryptions of the subsgf the parties, we can obtain

modN

M = L(]—[ ¢ modN?) x

1
8
tg 4A°0

wherey; = A x A3, € Z, andL(u) = 4.

Proof of correctness:

l_[ Cizl‘i — o Yies fliu
ieS
_ C4Azi€SAf(i)/1§i
— A%y
— (gM XN)4A8,B<,0
— g4A8ﬁ¢M ( VX, XN(p =1 mod NZ)
=1+ 4A%BoMN modN? (- g= N + 1).
Therefore,

L(]—[ ¢ modN?) = 4A%8pM = M x 4A%’ mod N.
€S

A and¢’ are public information. Thus, we have

M = L(n ¢ modN?) x
ieS

1
mod N.
ANBY
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Chapter 5

Concluding Remarks

Every story has a happy ending and if the ending is not happy,
then it means the story has not ended yet.

— Author Unknown

In this dissertation, we handled two main subjects among privacy applications, which are called
Ciphertext-Policy Attribute-Based Encryption and Multiparty Computation respectively and we
realized the CP-ABE schemes where ciphertext policies can be hidderttenehé MPC proto-
cols. These techniques are useful and can be deployed in the real world to solve the privacy issues.
However, there is still room for improvement and we briefly mention a number of possibilities for

further research.

Ciphertext-Policy Attribute-Based Encryption. The first CP-ABE scheme [BSWO07] had a se-

curity proof only in the generic group model. Therefore, it was important to seek for CP-ABE
schemes that have security proofs based on standard number theoretic assumptions. Though the
scheme in [CNO7] is provably secure, it can support only a limited type of access structure for
ciphertext policies and the recent line of work [GIB, Wat08] dfers provably secure CP-ABE
schemes with more expressive access structures. In Chapter 2, we have discussed the two CP-
ABE schemes that have the additional property that ciphertext policies can be hidden and it may
be interesting to seek for constructions based on B3PWat08] in which we can hide ciphertext

policies.
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To support more expressive non-monotonic access structures and handle negated affiibutes e
ciently, it will be useful to construct a provably secure CP-ABE scheme with non-monotonic and
hidden access structures by using the techniques from [OSWO07, SWO08]. If it is possible, we will
be able to reduce the ciphertext size.

The scheme in [KSWO08] can be more expressive than our constructions, but the ciphertext size
can beO(d") whered > 2 andn is the number of attributes when it realizes the full expressibility.
Thus it will be challenging to construct a provably secure CP-ABE scheme with advanced access
structures and small ciphertext size.

Shi et al. [SBG-07] achieved a predicate encryption scheme supporting wider range queries
with a relaxed security notion called match-revealing security, while the standard security notion
used in this dissertation is called match-concealing security. Relaxing the security notion may be
one of the promising approaches to constructifigient encryption schemes with more advanced

access structures.

Multiparty Computation. A protocol for integer division is an important primitive which is miss-
ing in this dissertation. In the division protocol, given shared seeratslb, the parties compute

a sharing of §]. In [ACS02, FJ06], the division protocols were proposed to perform a modulo
reduction. If the range of the shared secieetndb is known in advance, then the comparison
protocol can be executed multiple times to compi¢or a protocol for computing a sharing

of L%kj can be used to obtai_rgj where modulo reductions are assumed to be repeate# msnd
appropriately chosen. If we can come up with a much mdieient protocol than these known
techniques, it will be useful and may be applicable to generating shared safe primes.

We described our protocols in the honest-but-curious model. However, it will be important to
make our protocols robust against active adversaries and it is a non-trivial task if we want to make
them robust without losing too muclffieiency. To make our protocols robust, we may need new
different techniques as the robust version [OK05] of [ACS02].

We did not assume that shared secrets were within the known limited range, but by assuming
S0, we may be able to come up with mof&aent protocols for more specific situations without
adhering to constant-round protocols. The line of work [Tof05, B0&] FJO6, Tof07, BCBOS,
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DTO08, VIFF] shows the feasibility of such MPC protocols and it will be challenging and mean-
ingful to solve large-scale real-world problems with a working implementation of practical and

special-purpose protocols as the aims of [VIFF, SSCM].
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