
CRYPTOGRAPHIC SCHEMES WITH MINIMUM
DISCLOSURE OF PRIVATE INFORMATION IN

ATTRIBUTE-BASED ENCRYPTION AND
MULTIPARTY COMPUTATION

TAKASHI NISHIDE

THE UNIVERSITY OF ELECTRO-COMMUNICATIONS

SEPTEMBER 2008



CRYPTOGRAPHIC SCHEMES WITH MINIMUM
DISCLOSURE OF PRIVATE INFORMATION IN

ATTRIBUTE-BASED ENCRYPTION AND
MULTIPARTY COMPUTATION

TAKASHI NISHIDE

THE UNIVERSITY OF ELECTRO-COMMUNICATIONS

GRADUATE SCHOOL OF ELECTRO-COMMUNICATIONS

A DISSERTATION SUBMITTED FOR
THE DOCTOR OF PHILOSOPHY IN ENGINEERING

SEPTEMBER 2008

– i –



CRYPTOGRAPHIC SCHEMES WITH MINIMUM
DISCLOSURE OF PRIVATE INFORMATION IN

ATTRIBUTE-BASED ENCRYPTION AND
MULTIPARTY COMPUTATION

SUPERVISORY COMMITTEE

CHAIRPERSON: PROFESSOR KAZUO OHTA

MEMBER: PROFESSOR KINGO KOBAYASHI

MEMBER: PROFESSOR KIYOSHI ANDO

MEMBER: PROFESSOR TETSURO NISHINO

MEMBER: ASSOCIATE PROFESSOR NOBORU KUNIHIRO

– iii –



COPYRIGHT BY TAKASHI NISHIDE 2008

ALL RIGHTS ARE RESERVED

– v –



属性ベース暗号とマルチパーティ計算におけるプライベート情報
の開示を最小にした暗号方式

西出隆志

論文概要

暗号プロトコルがプライバシー保護/強化技術の要素技術として活用されるようになり，従来，

プライバシーの安全性の問題から実現できなかったサービスがネットワーク上で実現可能とな

りつつある．

本論文では，属性ベース暗号 (Attribute-Based Encryption)とマルチパーティ計算 (Multiparty

Computation)のプライバシー保護技術について検討する．

属性ベース暗号では，プライバシー強化の観点から，有用な情報を含みうる復号条件をも復

号者に対して秘匿可能とし，復号条件の表現能力においても既存方式に比べより有用な性質を

持つ方式を提案する．

マルチパーティ計算では，効率の面から実用的とは言えなかった既存方式を改良し，秘密入

力の比較，同一性判定，区間判定という基本構成要素に対し計算量，通信回数がより効率的な

方式を提案する．併せて，分散鍵生成プロトコルによって閾値準同型 Paillier暗号に基づいた

マルチパーティ計算を信頼できる第三者機関を想定せずに構成する方式も提案する．

– vii –



CRYPTOGRAPHIC SCHEMES WITH MINIMUM
DISCLOSURE OF PRIVATE INFORMATION IN

ATTRIBUTE-BASED ENCRYPTION AND MULTIPARTY
COMPUTATION

TAKASHI NISHIDE

ABSTRACT

Modern cryptography can serve as a building block for privacy preserving and enhancing tech-

nologies and it enables us to realize various kinds of online services on the network which cannot

exist unless privacy issues are solved.

In this dissertation, we focus on two technologies called Attribute-Based Encryption (ABE) and

Multiparty Computation (MPC).

We propose two ABE schemes where an encryptor can hide a decryption policy that can contain

sensitive information in terms of privacy enhancement and the expressiveness of the proposed

schemes has more desirable properties compared with the existing schemes.

In MPC, we improve the efficiency of the existing scheme and propose more efficient protocols,

in terms of round and communication complexities, for comparison, equality, and interval tests of

secret inputs which are integer arithmetic primitives. In addition, we propose an MPC protocol

for distributed key generation of the threshold Paillier cryptosystem without a trusted third party.

– ix –



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Privacy Enhancing Attribute-Based Encryption . . . . . . . . . . . . . . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Bilinear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Complexity Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2.1 The Decisional Bilinear Diffie-Hellman (DBDH) Assumption . 10

2.2.2.2 The Decision Linear (D-Linear) Assumption . . . . . . . . . . 10

2.2.3 Access Structure for Ciphertext . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3.1 Realization of CP-ABE with [BW07] . . . . . . . . . . . . . . 12

2.2.3.2 Realization of CP-ABE with [KSW08] . . . . . . . . . . . . . 13

2.2.4 Syntax of CP-ABE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.5 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Proposed Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Construction of [CN07] . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Main Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Our First Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Second Construction with More Flexibility . . . . . . . . . . . . . . . . 19

– xi –



2.4 Overview of Security Proofs for First Construction . . . . . . . . . . . . . . . 20

2.5 Proofs of Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.2 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Security Proof for Second Construction . . . . . . . . . . . . . . . . . . . . . 27

2.7 Adding Attributes afterSetup. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Multiparty Computation for Integer Arithmetic Primitives . . . . . . . . . . . . . . 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Core Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1.1 Shamir Secret Sharing . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1.2 Homomorphic Cryptosystem with Threshold Decryption . . . 42

3.3.2 Distributed Computation with Shared Secrets for Addition and Multipli-

cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.3 Multiplication Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.3.1 In Secret Sharing Setting . . . . . . . . . . . . . . . . . . . . 43

3.3.3.2 In Threshold Homomorphic Setting . . . . . . . . . . . . . . . 44

3.3.3.3 Round and Communication Complexities . . . . . . . . . . . . 44

3.3.4 Bitwise Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.5 Subprotocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.5.1 Joint Random Number Sharing . . . . . . . . . . . . . . . . . 45

3.3.5.2 Joint Random Bit Sharing . . . . . . . . . . . . . . . . . . . . 45

3.3.5.3 Unbounded Fan-In Or . . . . . . . . . . . . . . . . . . . . . . 45

3.3.5.4 Prefix-Or . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

– xii –



3.3.5.5 Bitwise Less-Than . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.5.6 Joint Random Number Bitwise-Sharing . . . . . . . . . . . . . 48

3.3.5.7 Bitwise Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Existing Protocols [DFK+06, ST06] . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Simplified Bit-Decomposition Protocol . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Complexity of Bit-Decomposition Protocol . . . . . . . . . . . . . . . . 51

3.6 Proposed Protocols Without Bit-Decomposition . . . . . . . . . . . . . . . . . 52

3.6.1 Interval Test Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6.1.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6.1.2 Complexity of Interval Test Protocol . . . . . . . . . . . . . . 53

3.6.2 LSB Protocol for Special Case of Interval Test Protocol . . . . . . . . . . 54

3.6.2.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6.2.2 Complexity of LSB Protocol . . . . . . . . . . . . . . . . . . 55

3.6.3 Comparison Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.3.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.3.2 Complexity of Comparison Protocol . . . . . . . . . . . . . . 56

3.6.4 Equality Test Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6.4.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6.4.2 Complexity of Equality Test Protocol . . . . . . . . . . . . . . 58

3.6.5 Probabilistic Equality Test Protocol . . . . . . . . . . . . . . . . . . . . 58

3.6.5.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.5.2 Quadratic Residuosity Test Protocol . . . . . . . . . . . . . . 60

3.6.5.3 Complexity of Probabilistic Equality Test Protocol . . . . . . . 60

3.6.5.4 Slight Improvement . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.6 Application of Equality Test Protocol . . . . . . . . . . . . . . . . . . . 61

3.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Multiparty Computation for Distributed Key Generation of Paillier Cryptosystem . 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

– xiii –



4.2 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Original Paillier Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2 Threshold Paillier Cryptosystem . . . . . . . . . . . . . . . . . . . . . . 69

4.2.2.1 Why we need two safe primes . . . . . . . . . . . . . . . . . . 71

4.2.3 Secret Sharing over the Integers . . . . . . . . . . . . . . . . . . . . . . 72

4.2.4 BGW Protocol Modulo a Non Prime . . . . . . . . . . . . . . . . . . . . 74

4.2.5 Joint Random Invertible Number Sharing . . . . . . . . . . . . . . . . . 74

4.3 DKG Protocol [BF97] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 High-Level Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.2 Distributed Computation of RSA ModulusN by BGW Protocol . . . . . 76

4.3.3 Distributed Biprimality Test forN . . . . . . . . . . . . . . . . . . . . . 77

4.4 Relaxing Condition on Safe Primes . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.1 Our Improved Distributed Sieving Protocol forp′ andq′ . . . . . . . . . 80

4.4.2 Making sure that gcd(p′,q′) = 1 . . . . . . . . . . . . . . . . . . . . . . 82

4.4.3 Generators ofQN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Threshold Paillier Cryptosystem Without Trusted Dealer . . . . . . . . . . . . 84

5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Acknowledgements 100

List of Publications Related to the Dissertation 103

List of All Publications 104

Author Biography 106

– xiv –



Chapter 1

Introduction

Privacy is a problem. With the widespread use of computers, various kinds of data including

private information are digitalized and stored in the computers. Furthermore, such data are ac-

cessed or shared through the network or the Internet. Once the private data leak out and spread

across the network, it is virtually impossible to recover the data. Thus, the more open computer-

ized environments we have, the more problems related to privacy we have.

On the other hand, private information is valuable. If we can utilize private information with the

minimum disclosure of it when necessary, it will be useful for the real-world applications. Mod-

ern cryptography can serve as building blocks for solving online privacy and security problems.

Actually it is not only about hiding information but also about secure information sharing and

privacy-enhancing techniques. In additon to its theoretical beauty, it can have a practical impact

on the real world and has potential to change the way people interact in the digital world.

In this dissertation, we consider two main subjects among privacy applications. One is

Attribute-Based Encryption(ABE) and the other isMultiparty Computation(MPC).

In order to protect private data, it is crucial for us to have control over who can access important

or sensitive data. Typically an access control policy on digital data is enforced by a software mech-

anism, but the server computers where the data are stored might be compromised by malicious

outsiders and then we will lose control of privacy.

Obviously data encryption can alleviate the privacy concerns. However, if the encrypted data

must be shared among multiple people in an appropriate way, the management of cryptographic

– 1 –



keys becomes complex. If the data holder (i.e., the encryptor) encrypts her file for each potential

decryptor she wants to share the file with, she must store multiple encrypted files for one file on

the server and it will require huge data storage. On the other hand, the encryptor can share one

key per file with potential decryptors and store one encrypted file per file on the server, but this

will also lead to the complex key management for both the encryptors and decryptors because

keys must be generated and shared with the decryptors each time files are created. Furthermore

the encryptor may not be able to know the identities of the potential decryptors when she encrypts

her files in the distributed setting. Therefore, it is a non-trivial task to share encrypted data with

the simple key management and this is where ABE comes in.

ABE enables us to share encrypted data with encryptor-specified access control policies and the

policies are described with attributes of people rather than identities of people. Thus the encrypted

data are not intended for specific individuals and ABE can enforce attribute-based access control

on encrypted data in a cryptographic way. In this dissertation, we consider hiding even encryptor-

specified access control policies for privacy enhancement. Suppose Alice is looking for her partner

who matches the criteria she specified. Then she can broadcast her message encrypted by ABE

to people and the people who could decrypt the message can contact her. In such a situation she

might want to hide her criteria also in addition to the message because of privacy concerns. In

Chapter 2, we deal with such ABE and construct ABE schemes where the encryptor can hide the

access control policies with more flexible properties compared with the existing schemes. The

results in Chapter 2 were published as [NYO08].

In MPC, we consider secure data sharing. Usually sensitive data are valuable and if we can

collect sensitive data and extract meaningful information by computing some agreed function

without revealing the individual sensitive data, it may be beneficial to the individual data holders.

MPC enables a set of parties with private inputs to jointly compute an agreed function of their

inputs and obtain only the output without revealing the private inputs. By utilizing MPC, we can

realize secure computation without relying on a trusted third party which can be a single point

of failure. For example, in the famous problem called Yao’s millionaires’ problem [Yao82], two

millionaires want to know who is richer without revealing their wealth and this can be solved

by using MPC. Though theoretical results (e.g., [Yao86, GMW87, BGW88, CCD88]) show any

– 2 –



function can be computed securely without revealing the private inputs, the efficiency of such

general schemes is not good enough for practical use. Therefore, improving the efficiency by

constructing protocols for specific use is meaningful and necessary. For example, in [BCD+08],

an MPC protocol for the specific auction system was implemented and tested and it showed the

viability of large-scale MPC for a real-world application. In this dissertation, we focus on MPC for

integer arithmetic and building on [DFK+06], construct MPC protocols for comparison, equality,

and interval tests of secret data, which are important building blocks. We discuss these protocols

in Chapter 3 that are the results of [NO07]. In our protocols, the parties participating in MPC

do not need to know any private inputs and can serve as computing agents for input holders (as

the client-server modelin [DI05]). This means the following. In the Yao’s millionaires’ problem,

each input holder (millionaire) knows his private input value and the input holders perform MPC.

However, in our protocols all the private input values have only to be given by the input holders

and shared among the parties participating (which we can call servers) in MPC and the servers

can perform MPC without knowing any private inputs. This computing model is very general

and the input holders can request the servers to perform MPC with their private inputs, which

can be considered as a kind of online service provided by the servers performing MPC. In such a

scenario, secret data are always distributed and the risk of data leakage is reduced.

In Chapter 4, we also consider an MPC protocol for distributed key generation of the threshold

Paillier cryptosystem [FPS00]. Typically MPC is realized by using Shamir secret sharing [Sha79]

or threshold homomorphic cryptosystems and the Paillier cryptosystem is one of the most used

homomorphic cryptosystems. The distributed generation of an RSA modulus (needed also for

the Paillier cryptosystem) is a non-trivial and time-consuming task and often MPC based on the

threshold Paillier cryptosystem assumes that the public and secret keys are generated by a trusted

third party or a secure hardware box. Building on [BF97, FS01, ACS02], we show how the MPC

protocols for generating an RSA modulus in a distributed way can be adapted to the case of the

threshold Paillier cryptosystem.

– 3 –



Chapter 2

Privacy Enhancing Attribute-Based

Encryption

In this chapter, we introduce attribute-based encryption schemes with a privacy enhancing func-

tionality. We propose attribute-based encryption schemes where encryptor-specified access struc-

tures (also called ciphertext policies) are hidden. By using our schemes, an encryptor can encrypt

data with a hidden access structure. A decryptor obtains her secret key associated with her at-

tributes from a trusted authority in advance and if the attributes associated with the decryptor’s

secret key do not satisfy the access structure associated with the encrypted data, the decryptor

cannot decrypt the data or guess even what access structure was specified by the encryptor. We

prove security of our construction based on the Decisional Bilinear Diffie-Hellman assumption

and the Decision Linear assumption. In our security notion, even the legitimate decryptor cannot

obtain the information about the access structure associated with the encrypted data more than the

fact that she can decrypt the data. The results in this chapter were published as [NYO08].

– 5 –



2.1 Introduction

2.1.1 Background

In the distributed setting, we need to enforce access control polices to protect various resources.

In such settings, it may be suitable to specify access control policies based on attributes rather

than individual identities, because an identity may not have enough information about its entity.

Attribute-based encryption (ABE) is a mechanism by which we can realize such access control in

a cryptographic way. There are two kind of ABE schemes, key-policy and ciphertext-policy ABE

schemes.

In the key-policy ABE schemes [GPS+06, OSW07, SW05, KSW08], ciphertexts are associ-

ated with sets of attributes and users’ secret keys are associated with access structures. If the

attributes associated with the ciphertext satisfy the access structure of the secret key, the secret

key holder can decrypt the ciphertext successfully. Also the concept of searchable and predicate

encryption [BW07, SBC+07] is related to key-policy ABE in the sense that successful decryption

is conditional on access structure associated with secret keys.

On the other hand, in the ciphertext-policy ABE (CP-ABE) schemes [BSW07, CN07, KSW08,

LS08], the situation is reversed. That is, attributes are associated with secret keys and access

structures are associated with ciphertexts and called ciphertext policies. The access structures are

described with the attributes and therefore the concept of CP-ABE is closely related to Role-Based

Access Control.

In this work, we focus on CP-ABE and construct a CP-ABE scheme where we can hide

encryptor-specified access structures associated with ciphertexts. Our scheme can be considered

as a recipient-anonymous targeted broadcast and the relation of our scheme to a normal CP-ABE

scheme is similar to that of anonymous identity-based encryption (IBE) to normal IBE. For exam-

ple, suppose a company wants to hire certain qualified people who satisfy the policy the company

specified and the policy may contain the useful information about the company’s business strategy.

The company can post a message encrypted by our CP-ABE scheme on a public bulletin board

to seek applications. By doing so, the company can keep the important policy confidential. Since

– 6 –



the policy is hidden, the rival companies cannot know what kind of policy the company used to

hire its employees.

In the ABE schemes,collusion-resistanceis an important property. We do not want the secret

key holders to be able to combine their secret keys to decrypt ciphertexts neither of them can

decrypt. By building on the previous schemes [BSW07, CN07], we can also realize collusion-

resistant CP-ABE schemes.

2.1.2 Our Contributions

We construct two CP-ABE schemes with partially hidden ciphertext policies in the sense that

possible values of each attribute in the system should be known to an encryptor in advance and

the encryptor can hide what subset of possible values for each attribute in the ciphertext policy

can be used for successful decryption. In our schemes, encryptors can use wildcards to mean that

certain attributes are not relevant to the ciphertext policy in a hidden way. The security proof of

our first construction is given under the Decisional Bilinear Diffie-Hellman assumption and the

Decision Linear assumption. Since these assumptions are general, we can use a large variety of

elliptic curves (including both asymmetric and symmetric bilinear pairings) to implement our first

scheme though we use the symmetric notation for ease of exposition. The security proof of our

second construction is given in the generic group model and the second construction needs DDH-

hard groups, but with a property inherited from [BSW07], the second construction is more flexible

than the first construction in that new attributes can be added in the ciphertext policy securely with

the existing public parameters being unchanged even after the system setup is done. We mention

this aspect in Sect. 2.7 in more detail. We describe our constructions in the multi-valued attribute

setting where an attribute can take multiple values and this setting is a generalization of the access

structures used in [CN07]. In our security notion, even the legitimate decryptor cannot obtain the

information about the ciphertext policy more than the fact that she can decrypt the data.

– 7 –



2.1.3 Related Work

Bethencourt, Sahai, and Waters [BSW07] proposed the first CP-ABE scheme. Their scheme al-

lows the ciphertext policies to be very expressive, but the security proof is in the generic group

model and the policies need to be revealed in the ciphertexts because decryptors must know how

they should combine their secret key components for decryption. Cheung and Newport [CN07]

proposed a provably secure CP-ABE scheme and their scheme deals with negative attributes ex-

plicitly and supports wildcards in the ciphertext policies but the policies need to be revealed as

in [BSW07]. Kapadia, Tsang, and Smith [KTS07] also proposed a CP-ABE scheme and their

scheme realizes hidden ciphertext policies that have the same expressiveness as [CN07], but their

scheme is not collusion-resistant and needs an online semi-trusted server that must know the at-

tributes’ values every user in the system has and re-encrypt ciphertexts for each user when the

user retrieves the ciphertexts. Such an online semi-trusted server can be a performance bottleneck

in the system while, in our schemes, encryptors can just post or broadcast ciphertexts. Lubicz and

Sirvent [LS08] proposed another CP-ABE scheme that has the same expressiveness as [CN07]

and only 3 pairing computations are needed for decryption, but the ciphertext policies need to be

revealed for decryption. Shi et al. [SBC+07] proposed a predicate encryption scheme that focuses

on range queries over huge numbers, the dual of which can also realize a CP-ABE scheme where

an encryptor can specify a number range in the ciphertext policy. The security proof of [SBC+07]

is based on the security notion weaker than ours, which is calledmatch-revealing securityin

[SBC+07] and the number of attributes must be small because the decryption cost is exponential

in the number of attributes. Boneh and Waters [BW07] proposed a predicate encryption scheme

based on the primitive calledHidden Vector Encryptionor HVE for short. The scheme in [BW07]

can realize the same functionality as ours by using the opposite semantics of subset predicates de-

scribed in [BW07] (see Sect. 2.2.3.1 for the details). However, it needs bilinear groups the order

of which is a product of two large primes, so it needs to deal with large group elements and the

numbers of both attributes and possible values for each attribute specified in the ciphertext policy

are fixed at the system setup while, in our constructions, the number of possible attribute values in

the ciphertext policy can be increased and furthermore in our second construction, the number of

– 8 –



attributes in the ciphertext policy can be increased securely even after the system setup with the

existing public parameters being unchanged.

Recently, Katz, Sahai, and Waters [KSW08] proposed a novel predicate (orfunctional) encryp-

tion scheme supportinginner productpredicates and their scheme is very general and can realize

both key-policy and ciphertext-policy ABE schemes. Their scheme can also realize hidden cipher-

text policies that can be more expressive than ours. However, their scheme is based on a special

type of bilinear groups the order of which is a product of three (or two) large primes while ours

are not. Therefore, their scheme needs to deal with large group elements and requires new com-

plexity assumptions for the security proof. By using the dual of the predicate corresponding to

polynomial evaluation, the scheme in [KSW08] can realize the same access structure of ciphertext

policies that our schemes can support (see Sect. 2.2.3.2 for the details) and then the ciphertext size

of our schemesO(
∑n

i=1 ni) is comparable to that of [KSW08] wheren is the number of attributes

in ciphertext policies andni is the number of possible values for each attributei. Fox example, if

attributei is boolean,ni = 2. In the CP-ABE scheme of [KSW08], the maximum size of the subset

of attribute values for each attribute specified in the ciphertext policy for successful decryption is

fixed at the system setup while, in our constructions, the size can be increased. Also, the number

of attributes specified in the ciphertext policy is fixed at the system setup while, in our second

construction, the number of attributes in the ciphertext policy can be increased securely even after

the system setup with the existing public parameters being unchanged. However, when the num-

ber of possible attribute values is huge, the scheme in [KSW08] is more advantageous than ours

because it can enjoy the smaller ciphertext size and still realize the wildcard functionality.

Chase [Cha07] proposed a multi-authority ABE where multiple authorities generate secret keys

for their monitored attributes. The technique of [Cha07] can be applicable to our schemes too.

Abdalla et al. [ACD+06] proposed an identity-based encryption scheme where an encryptor can

use wildcards to specify recipients of the ciphertext, but the positions of the wildcards and other

ID components need to be revealed in the ciphertexts.

We summarize the comparison of major different schemes in Table 2.1.

– 9 –



2.2 Preliminaries

2.2.1 Bilinear Maps

We assume that there is an efficient algorithmGen for generating bilinear groups. The algorithm

Gen, on input a security parameter 1κ, outputs a tuple,G = [p,G,GT ,g ∈ G,e] where log2(p) =

Θ(κ). A function e : G × G → GT is a bilinear map. Here,G andGT are multiplicative groups

of prime orderp, generated byg ande(g,g) respectively. The bilinear mape has the following

properties:

1. Bilinearity: for alla,b ∈ Zp, e(ga,gb) = e(g,g)ab.

2. Non-degeneracy:e(g,g) , 1.

2.2.2 Complexity Assumptions

We describe complexity assumptions used in our security proofs.

2.2.2.1 The Decisional Bilinear Diffie-Hellman (DBDH) Assumption

We use the decisional version of the bilinear DH assumption [BF01, Jou00]. Letz1, z2, z3, z ∈ Z∗p
be chosen at random andg ∈ G be a generator. The DBDH assumption is that no probabilis-

tic polynomial-time algorithm can distinguish the tuple [g,gz1,gz2,gz3,e(g,g)z1z2z3] from the tuple

[g,gz1,gz2,gz3,e(g,g)z] with non-negligible advantage.

2.2.2.2 The Decision Linear (D-Linear) Assumption

The D-Linear assumption was first proposed in [BBS04]. Letz1, z2, z3, z4, z ∈ Z∗p be cho-

sen at random andg ∈ G be a generator. The D-Linear assumption is that no probabilistic

polynomial-time algorithm can distinguish the tuple [g,gz1,gz2,gz1z3,gz2z4,gz3+z4] from the tuple

[g,gz1,gz2,gz1z3,gz2z4,gz] with non-negligible advantage.

– 10 –



2.2.3 Access Structure for Ciphertext

In the CP-ABE scheme, an encryptor specifies an access structure for a ciphertext, which is called

a ciphertext policy. If a decryptor has a secret key whose associated set of attributes satisfies

the access structure, she can decrypt the ciphertext. The access structures used in [BSW07] are

the most flexible and expressive. For example, we can use an access structure such as ((AAND

B) OR (C AND D)) in [BSW07]. This means that a recipient must have attributes A and B

simultaneously or attributes C and D simultaneously in order to decrypt the ciphertext. Therefore,

if a recipient has a secret key associated with a set of attributes{A, B, C}, she can satisfy the access

structure and decrypt the ciphertext. However, if the recipient has a secret key associated with a

set of attributes{A, C}, she can not satisfy the access structure or decrypt the ciphertext. Actually

AND, OR, and threshold gates can be used for expressing the access structures in [BSW07].

However, the security proof of [BSW07] is in thegeneric group model. In order to obtain a

reduction-based security proof, Cheung and Newport proposed another CP-ABE scheme [CN07]

which is proved to be secure understandardcomplexity assumptions. The price of obtaining such

security proofs is that the expressiveness of ciphertext policies in [CN07] is somewhat restricted

as compared with [BSW07]. However, the expressiveness is not too restrictive and still remains

useful.

The access structure and the attribute set associated with the secret key used in [CN07] are as

follows. Let’s assume that the total number of attributes in the system isn and the attributes are

indexed as{A1,A2, . . . ,Ai , . . . ,An} or we may use justi to refer toAi . We use the notation such

asL = [L1, . . . , Ln] = [1,0,1, . . . , 0] in order to describe attribute-value pairs for a user, which we

call the attribute list. For example, the user has the value 1 forA1, 0 forA2, 1 forA3, . . ., and 0 for

An in this case. A trusted authority generates a secret key for the user based on the user’s attribute

list.

In order to specify the access structure for a ciphertext, we use the notation such asW =

[W1, . . . ,Wn] = [1,1, ∗, ∗,0] wheren = 5, which we call the ciphertext policy. The wildcard∗
can be used in the ciphtertext policies and it plays the role of “don’t care” value. This can be

considered as anAND-gate on all the attributes. For example, the above ciphertext policy means

– 11 –



that the recipient who wants to decrypt must have the value 1 forA1 andA2 and 0 forA5, and the

values forA3 andA4 do not matter in theAND-gate. If the recipient has the secret key associated

with, let us say, [1,1,1,0,0], she can decrypt the ciphertext, but not if the secret key is associated

with [1,1,1,0,1].

Formally, given an attribute listL = [L1, L2, . . . , Ln] and a ciphertext policyW =

[W1,W2, . . . ,Wn], L satisfiesW if, for all i = 1, . . . , n, Li = Wi or Wi = ∗, and otherwise

L does not satisfiesW. We use the notationL |= W to mean thatL satisfiesW.

In our constructions, we generalize the access structures in [CN07]. In [CN07], each attribute

can take two values 1 and 0, but in our generalized access structures each attribute can take two

or more values and eachWi in W can be any subset of possible values forAi . More formally, let

Si = {vi,1, vi,2, . . . , vi,t, . . . , vi,ni } be a set of possible values forAi whereni is the number of the

possible values forAi . Then the attribute listL for a user isL = [L1, L2, . . . , Li , . . . , Ln] where

Li ∈ Si and the generalized ciphertext policyW is W = [W1,W2, . . . ,Wi , . . . ,Wn] whereWi ⊆ Si .

The generalized ciphertext policyW means, let us say,

(A1 = v1,1 ∨ A1 = v1,3)

∧ (A2 = v2,2) ∧ . . .
∧ (Ai = vi,5 ∨ . . . ∨ Ai = vi,ni ) ∧ . . .
∧ (An = vn,1 ∨ An = vn,2 ∨ An = vn,3).

When the encryptor specifies a wildcard forAi , it corresponds to specifyingWi = Si for Ai . The

attribute listL satisfies the ciphertext policyW iff Li ∈ Wi for 1 ≤ i ≤ n. We achieve recipient

anonymity by hiding what subsetWi for eachAi is specified in the access structure of theAND-

gate of all the attributes.

2.2.3.1 Realization of CP-ABE with [BW07]

We sketch how the scheme in [BW07] can realize the access structure of the ciphertext

policy considered in this work by using HVE. For ease of exposition, suppose there are

two attributesA1,A2 in the system andA1 can take valuesv1,1, v1,2 and A2 can take

values v2,1, v2,2, v2,3. When an encryptor encrypts a message, the encryptor specifies a

– 12 –



vector corresponding to (v1,1, v1,2, v2,1, v2,2, v2,3) as a ciphertext policy. For example, if

(v1,1, v1,2, v2,1, v2,2, v2,3) = (1,0,1,0,1), this means (A1 = v1,1) ∧ (A2 = v2,1 ∨ A2 = v2,3). A

decryptor withA1 = v1,1 ∧ A2 = v2,3 obtains her secret key the vector of which corresponds to

(1, ∗, ∗, ∗,1). The decryptor can decrypt the ciphertext if the vectors of both the ciphertext and

the secret key match up except the wildcards. In this scheme, the length of the vectors (5 in

the example above) is fixed at the system setup. Therefore, the numbers of both attributes and

possible values for each attribute specified in the ciphertext policy are fixed at the system setup.

2.2.3.2 Realization of CP-ABE with [KSW08]

We sketch how the scheme in [KSW08] can realize the access structure of the ciphertext policy

considered in this work by using the dual of the predicate corresponding to polynomial evaluation.

Similarly, for ease of exposition, suppose there are two attributesA1,A2 in the system andA1 can

take valuesv1,1, v1,2 andA2 can take valuesv2,1, v2,2, v2,3. In this scheme, decryption succeeds if

the vector for the ciphertext (a1,a2, . . . , an) and the vector for the secret key (x1, x2, . . . , xn) satisfy

the condition that
∑n

i=1 ai xi = 0.

When an encryptor encrypts a message with the ciphertext policy (A1 = v1,1)∧(A2 = v2,1∨A2 =

v2,3), she prepares two polynomialsf1(x) = c1x+c0 and f2(x) = d2x2+d1x+d0 such thatf1(v1,1) =

0, f2(v2,1) = 0 and f2(v2,3) = 0 and specifies the vector (c1, c0,d2,d1,d0) as the ciphertext policy.

A decryptor withA1 = v1,1 ∧ A2 = v2,3 obtains her secret key the vector of which corresponds to

(v1,1,1, v2
2,3, v2,3,1). For example, when the encryptor specifies a wildcard for attributeA2 in the

ciphertext policy, she simply usesf2(x) = 0 whered2 = d1 = d0 = 0. In this scheme, the length

of the vectors (5 in the example above) is fixed at the system setup. Therefore, the maximum size

of the subset of attribute values for each attribute specified in the ciphertext policy for successful

decryption is fixed at the system setup. Also, the number of attributes specified in the ciphertext

policy is fixed at the system setup. However, when the number of possible attribute values is

huge and the maximum size of the subset of attribute values specified in the ciphertext policy is

small, the scheme in [KSW08] is more advantageous than ours because it can enjoy the smaller

ciphertext size and still realize the wildcard functionality.

– 13 –



2.2.4 Syntax of CP-ABE

Our CP-ABE schemes consist of the following four algorithms.

Setup (1κ). This algorithm takes the security parameterκ as input and generates a public keyPK

and a master secret keyMK.

KeyGen (MK, L). This algorithm takesMK and an attribute listL as input and generates a secret

keyS KL associated withL.

Encrypt (PK, M, W). This algorithm takesPK, a messageM, and an ciphertext policyW as

input, and generates a ciphertextCT.

Decrypt (CT, S KL). This algorithm takesCT andS KL associated withL as input and returns

the messageM if the attribute listL satisfies the ciphertext policyW specified forCT, that

is, L |= W. If L 6|= W, it returns⊥ with overwhelming probability.

2.2.5 Security Model

We describe the security models for our CP-ABE. Based on [SBC+07, BW07, KSW08], we

use the following security game. A CP-ABE scheme is selectively secure if no probabilistic

polynomial-time adversary has non-negligible advantage in the following game.

Selective Game for CP-ABE

Init: The adversary commits to the challenge ciphertext policiesW0,W1.

Setup: The challenger runs theSetupalgorithm and givesPK to the adversary.

Phase 1: The adversary submits the attribute listL for aKeyGenquery. If (L |= W0∧L |= W1) or

(L 6|= W0 ∧ L 6|= W1), the challenger gives the adversary the secret keyS KL. The adversary

can repeat this polynomially many times.

Challenge: The adversary submits messagesM0,M1 to the challenger. If the adversary ob-

tained theS KL whose associated attribute listL satisfies bothW0 andW1 in Phase 1, then

– 14 –



it is required thatM0 = M1. The challenger flips a random coinb and passes the ciphertext

Encrypt(PK, Mb, Wb) to the adversary.

Phase 2: Phase 1 is repeated. IfM0 , M1, the adversary cannot submitL such thatL |=
W0 ∧ L |= W1.

Guess: The adversary outputs a guessb′ of b.

The advantage of an adversary in this game is defined as
∣∣∣Pr[b′ = b] − 1

2

∣∣∣ where the probability is

taken over the random bits used by the challenger and the adversary. Since the adversary must

commit to the challenge ciphertext policies before the setup phase, this model can be considered

to be analogous to the selective-ID model [CHK03, CHK04] used in identity-based encryption

schemes. In the non-selective-ID model, the adversary can specify the challenge ciphertext poli-

cies during the challenge phase. In the game, the adversary can submitL such thatL |= W0 and

L |= W1 if possible and then the adversary can decrypt the ciphertext. This definition captures

that the adversary cannot obtain the useful information about the ciphertext policy more than the

fact that she can decrypt the ciphertext. The above notion of security is calledmatch-concealing

securityin [SBC+07].

2.3 Proposed Schemes

We construct two CP-ABE schemes that achieve recipient anonymity. In [CN07], the ciphertext

policy needs to be revealed in the ciphertext so that a decryptor can know which secret key com-

ponents should be used. Furthermore, in order to support wildcards for ciphertext policies, the

public key components for the wildcards are prepared in [CN07] and the decryptor uses the secret

key components corresponding to the wildcards if the wildcards are specified in the ciphertext

policies. In our constructions, we can hide how the ciphertext policy is specified successfully.

First we show the construction of [CN07] and later explain the intuition behind our approach we

take to make it recipient-anonymous. We assume, for notational simplicity, that the total number

of attributes in the system isn and the attributes are indexed as{1,2, . . . , i, . . . , n}.

– 15 –



2.3.1 Construction of [CN07]

The four algorithms are as follows:

Setup (1κ). A trusted authority generates a tupleG = [p,G,GT ,g ∈ G,e] ← Gen(1κ), and

randomw ∈ Z∗p. For each attributei where 1≤ i ≤ n, the authority generates random

valuesai , âi ,a∗i , ∈ Z∗p. The authority computesY = e(g,g)w andAi = gai , Âi = ĝai ,A∗i = ga∗i .

The public keyPK consists of〈Y, p,G,GT ,g,e, {Ai , Âi ,A∗i }1≤i≤n〉. The master secret key

MK is 〈w, {ai , âi ,a∗i }1≤i≤n〉.

KeyGen (MK, L). Let L = [L1, L2, . . . , Ln] be the attribute list for the user who will obtain

the corresponding secret key. The trusted authority picks up random valuessi ∈ Z∗p for

1 ≤ i ≤ n, setss =
∑n

i=1 si , and computesD0 = gw−s. For 1 ≤ i ≤ n, the authority also

computes [Di ,D∗i ] = [gsi/ai ,gsi/a∗i ] if Li = 1, and [Di ,D∗i ] = [gsi /̂ai ,gsi/a∗i ] if Li = 0. The

secret keyS KL is 〈D0, {Di ,D∗i }1≤i≤n〉.

Encrypt (PK, M, W). An encryptor encrypts a messageM ∈ GT under a ciphertext policyW =

[W1,W2, . . . ,Wn]. The encryptor picks up a random valuer ∈ Z∗p and sets̃C = MYr and

C0 = gr . Also for 1≤ i ≤ n, the encryptor computesCi as follows: ifWi = 1, Ci = Ar
i ; if

Wi = 0,Ci = Âr
i ; if Wi = ∗, Ci = A∗ri . The ciphertextCT is 〈C̃,C0, {Ci}1≤i≤n〉. The encryptor

needs to revealW in CT so that recipients can know which secret key components should

be used for eachCi .

Note that ifW is hidden inCT, the recipients need to try all the possible combinations of

the secret key components for decryption and it takes exponential time inn, which seems

inefficient or impractical if we have a large number of attributes.

Decrypt (CT, S KL). The recipient can checkW to know whetherL |= W. If L |= W,

she can proceed. The recipient decrypts theCT, 〈C̃,C0, {Ci}1≤i≤n〉 by using herS KL,

〈D0, {Di ,D∗i }1≤i≤n〉 associated with the attribute listL, as follows:

– 16 –



1. For 1≤ i ≤ n,

D′i =



Di if Wi , ∗

D∗i if Wi = ∗.

2.

M =
C̃

e(C0,D0)
∏n

i=1 e(Ci ,D
′
i )
.

2.3.2 Main Idea

We describe how to make the construction of [CN07] recipient-anonymous. As mentioned earlier,

we cannot have an efficient construction just by hidingW when the number of attributesn is

large. To achieve our goal, the recipients need to be able to decryptCT without knowingW

and we also want to support wildcards in a hidden way. For that, we remove the public key

components{A∗i }1≤i≤n for the wildcards and the secret key components{D∗i }1≤i≤n are not included

in S KL. Furthermore, instead of the ciphertext components{Ci}1≤i≤n, {Ci , Ĉi}1≤i≤n are generated

with C0 = gr as follows: let{Ci , Ĉi} = {Ar1
i , Â

r2
i }; if Wi = 1, we setr1 = r andr2 is random; if

Wi = 0, r1 is random andr2 = r; if Wi = ∗, r1 = r2 = r. That is, ifCi = Ar
i or Ĉi = Âr

i , these

ciphertext components are “well-formed” and can be used for successful decryption and otherwise

“malformed” (or random). Each decryptor usesCi for decryption ifLi = 1 and useŝCi if Li = 0

without knowing what is specified forWi . By generating the ciphertext like this, we can realize

the functionality of wildcards. We can generalize this idea to adapt to the multi-valued attribute

setting.

Finally to make it hard to distinguish the well-formed components from the malformed compo-

nents, we use the linear splitting technique in [BW06, SBC+07] and make our first construction

provably secure as shown in Sect. 2.4.

2.3.3 Our First Construction

The four algorithms are as follows:

Setup (1κ). A trusted authority generates a tupleG = [p,G,GT ,g ∈ G,e] ← Gen(1κ) and

– 17 –



randomw ∈ Z∗p. For each attributei where 1≤ i ≤ n, the authority generates random

values{ai,t,bi,t ∈ Z∗p}1≤t≤ni and random points{Ai,t ∈ G}1≤t≤ni
*1. The authority computes

Y = e(g,g)w. The public keyPK consists of〈Y, p,G,GT ,g,e, {{Aai,t

i,t ,A
bi,t

i,t }1≤t≤ni }1≤i≤n〉. The

master secret keyMK is 〈w, {{ai,t,bi,t}1≤t≤ni }1≤i≤n〉.

KeyGen (MK, L). Let L = [L1, L2, . . . , Ln] = [v1,t1, v2,t2, . . . , vn,tn] be the attribute list for the user

who obtains the corresponding secret key. The trusted authority picks up random values

si , λi ∈ Z∗p for 1 ≤ i ≤ n, setss =
∑n

i=1 si , and computesD0 = gw−s. For 1≤ i ≤ n, the

authority also computes [Di,0,Di,1,Di,2] = [gsi (Ai,ti )
ai,ti bi,ti λi ,gai,ti λi ,gbi,ti λi ] where Li = vi,ti .

The secret keyS KL is 〈D0, {{Di, j}0≤ j≤2}1≤i≤n〉.

Encrypt (PK, M, W). An encryptor encrypts a messageM ∈ GT under a ciphertext policyW =

[W1,W2, . . . ,Wn]. The encryptor picks up a random valuer ∈ Z∗p and sets̃C = MYr and

C0 = gr . Also for 1 ≤ i ≤ n, the encryptor picks up random values{r i,t ∈ Z∗p}1≤t≤ni and

computes{Ci,t,1,Ci,t,2}1≤t≤ni as follows: if vi,t ∈ Wi , [Ci,t,1,Ci,t,2] = [(Abi,t

i,t )r i,t , (Aai,t

i,t )r−r i,t ]

(well-formed); if vi,t < Wi , [Ci,t,1,Ci,t,2] are random (malformed). The ciphertextCT is

〈C̃,C0, {{Ci,t,1,Ci,t,2}1≤t≤ni }1≤i≤n〉.

Decrypt (CT, S KL). The recipient tries decrypting theCT,

〈C̃,C0, {{Ci,t,1,Ci,t,2}1≤t≤ni }1≤i≤n〉without knowingW by using herS KL, 〈D0, {{Di, j}0≤ j≤2}1≤i≤n〉
associated with the attribute listL, as follows:

1. For 1≤ i ≤ n,

[C′i,1,C
′
i,2] = [Ci,ti ,1,Ci,ti ,2] whereLi = vi,ti .

2.

M =
C̃

∏n
i=1 e(C′i,1,Di,1)e(C′i,2,Di,2)

e(C0,D0)
∏n

i=1 e(C0,Di,0)
.

If the attribute listL satisfies the hidden ciphertext policyW of the CT, the recipient can de-

crypt theCT correctly. For the recipient to know whether the decryption was successful without

knowing the ciphertext policyW, we can use the technique used in [BW07] in practice. As in

*1 In the asymmetric bilinear groups,Ai,t must be generated such thatAi,t = gci,t whereci,t ∈R Z
∗
p andci,t is known to

the authority so that the authority can useci,t in KeyGen.

– 18 –



[BW07], the encryptor picks up a randomk ∈ GT and derives two uniform and independentµ-bit

symmetric keys (k0, k1) from k. The final ciphertext consists of〈k1,Encrypt(PK, k,W),Ek0(M)〉
whereEncrypt(PK, k,W) is the ciphertext ofk encrypted underPK andW, andEk0(M) is the

ciphertext ofM encrypted underk0 by using a symmetric encryption scheme. The recipient can

usek1 to check whether the decryption was successful after decryptingk where the false positive

probability is approximately 1/2µ. If successful, the recipient can decryptM by usingk0 derived

from k. The security proof is given in Sect. 2.4.

2.3.4 Second Construction with More Flexibility

We can also apply the technique in Sect. 2.3.2 to [BSW07] and make it recipient-anonymous. With

a property inherited from [BSW07], this scheme is more flexible though the security proof is in the

generic bilinear group model. The scheme in [BSW07] uses a symmetric bilinear group while we

use an asymmetric bilinear group. That is, we assumeGen(1κ) outputsG = [p,G1,G2,GT ,g1∈
G1,g2 ∈G2,e] where e : G1 × G2 → GT is a bilinear map. We also use the External Diffie-

Hellman (XDH) assumption used in, for example, [BBS04, Sco02, CHL05] to achieve recipient

anonymity, which holds on MNT curves [MNT01]. In the XDH assumption, it holds that the

Decisional Diffie-Hellman (DDH) problem is hard inG1 and this implies that there does not exist

an efficiently-computable isomorphismψ : G1→ G2. The four algorithms are as follows:

Setup (1κ). A trusted authority generates a tupleG = [p,G1,G2,GT ,g1 ∈G1,g2 ∈G2,e] and

randomw, β ∈ Z∗p. For each attributei where 1≤ i ≤ n, the authority generates random

values{ai,t ∈ Z∗p}1≤t≤ni and computes points{Ai,t = gai,t

1 }1≤t≤ni . The authority computes

Y = e(g1,g2)w andB = gβ1. The public keyPK consists of〈Y, B, p,G1,G2,GT ,g1,g2,e,

{{Ai,t}1≤t≤ni }1≤i≤n〉. The master secret keyMK is 〈w, β, {{ai,t}1≤t≤ni }1≤i≤n〉.

KeyGen (MK, L). Let L = [L1, L2, . . . , Ln] = [v1,t1, v2,t2, . . . , vn,tn] be the attribute list for the user

who obtains the corresponding secret key. The trusted authority picks up random values

s, λi ∈ Z∗p for 1 ≤ i ≤ n and computesD0 = g
w+s
β

2 . For 1≤ i ≤ n, the authority also computes

[Di,1,Di,2] = [g
s+ai,ti λi

2 ,gλi

2 ] whereLi = vi,ti . The secret keyS KL is 〈D0, {Di,1,Di,2}1≤i≤n〉.

Encrypt (PK, M, W). An encryptor encrypts a messageM ∈ GT under a ciphertext policy

– 19 –



W = [W1,W2, . . . ,Wn]. The encryptor picks up a random valuer ∈ Z∗p and sets̃C = MYr

and C0 = Br . Also for 1 ≤ i ≤ n, the encryptor picks up random valuesr i ∈ Z∗p

such thatr =
∑n

i=1 r i , setsCi,1 = gr i

1 and computes{Ci,t,2}1≤t≤ni as follows: if vi,t ∈ Wi ,

Ci,t,2 = Ar i
i,t (well-formed); if vi,t < Wi , Ci,t,2 is random (malformed). The ciphertextCT is

〈C̃,C0, {Ci,1, {Ci,t,2}1≤t≤ni }1≤i≤n〉.

Decrypt (CT, S KL). The recipient decrypts theCT,

〈C̃,C0, {Ci,1, {Ci,t,2}1≤t≤ni }1≤i≤n〉 by using herS KL, 〈D0, {Di,1,Di,2}1≤i≤n〉 associated with the

attribute listL as follows:

1. For 1≤ i ≤ n,

C′i,2 = Ci,ti ,2 whereLi = vi,ti .

2.

M =
C̃

∏n
i=1 e(Ci,1,Di,1)

e(C0,D0)
∏n

i=1 e(C′i,2,Di,2)
.

Under the XDH assumption, it is hard to guess fromCT what subsetWi the encryptor specified

for each attributeAi in the ciphertext policy. The security proof will be similar to that of [BSW07]

and given in Sect. 2.6. We discuss the flexibility of this scheme in Sect. 2.7 in more detail.

2.4 Overview of Security Proofs for First Construction

We prove that our first scheme is selectively secure under the DBDH assumption and the D-Linear

assumption. We will give the high-level arguments of the proofs here and the detailed proofs of

the lemmas are given in Sect. 2.5.

Suppose the adversary commits to the challenge ciphertext policiesW0,W1 at the beginning of

the game. We use the notationWb = [Wb,1,Wb,2, . . . ,Wb,i , . . . ,Wb,n].

The proof uses a sequence of hybrid games to argue that the adversary cannot win the original

security game denoted byG with non-negligible probability. We begin by slightly modifying the

gameG into a gameG0. GamesG andG0 are the same except for how the challenge ciphertext is

generated. InG0, if M0 , M1, then the challenge ciphtertext componentC̃ is a random element of

GT regardless of the random coinb. The rest of the ciphertext is generated as usual. IfM0 = M1,

– 20 –



then the challenge ciphertext inG0 is generated correctly. That is,G = G0 in this case.

Lemma 1 Under the DBDH assumption, for any polynomial time adversaryA, the difference of

advantage ofA in gameG and gameG0 is negligible in the security parameterκ.

Next, we modifyG0 by changing how to generate the ciphertext components{{Ci,t,1,Ci,t,2}1≤t≤ni }1≤i≤n

and define a sequence of games as follows. Note that, inG` where` > 0, the challenge ciphtertext

component̃C is generated as inG0.

Forvi,t such that (vi,t ∈W0,i ∧vi,t ∈W1,i) or (vi,t < W0,i ∧vi,t < W1,i), the components{Ci,t,1,Ci,t,2}
are generated as in the real scheme through the sequence of all the games.

If there isvi,t such that (vi,t ∈ W0,i ∧ vi,t < W1,i) or (vi,t < W0,i ∧ vi,t ∈ W1,i), the components

{Ci,t,1,Ci,t,2} generated properly in gameG`−1 are replaced with the random values in the new

modified gameG` regardless of the random coinb. Every time we replace such components

{Ci,t,1,Ci,t,2} with the random values, we define a new modified game. We repeat this replacement

one by one until we have no component that satisfies (vi,t ∈ W0,i ∧ vi,t < W1,i) or (vi,t < W0,i ∧
vi,t ∈ W1,i). In the last game of the sequence, the advantage of the adversary is zero because the

adversary is given a ciphertext chosen from the same distribution regardless of the random coinb.

By replacing the well-formed ciphertext components inG`−1 with the random values inG` in

this way, we can embed a D-Linear challenge in the ciphertext such that the distinguisher ofG`−1

andG` leads to the distinguisher of the D-Linear challenge.

Lemma 2 Under the D-Linear assumption, for any polynomial time adversaryA, the difference

of advantage ofA in gameG`−1 and gameG` is negligible in the security parameterκ.

By considering the sequenceG,G0,G1, . . . of games starting with the original gameG, no

polynomial adversary can win the gameG with non-negligible advantage by the lemmas above.

– 21 –



2.5 Proofs of Lemmas

2.5.1 Proof of Lemma 1

Proof: We prove our lemma by assuming that a polynomial adversaryA has non-negligible

differenceε between its advantage in gameG and its advantage in gameG0. We build a simulator

B that can play the DBDH game with advantageε.

Given a DBDH challenge [g,gz1,gz2,gz3,Z] by the challenger whereZ is eithere(g,g)z1z2z3 or

random with equal probability, the simulatorB creates the following simulation.

Init: The simulatorB runs A. A gives B two challenge chiphertext policiesW0 =

[W0,1, . . . ,W0,n],W1 = [W1,1, . . . ,W1,n]. ThenB flips a random coinb ∈ {0,1}.

Setup: To provide a public keyPK to A, B setsY to e(g,g)z1z2. This impliesw = z1z2. For

each attributei where 1≤ i ≤ n, B generates{Ai,t}1≤t≤ni such thatAi,t = gαi,t if vi,t ∈ Wb,i

andAi,t = gz1αi,t if vi,t < Wb,i where{αi,t ∈ Z∗p}1≤t≤ni are random. ThenB publishes public

parameters as in the real scheme by picking up{ai,t,bi,t}1≤t≤ni at random for 1≤ i ≤ n.

Phase 1: A submits an attribute listL = [L1, . . . , Ln] in a secret key query. We consider only the

case whereL 6|= W0∧ L 6|= W1. The reason for this is by our definition ifL |= W0∧ L |= W1,

then the challenge messagesM0,M1 will be equal. In this case, the gamesG andG0 are the

same, so there can be no difference of advantage ofA in G andG0. Therefore,B simply

aborts and takes a random guess.

WhenL 6|= W0 ∧ L 6|= W1, there must bek ∈ {1, . . . , n} such thatLk(= vk,tk) < Wb,k.

For 1≤ i ≤ n, B picks ups′i ∈ Z∗p at random. It then setssk = z1z2 + s′k and for everyi , k,

setssi = s′i . Finally it setss =
∑n

i=1 si = z1z2 +
∑n

i=1 s′i . TheD0 component of the secret

key can be computed as

D0 = gw−s = gz1z2−s = g−
∑n

i=1 s′i .

For k, B computes the components [Dk,0,Dk,1,Dk,2] = [gsk(Ak,tk)
ak,tkbk,tkλk ,gak,tkλk ,gbk,tkλk] as

– 22 –



follows:

Dk,0 = gsk(Ak,tk)
ak,tkbk,tkλk

= gz1z2+s′k(Ak,tk)
ak,tkbk,tkλk

= gz1z2+s′k(gz1αk,tk )ak,tkbk,tkλk

= gs′k(gz1αk,tk )ak,tkbk,tkλ
′
k

whereλk is chosen at random such that

λk = − z2

αk,tkak,tkbk,tk
+ λ′k

and randomλ′k is known toB.

B can compute the components [Dk,1,Dk,2] easily.

For i , k, B can also compute [Di,0,Di,1,Di,2] easily.

Challenge: A submits two challenge messagesM0 andM1. If M0 = M1, B simply aborts and

takes a random guess for the reason given above. OtherwiseB setsC̃ = MbZ andC0 = gz3

which impliesr = z3 and generates, forWb, the ciphertext〈C̃,C0, {{Ci,t,1,Ci,t,2}1≤t≤ni }1≤i≤n〉.
Whenvi,t ∈ Wb,i , B can generate{Ci,t,1,Ci,t,2} correctly becauseAi,t does not contain un-

knownz1 and whenvi,t < Wb,i , {Ci,t,1,Ci,t,2} can be simply chosen at random.

Phase 2: Phase 1 is repeated.

Guess: A outputs a guessb′ of b. If b′ = b, B outputs 1 and otherwise outputs 0. By our

assumption, the probability thatA guessesb correctly in gameG has a non-negligibleε

difference from that of it guessingb correctly inG0. WhenZ = e(g,g)z1z2z3,A is in game

G and whenZ is random,A is in gameG0. Therefore the simulatorB has advantageε in

the DBDH game.

□

– 23 –



2.5.2 Proof of Lemma 2

Proof: We prove our lemma by assuming that a polynomial adversaryA has non-negligible dif-

ferenceε between its advantage in gameG`−1 and its advantage in gameG`. We build a simulator

B that can play the D-Linear game with advantageε.

Given a D-Linear challenge [g,gz1,gz2,Z,gz2z4,gz3+z4] by the challenger whereZ is eithergz1z3

or random with equal probability, the simulatorB creates the simulation. Note that this D-Linear

assumption is equivalent to that of Sect. 2.2.2.2.

As mentioned in Sect. 2.4, inG`−1, the ciphertext components{Ci` ,t` ,1,Ci` ,t` ,2} are generated as

in the real scheme, whereas, inG`, the components are random regardless of the random coinb

and we assume that (vi` ,t` ∈W1,i` ∧ vi` ,t` < W0,i` ) without loss of generality.

Init: The simulatorB runs A. A gives B two challenge chiphertext policiesW0 =

[W0,1, . . . ,W0,n],W1 = [W1,1, . . . ,W1,n]. Then B flips a random coinb ∈ {0,1}. If

b = 0, B aborts and takes a random guess. The reason for this is by our definition if

b = 0 where (vi` ,t` ∈ W1,i ∧ vi` ,t` < W0,i), we haveG`−1 = G` because the distribution of

the challenge ciphertext in gameG`−1 is the same as that of gameG`, so there can be no

difference of advantage ofA in G`−1 andG`. We proceeds assumingb = 1.

Setup: To provide a public keyPK to A, B setsY to e(g,g)w wherew is known toB. For

each attributei where 1≤ i ≤ n, B generates{Ai,t}1≤t≤ni such thatAi,t = gαi,t if vi,t ∈ Wb,i

andAi,t = gz1αi,t if vi,t < Wb,i where{αi,t ∈ Z∗p}1≤t≤ni are random. ThenB publishes public

parameters as in the real scheme by picking up{ai,t,bi,t}1≤t≤ni at random for 1≤ i ≤ n

with the exception that, forai` ,t` andbi` ,t` , B setsai` ,t` = z1 andbi` ,t` = z2 and can compute

A
ai` ,t`

i` ,t`
= gαi` ,t`ai` ,t` andA

bi` ,t`

i` ,t`
= gαi` ,t`bi` ,t` without knowingz1, z2.

Phase 1: A submits an attribute listL = [L1, . . . , Ln] in a secret key query. IfLi` , vi` ,t` , B can

generate the corresponding secret key easily.

Let’s assumeLi` = vi` ,t` . B needs to compute the secret key components [Di` ,0,Di` ,1,Di` ,2] =

[gsi` (Ai` ,t` )
ai` ,t`bi` ,t`λi` ,gai` ,t`λi` ,gbi` ,t`λi` ] whereai` ,t` = z1,bi` ,t` = z2.

– 24 –



B can computeDi` ,0 as

Di` ,0 = gsi` (Ai` ,t` )
ai` ,t`bi` ,t`λi`

= gsi` (Ai` ,t` )
z1z2λi`

= gsi` (gαi` ,t` )z1z2λi`

= gs′i`

wheresi` is chosen at random such that

si` = s′i` − αi` ,t`z1z2λi`

and randoms′i` is known toB. B can compute the components [Di` ,1,Di` ,2] easily without

knowingz1, z2.

Here we can assumeL 6|= W0∧L 6|= W1 becauseLi` = vi` ,t` ∧vi` ,t` < W1−b,i` . That is, we have

L 6|= W1−b and thereforeL 6|= Wb, so there must bek ∈ {1, . . . ,n} such thatLk(= vk,tk) < Wb,k.

ThenB generates [Dk,0,Dk,1,Dk,2] as follows: B setssk = s′k + αi` ,t`z1z2λi` wheres′k is

random and known toB and computes

Dk,0 = gsk(Ak,tk)
ak,tkbk,tkλk

= gs′k+αi` ,t` z1z2λi` (gz1αk,tk )ak,tkbk,tkλk

= gs′k(gz1αk,tk )ak,tkbk,tkλ
′
k

whereλk is chosen at random such that

λk = λ′k −
αi` ,t`z2λi`

αk,tkak,tkbk,tk

and randomλ′k is known toB. B can compute the components [Dk,1,Dk,2] easily without

knowingz2.

Also, for i , i`, k, B can compute [Di,0,Di,1,Di,2] easily.

– 25 –



Finally by computing

s =

n∑

i=1

si

= si` + sk +
∑

i,i` ,k

si

= s′i` − αi` ,t`z1z2λi` + s′k + αi` ,t`z1z2λi` +
∑

i,i` ,k

si

= s′i` + s′k +
∑

i,i` ,k

si ,

the componentD0 = gw−s of the secret key can be computed.

Challenge: A submits two challenge messagesM0 andM1. B setsC0 = gz3+z4 which implies

r = z3+z4. If M0 , M1,B setsC̃ to be random and ifM0 = M1,B setsC̃ = Mbe(g,gz3+z4)w.

B generates, forWb, the ciphertext components{{Ci,t,1,Ci,t,2}1≤t≤ni }1≤i≤n as inG`−1 with the

exception that the components{Ci` ,t` ,1,Ci` ,t` ,2} are computed as

Ci` ,t` ,1 = (A
bi` ,t`

i` ,t`
)r i` ,t` = (Az2

i` ,t`
)z4 = (gαi` ,t` z2)z4,

Ci` ,t` ,2 = (A
ai` ,t`

i`
)r−r i` ,t` = (gαi` ,t` z1)z3 = Zαi` ,t`

without knowingz2z4, z1z3. This implies thatr i` ,t` = z4 andZ = gz1z3 and if Z = gz1z3, the

components are well-formed andA is in gameG`−1.

Phase 2: Phase 1 is repeated.

Guess: A outputs a guessb′ of b. If b′ = b, B outputs 1 and otherwise outputs 0. By our

assumption, the probability thatA guessesb correctly in gameG`−1 has a non-negligible

ε difference from that of it guessingb correctly inG`. WhenZ = gz1z3,A is in gameG`−1

and whenZ is random,A is in gameG`. Therefore the simulatorB has advantageε in the

D-Linear game.

□

– 26 –



2.6 Security Proof for Second Construction

Generic Bilinear Group Model. The generic group model was introduced in [Nec94, Sho97] and

extended to the bilinear group setting in [BB04, BBG05]. Under this model, elements ofG1, G2,

andGT of prime orderp are assumed to be encoded as unique random strings so that only equality

may be tested between the group elements by the adversary. Letξ1 : Zp → {0,1}∗ be the random

encoding of elements ofG1, i.e., an injective map and thenG1 = {ξ1(x) : x ∈ Zp}. If g1 ∈ G1 is a

random generator ofG1, ξ1(x) can be considered to be the random string representation ofgx
1 ∈ G1.

Similarly we defineξ2, ξT for G2,GT . In order to perform the group and pairing operations, the

adversary needs to interact with an oracle that performs the group and pairing operations using

those random strings. That is, the adversary communicates with the operation oracle using only

theξ-representations of the group elements. In this model, the adversary can make the following

oracle queries.

Multiplication: Givenξk(a), ξk(b) by the adversary, the oracle returnsξk(a+b) wherek ∈ {1,2,T}.
Exponentiation by a constant: Given ξk(a) and c(∈ Zp) by the adversary, the oracle returns

ξk(ca) wherek ∈ {1,2,T} andc is a constant known to the adversary.

Pairing: Given ξ1(a), ξ2(b) by the adversary, the oracle returnsξT(ab) that corresponds to

e(ξ1(a), ξ2(b)).

Homomorphism: Givenξ2(a) by the adversary, the oracle returnsξ1(a). Inverse homomorphism

queries are impossible because of the XDH assumption.

As in [BBG05, BSW07], we prove the following theorem.

Theorem 1 Let ξ1, ξ2, ξT ,G1,G2,GT be defined as above. For any adversaryA, let q be a bound

on the total number of group elements it receives from queries it makes to the operation oracle and

from its interaction with the non-selective-ID CP-ABE game. Then we have that the advantage of

the adversary in the game isO
(

q2

p

)
.

Proof: We can create a simulatorB that interacts withA as follows:

– 27 –



B maintains three lists:LG1 = {( f1,`, ξ1,`) : ` = 1, . . . , τ1}, LG2 = {( f2,`, ξ2,`) : ` = 1, . . . , τ2},
LGT = {( fT,`, ξT,`) : ` = 1, . . . , τT}. The itemsf1,`, f2,`, fT,` contain rational functions or constants.

B usesf1,`, f2,`, fT,` to store the group operation queries thatA makes andξ1,`, ξ2,`, ξT,` to store

the query results. That is,ξ1,` = ξ1( f1,`), ξ2,` = ξ2( f2,`), andξT,` = ξT( fT,`).

At the beginning of the CP-ABE game,B sets f1,1 = 1, f2,1 = 1, fT,1 = 1 and chooses their

corresponding random stringsξ1,1, ξ2,1, ξT,1. That is,ξ1,1, ξ2,1, andξT,1 correspond tog1,g2, and

e(g1,g2) respectively. AlsoB updates the lists by adding the tuples corresponding to public key

componentse(g1,g2)w,gβ1, and{{gai,t

1 }1≤t≤ni }1≤i≤n. Note that, in the real non-selective-ID CP-ABE

game, the challenger chooses random real values for the variables〈w, β, {{ai,t}1≤t≤ni }1≤i≤n〉 and

maintains them in the lists. However, in the simulationB does not choose real values for the

variables and instead maintains multi-variate rational functions in the lists. At the end of the

simulation,B chooses each random value for each variable using lazy evaluation and reveals all

the tuples in the lists so thatA can verify the consistency of the game. To start the game,B sends

to A the chosen random strings in the lists. WheneverA makes the oracle queries, secret key

queries, and challenge query,B updates its lists as follows. Note that wheneverB adds new tuples

to the lists, the new random strings are returned toA.

Multiplication: A inputsξk(a) andξk(b) wherek ∈ {1,2,T}. B checks thatξk(a) andξk(b) are in

the listLGk and returns⊥ if they are not. ThenB computesf = a+b mod p. If f is already

in the listLGk, thenB returnsξk( f ). Otherwise,B chooses a new random stringξk( f ) and

adds a new tuple (f , ξk( f )) to the list.

Exponentiation by a constant: A inputsξk(a) and a constantc wherek ∈ {1,2,T}. B checks

thatξk(a) is in the listLGk and returns⊥ if it is not. ThenB computesf = ca mod p. If f

is already in the listLGk, thenB returnsξk( f ). Otherwise,B chooses a new random string

ξk( f ) and adds a new tuple (f , ξk( f )) to the list.

Pairing: A inputsξ1(a) andξ2(b). B checks thatξ1(a) andξ2(b) are in the listsLG1 and LG2

respectively and returns⊥ if they are not. ThenB computesf = ab mod p. If f is already

in the listLGT , thenB returnsξT( f ). Otherwise,B chooses a new random stringξT( f ) and

adds a new tuple (f , ξT( f )) to the list.

Homomorphism: A inputsξ2(a). B checks thatξ2(a) is in the listLG2 and returns⊥ if it is not.

– 28 –



If a is already in the listLG1, thenB returnsξ1(a). Otherwise,B chooses a new random

stringξ1(a) and adds a new tuple (a, ξ1(a)) to the list.

Secret Key Query: A inputs an attribute listL = [L1, L2, . . . , Ln] = [v1,t1, v2,t2, . . . , vn,tn]

for the j-th query. B adds to the listLG2 new tuples corresponding toS KL

〈g
w+s( j)

β

2 , {gs( j)+ai,ti λ
( j)
i

2 ,g
λ

( j)
i

2 }1≤i≤n〉 that include new variabless( j) andλ( j)
i ’s.

Challenge Query: A inputs〈M0,W0〉 and〈M1,W1〉 whereWi = [Wi,1, . . . ,Wi,n] and i ∈ {0,1}.
We assume thatM0 = ξT(m0) and M1 = ξT(m1) already exist in the listLGT . In the real

game, the challenger chooses randomb ∈ {0,1} to encryptMb for Wb. However,B creates

the ciphertext〈C̃,C0, {Ci,1, {Ci,t,2}1≤t≤ni }1≤i≤n〉 as follows:

ForC0, B adds a tuple (βr, ξ1(βr)) to the listLG1 wherer is a new variable. For{Ci,1}1≤i≤n,

B adds tuples (r i , ξ1(r i)) to the listLG1 wherer i ’s are new variables andr =
∑n

i=1 r i .

If M0 = M1,B adds to the listLGT a tuple (m0 + wr, ξT(m0 + wr)) for C̃. Note thatm0 = m1

in this case. IfM0 , M1,B adds to the listLGT a tuple (θC̃, ξT(θC̃)) for C̃ whereθC̃ is a new

variable.

For {{Ci,t,2}1≤t≤ni }1≤i≤n, if vi,t ∈ W0,i ∧ vi,t ∈ W1,i , B adds a tuple (ai,tr i , ξ1(ai,tr i)) to the list

LG1. If vi,t < W0,i ∧ vi,t < W1,i , B adds a tuple (r i,t, ξ1(r i,t)) to the listLG1 wherer i,t’s are

new variables. If (vi,t < W0,i ∧ vi,t ∈ W1,i) or (vi,t ∈ W0,i ∧ vi,t < W1,i), B adds a tuple

(θai,tr i , ξ1(θai,tr i )) to the listLG1 whereθai,tr i ’s are new variables.

AfterA terminates and returns a guessb′ ∈ {0,1} of b,B chooses randomb ∈ {0,1} and subsitutes

mb + wr for θC̃ if θC̃ was used inLGT and substitutesai,tr i for θai,tr i wherevi,t ∈Wb,i ∧ vi,t < W1−b,i .

Finally,B chooses random values fromZp for all the variables and reveals all the evaluated tuples

in the lists.

Analysis of B’s Simulation. TheB’s simulation is perfect if substituting the chosen random

values for all the variables does not create any equality relation (i.e., unexpected collision) among

intermediate rational functions that is not an equality of rational functions. If no unexpected

collisions occur, the success probability ofA is 1
2 because theB’s simulation is perfect. Such

unexpected collisions occur only when

fk,` = fk,`′ in Zp for somè , `′, yet fk,` , fk,`′ as rational functions wherek ∈ {1,2,T}.

– 29 –



The probability that such unexpected collisions occur inLG1, LG2 or LGT is at mostO
(

q2

p

)
by the

Schwartz-Zippel lemma [Zip79, Sch80] as in [BBG05, BSW07].

Next we show that no new equalities between rational functions such asfk,` = fk,`′ are created

even ifB substitutes variablesmb + wr andai,tr i ’s for variables such asθC̃ andθai,tr i ’s at the end

of the simulation as described earlier. That is, we show that it cannot happen thatfk,` , fk,`′

beforeB’s variable substitution butfk,` = fk,`′ afterB’s variable substitution. This means that we

must show thatA cannot construct a query forf (= fk,` − fk,`′) where f , 0 beforeB’s variable

substitution andf = 0 afterB’s variable substitution. As in [BSW07], we will show thatA can

never construct queries fore(g1,g2)γwr or e(g1,g2)γ′ai,tr i ’s by an exhaustive case analysis whereγ

andγ′ are any terms.

Case of wr: WhenB substitutesmb + wr for θC̃, it means thatA cannot obtainS KL such that

L |= W0 ∧ L |= W1 becauseM0 , M1. Therefore,A cannot decrypt the ciphertext even if

B substitutesai,tr i ’s for θai,tr i ’s. As proved in [BSW07], in this case,A cannot construct a

query fore(g1,g2)γwr.

Case of ai,tr i : Fix anyai,tr i that appears whenB applies variable substitution at the end of the

simulation. Obviously,A cannot construct a query forgγ′ai,tr i

1 , so if gai,tr i

1 is testable (i.e.,A
can test whetherθai,tr i = ai,tr i),A must be able to construct a query fore(g1,g2)γ′ai,tr i . If A
can do so,A can test whetherθai,tr i = ai,tr i by comparingξT(γ′ai,tr i) with ξT(γ′θai,tr i ). In

other words, ifgai,tr i

1 is testable,A must be able to construct a query fore(g1,g2)ν whereν

is a non-zero rational function including the variableθai,tr i and becomes zero (or vanishes)

whenai,tr i is substituted forθai,tr i and other variables are also substituted appropriately in

ν. Note that if it can happen thatfT,` , fT,`′ beforeB’s variable substitution andfT,` = fT,`′

afterB’s variable substitution,A can construct such a query fore(g1,g2)ν whereν = fT,` −
fT,`′ . Therefore, we show thatA can never construct such a query fore(g1,g2)ν and no new

equalities between rational functions inLGT are created afterB applies variable substitution

at the end of the simulation.

Suppose thatA could construct suchν. To cancelai,tr i in ν that appears afterB substitutes

ai,tr i for θai,tr i , A needs to pairgr i

1 (= ξ1(r i)) with g
s( j)+ai,tλ

( j)
i

2 (= ξ2(s( j) + ai,tλ
( j)
i )) or to pair

g
ai,t′ r i

1 (= ξ1(ai,t′ r i)) with g
s( j)+ai,tλ

( j)
i

2 (= ξ2(s( j) +ai,tλ
( j)
i )) to create a term inν that includesai,tr i

– 30 –



wheret , t′.

If A pairs g
ai,t′ r i

1 (= ξ1(ai,t′r i)) with g
s( j)+ai,tλ

( j)
i

2 (= ξ2(s( j) + ai,tλ
( j)
i )), A needs to pair

g
θai,t ri

1 (= ξ1(θai,tr i )) with g
ai,t′λ

( j)
i

2 (= ξ2(ai,t′λ
( j)
i )) to makeν vanish, but this is impossible

becauseg
ai,t′λ

( j)
i

2 (= ξ2(ai,t′λ
( j)
i )) is not available.

If A pairsgr i

1 (= ξ1(r i)) with g
s( j)+ai,tλ

( j)
i

2 (= ξ2(s( j) +ai,tλ
( j)
i )),A needs to cancele(g1,g2)s( j)r i (=

ξT(s( j)r i)). In this case,A might be able to obtaine(g1,g2)wr(= ξT(wr)) ande(g1,g2)s( j)r (=

ξT(s( j)r)) becauseA can make a secret key query forS KL such thatL |= W0 ∧ L |= W1.

On the other hand, we know thatvi,t ∈ Wb,i ∧ vi,t < W1−b,i . This means thatA cannot

haveS KL such thatL |= W0 ∧ L |= W1 andLi = vi,t. That is,A cannot haveS KL such

that S KL can decrypt the ciphertext andLi = vi,t. By the argument similar to that of

[BSW07], there isi′(, i) such thatA cannot cancele(g1,g2)r i′ai′ ,t′λ
( j)
i′ (= ξT(r i′ai′,t′λ

( j)
i′ )) even

if A obtainse(g1,g2)wr(= ξT(wr)) and e(g1,g2)s( j)r (= ξT(s( j)r)). ThusA cannot cancel

e(g1,g2)s( j)r i (= ξT(s( j)r i)) and cannot construct a query for a non-zero rational functionν

that becomes zero whenai,tr i is substituted forθai,tr i .

Therefore, no new equalities between rational functionsfk,` = fk,`′ in the lists are created where

k ∈ {1,2,T} even ifB substitutes variablesmb + wr andai,tr i ’s for variables such asθC̃ andθai,tr i ’s

at the end of the simulation. Thus the probability that the unexpected collisions occur is still at

mostO
(

q2

p

)
. This concludes the proof. □

2.7 Adding Attributes after Setup

In our schemes, it is easy to add new possible valuesvi,t’s of each attributeAi in the ciphertext

policy even afterSetupis executed, because we have only to add the public key components for

the new values ofAi and the existing public parameters can remain unchanged. That is, the access

structure for the ciphertext policy can be extended accordingly though the ciphertext size is also

increased. However, in our first scheme, it cannot be done securely to simply add new attributes

Ai′ ’s in the ciphertext policy with the existing public parameters being unchanged afterSetup

is executed and some users already have their secret keys. The reason is as follows. Suppose

there are three attributesA1,A2,A3 in the system whenSetupis executed and a user obtains her

– 31 –



secret keyS KL where the attribute listL = [L1, L2, L3] = [1,1,0]. After that, a new attributeA4

is added in the system and the corresponding public key components forA4 are generated and

published. Then an encryptor may specify a ciphertext policyW = [W1, . . . ,W4] = [∗, ∗,0,1],

requiring the legitimate recipients to have the value 1 forA4. In this case, the user who has the

aboveS KL can decrypt the ciphertext encrypted under the ciphertext policyW even if she does

not have the secret key component forA4, becauseL satisfies [W1,W2,W3] partially and it enables

the user to combine all the secret key components to reconstructs =
∑n

i=1 si in the exponent

for decryption. The similar situations can also happen in [CN07, KSW08, BW07, SBC+07] if

we consider the setting where new attributes may be added in the ciphertext policy dynamically

after Setupis executed. As mentioned in [OSW07], we may be able to prepare redundant filler

attributes reserved for future use, but it increases the ciphertext size unnecessarily.

The second scheme can avoid this situation with the property inherited from [BSW07] and

we can add new attributes in the ciphertext policy securely afterSetup is executed where the

existing public parameters can remain unchanged. Note that in this scheme, the encryptor splits

randomr in the ciphertextCT such thatr =
∑n

i=1 r i and it forces decryptors to have the secret

key components for all the attributes specified in the ciphertext policy even if the attributes in

the ciphertext policy were added after the decryptors obtained their secret keys. If a user wants to

decrypt the ciphertext with the ciphertext policy including newly added attributes, she must obtain

a new secret key including the newly added attributes from the trusted authority again.

Additionally, in the second scheme, an encryptor can specify a variable-length ciphertext policy.

For example, the encryptor can specify the ciphertext policyW = [Wi1,Wi2, . . . ,Wim] wherem< n

andn is the number of all the attributes in the system. Since there are several attributes that do not

appear in the ciphertext policy, the partial information on the ciphertext policy is leaked. That is,

it means that the wildcards are specified for the attributes not appearing in the ciphertext policy.

However, it may be acceptable to the encryptor in some cases and it can reduce the size of the

ciphertext.

– 32 –



Table. 2.1 Comparison of different schemes

Expressiveness of

policy

Anonymity Complexity

assumption

Type of bilin-

ear group

Add attrs af-

ter setup

[BW07] AND-gates on

multi-valued

attributes with

wildcards

yes cDBDH,

C3DH

group of

composite

orderN = pq

no

[BSW07] all boolean for-

mula

no generic group

model

any yes

[CN07] AND-gates on

postive and nega-

tive attributes with

wildcards

no DBDH any no

[KSW08] all boolean for-

mula

yes new assump-

tions based

on composite

order group

group of

compos-

ite order

N = pqr

no

This work1 AND-gates on

multi-valued

attributes with

wildcards

yes DBDH,

D-Linear

any no

This work2 AND-gates on

multi-valued

attributes with

wildcards

yes generic group

model

DDH-hard

group

yes

– 33 –



Chapter 3

Multiparty Computation for Integer

Arithmetic Primitives

Damgårdet al. [DFK+06] showed a novel technique to convert a polynomial sharing of secreta

into the sharings of the bits ofa in constant rounds, which is called the bit-decomposition protocol.

The bit-decomposition protocol is a very powerful tool because it enables bit-oriented operations

even if shared secrets are given as elements in the field. However, the bit-decomposition protocol

is relatively expensive.

In this chapter, we present a simplified bit-decomposition protocol by analyzing the original

protocol. Moreover, we construct more efficient protocols for a comparison, interval test and

equality test of shared secrets without relying on the bit-decomposition protocol though it seems

essential to such bit-oriented operations. The key idea is that we do computation on secreta with

c andr wherec = a+ r, c is a revealed value, andr is a random bitwise-shared secret. The outputs

of these protocols are also shared without being revealed.

The realized protocols as well as the original protocol are constant-round and run with less

communication rounds and less data communication than those of [DFK+06]. For example, the

round complexities are reduced by a factor of approximately 3 to 10. The results in this chapter

were published as [NO07].

– 35 –



3.1 Introduction

3.1.1 Background

Securemultiparty computation(MPC) allows a set of mutually distrustful parties to jointly com-

pute an agreed function of their inputs in such a way that the correctness of the output and

the privacy of the parties’ inputs are guaranteed. That is, when a function is represented as

(y1, . . . , yn) = f (x1, . . . , xn), each party with its private inputxi obtains only the outputyi but

nothing else.

A great deal of work (e.g., [Yao82, GMW87, BGW88, CCD88, BMR90, FKN94, JJ00]) has

been done in this research field. By using generic circuit based protocols, it is shown that any

function can be computed securely [BGW88, GMW87]. However, the general protocols tend to

be inefficient; hence the main aim of our research is to construct efficient protocols for specific

functions.

When we are interested in integer arithmetic, there are two choices to represent a function:

an arithmetic circuit over a prime fieldZp and a Boolean circuit. Inputs (and outputs) in the

arithmetic circuit are represented as elements inZp (or a ring), while inputs in the Boolean circuit

are represented as bits. The input encoding has an influence on the efficiency of computation.

Addition and multiplication of shared secrets can be performed efficiently in the arithmetic circuit,

whereas not in the Boolean circuit. On the other hand, bit-oriented operations like interval tests,

equality tests, and comparisons of shared secrets are easy in the Boolean circuit, whereas they are

non-trivial tasks in the arithmetic circuit.

To bridge the gap between arithmetic circuits and Boolean circuits, Damgårdet al. [DFK+06]

have proposed the MPC protocol called bit-decomposition in the secret sharing setting (e.g.,

[BGW88, GRR98]). Also, Schoenmakers and Tuyls [ST06] have proposed a similar protocol for

MPC [CDN01, DN03] based on threshold homomorphic cryptosystems (THC) [DJ01, FPS00].

In the bit-decomposition protocol, a sharing of an element in the field (or an encryption of an

element in the ring in the threshold homomorphic setting) is converted into sharings (encryptions)

of bits.

– 36 –



The bit-decomposition protocol is very useful and has many applications because it enables bit-

oriented operations to be performed in the arithmetic circuit without performing the entire com-

putation bitwise. For example, when computingab by using the techniques in [ACS02, DFK+06],

or the Hamming distance betweena andb where shared secretsa andb are elements inZp, the

bit-decomposition protocol is essential because we need the bitwise sharings of the shared secrets.

Other important applications are comparisons, interval tests and equality tests of shared secrets.

For example, in the comparison protocol, a single shared bit is computed such that it indicates the

result of a comparison between two shared secrets. In the Boolean circuit, it is relatively easy to

compare two shared secrets because the bits of the secrets are shared. That is, in the comparison

protocol based on the Boolean circuit (which we call the bitwise less-than protocol in Sect. 3.3.5

as in [DFK+06]), we can check the secretsbit by bitprivately and compare the two shared secrets

even without revealing the bit position that determines the comparison result. Therefore, even if

inputs are given as sharings of elements in the field, the comparison can be performed easily with

the bit-decomposition protocol.

Thus the bit-decomposition protocol is a very powerful tool because changing the represen-

tations of shared secrets enables us to gain the benefits of both Boolean circuits and arithmetic

circuits. However, the bit-decomposition protocol involves expensive computation in terms of

round and communication complexities.

In this dissertation, we present a simplified bit-decomposition protocol by analyzing the orig-

inal protocol. Moreover, we construct more efficient protocols for the main applications of the

bit-decomposition protocol, which are interval tests, equality tests, and comparisons, without re-

lying on the bit-decomposition protocol though it seemed essential. For example, the equality test

protocol is an important subprotocol in [CD01, OK05, MF06], so it will be meaningful to con-

struct efficient protocols for these applications without relying on the bit-decomposition protocol

if possible. For the equality test, we present deterministic and probabilistic protocols.

In our constructions, the outputs of the protocols are also shared without being revealed, so

they can be secret inputs for the subsequent computation. Therefore, our protocols can be used as

building blocks in the more complex computation.

– 37 –



3.1.2 Our Contributions

We construct constant-round protocols for bit-decomposition, interval test, comparison, and

equality test, building on the subprotocols in [DFK+06]. The proposed bit-decomposition

protocol runs with less communication rounds and less data communication than the original

protocol [DFK+06]. Therefore, the interval test, comparison and equality test protocols are also

improved inevitably by using the proposed bit-decomposition protocol. However, we present

new protocols dedicated to them without relying on the bit-decomposition protocol. By using

our protocols, given shared secrets as elements inZp, we can perform the interval tests, equality

tests, and comparisons of the shared secrets more efficiently than the bit-decomposition based

protocols. For the equality test, we propose two kinds of protocols. One (Proposed1) is a

deterministic protocol and the other (Proposed2) is a probabilistic protocol with a negligible error

probability and a much smaller round complexity. The key idea is that we do computation on

secreta with c and r wherec = a + r, c is a revealed value, andr is a random bitwise-shared

secret.

In Table 3.1, we summarize the results of the round and communication (comm.) complexities

of each protocol wherè is the bit length of primep of the underlying field for linear secret

sharing schemes andk must be chosen such that the error probability
(

1
2

)k
is negligible. Here

“BD-based” means that the protocol is based on the proposed bit-decomposition protocol. As

shown in Table 3.1, we can see that these bit-oritented operations can be realized with smaller

complexities than those of the bit-decomposition based protocols by constructing them without

the bit-decomposition protocol. For example, the round complexities are reduced by a factor of

approximately 3 to 10.

Our protocols (except the probabilistic equality test protocol which is only applicable to the

secret sharing setting) are applicable to both the secret sharing setting [DFK+06] and the threshold

homomorphic setting [ST06] though we describe our constructions based on the secret sharing

setting.

– 38 –



Table. 3.1 Comparison of Round/ Communication Complexities

Protocol Round Comm.

Bit-Decomposition [DFK+06] 38 93̀ + 94̀ log2 `

Proposed 25 93̀ + 47̀ log2 `

Interval Test [DFK+06] 44 127̀ + 94̀ log2 ` + 1

BD-based 31 127̀ + 47̀ log2 ` + 1

Proposed 13 110̀ + 1

Comparison [DFK+06] 44 205̀ + 188̀ log2 `

BD-based 31 205̀ + 94̀ log2 `

Proposed 15 279̀ + 5

Equality Test [DFK+06] 39 98̀ + 94̀ log2 `

BD-based 26 98̀ + 47̀ log2 `

Proposed1 8 81̀

Proposed2 4 10k

3.1.3 Related Work

Damgårdet al. [DFK+06] have shown a novel technique to convert a polynomial sharing of an

element inZp into sharings of bits in constant rounds. Also Shoenmakers and Tuyls [ST06] have

shown a similar conversion technique for multiparty computation based on threshold homomor-

phic cryptosystems [CDN01, DN03]. These protocols are the first to bridge the gap between

arithmetic circuits and Boolean circuits.

Toft [Tof07] has proposed another version of a probabilistic equality test protocol indepen-

dently of and concurrently with our probabilistic equality test protocol. Both the protocols use the

property of quadratic residues in a probabilistic way.

Recently, as a practical approach (rather than theoretical constant-round protocols), in

[BDJ+06, FJ06, Tof05], the implementation for multiparty integer computation, including the

bit-decomposition and comparison, is described with non-constant-round protocols where shared

– 39 –



secrets are assumed to be sufficiently small compared with primep of the underlying secret

sharing scheme, whereas we do not assume that shared secrets are upper bounded by a certain

value as in [DFK+06]. We mention this aspect in Sect. 3.7.

3.2 Preliminaries

We assume thatn partiesP1, . . . ,Pn are mutually connected by secure and authenticated channels

in a synchronous network and the indexi for eachPi is public among the parties. Letp be an

odd prime and̀ be the bit length ofp. Zp is a prime field. When we writea ∈ Zp, it means that

a ∈ {0,1, . . . , p − 1}. We use [a]Fp to denote a polynomial sharing [Sha79] (see Sect. 3.3.1.1) of

secreta ∈ Zp which is equal to a finite fieldFp. We also use the simplified notation [a]p instead

of [a]Fp if the context is clear. The polynomial sharing [a]p means thata is shared among the

parties wherefa is a random polynomialfa(x) = a+ a1x+ a2x2 + · · ·+ atxt mod p with randomly

chosenai ∈ Zp for 1 ≤ i ≤ t, t < n
2, and fa(i) is thePi ’s share ofa. An adversary can corrupt up

to t parties. We describe our protocols in the so-called “honest-but-curious” model, but standard

techniques will be applicable to make our protocols robust.

Let C be a Boolean test. When we write [C]p, it means thatC ∈ {0,1} andC = 1 iff C is true.

For example, we use [a < b]p to denote the output of the comparison protocol.

Because the multiplication protocol is a dominant factor of the complexity, as in [DFK+06],

we measure the round complexity of a protocol by the number of rounds of parallel invocations of

the multiplication protocol [GRR98] and we also measure the communication complexity by the

number of invocations of the multiplication protocol. The round complexity relates to the time

required for a protocol to be completed and the communication complexity relates to the amount

of data communicated among the parties during a protocol run. Though our measurement of

complexities basically follows that of [DFK+06], the complexity analysis in [DFK+06] is rough.

In this dissertation, we reevaluate the round and communication complexities of the protocols in

[DFK+06] to compare our protocols with those of [DFK+06] based on the same measurement.

– 40 –



3.3 Building Blocks

3.3.1 Core Primitives

3.3.1.1 Shamir Secret Sharing

The concept of secret sharing was proposed in [Sha79]. By using this scheme, a secret is shared

among multiple parties, and can be reconstructed by collecting a certain number of secret shares.

Now we describle how to construct a (t+1,n) threshold secret sharing scheme. In order to share

a secrets, the dealer ofsgenerates a polynomialf with ai chosen at random from{0,1, . . . , p−1},

f (x) = s+ a1x + a2x2 + · · · + atx
t mod p

where 0≤ s< p andp is a prime. The parties are numbered from 1 ton wheren < p is assumed.

The dealer sends the secret sharef (i) to thei-th partyPi through the secure channel. Any subset

S of t + 1 parties out ofn total parties can reconstructs = f (0) by using Lagrange interpolation

where

f (x) =
∑

i∈S
f (i)λS

x,i mod p

and

λS
x,i =

∏

i′∈S\{i}

(x− i′)
(i − i′)

.

The valueλS
x,i is a Lagrange coefficient. The important thing to note is that the adversary can

obtain no partial information even if he collectst secret shares. This can be confirmed as follows.

Suppose the adversary has collectedt secret shares of a subsetS′. Then for each possible guess

sguess, a valid polynomialr(x) exists such that,

r(x) =


∑

i∈S′
f (i)λS′∪{0}

x,i

 +
(
sguessλ

S′∪{0}
x,0

)
mod p.

Therefore, the adversary cannot guess the correct secret. This scheme can also be used over any

extension fieldFpe.

– 41 –



3.3.1.2 Homomorphic Cryptosystem with Threshold Decryption

We sketch the concept of threshold homomorphic cryptosystems (THCs) for completeness. An

additively homomorphic public key cryptosystem (e.g., [Pai99]) has the following properties.

• E(m1 + m2) = E(m1) × E(m2)

• E(cm) = E(m)c

• E(−m) = E(m)−1

whereE(m) is the ciphertext ofm andc is a public value. The above computation can be done

without knowing the plaintextsm1,m2,mor the decryption key.

In MPC based on THCs, the decryption key is shared among the parties by using secret sharing

as in [DJ01, FPS00] and the threshold decryption can be done only if the threshold number of

parties cooperate and the decryption key itself is never revealed even after the decryption is done

correctly. With these properties, a shared secret in the secret sharing setting corresponds to an

encryption of the secret and the reconstruction of the secret by Lagrange interpolation corresponds

to the threshold decryption and therefore we can realize the same MPC functionality in both the

secret sharing and threshold homomorphic settings.

3.3.2 Distributed Computation with Shared Secrets for Addition and Multipli-

cation

We utilize the classical BGW protocol [BGW88] based on Shamir secret sharing [Sha79]. Let’s

assume now thatn parties have two shared secretsa andb as [a]p = { fa(1), . . . , fa(n)} and [b]p =

{ fb(1), . . . , fb(n)}. Then the parties can obtain [c + a mod p]p, [ca mod p]p, and [a + b mod p]p

easily wherec is a public constant as follows: To compute [c + a mod p]p, [ca mod p]p, and

[a + b mod p]p, eachPi has only to locally computec + fa(i) mod p, c fa(i) mod p, and fa(i) +

fb(i) mod p respectively. Therefore, these can be done efficiently without communication among

n parties. When we write [c+ a]p = c+ [a]p, [ca]p = c[a]p, and [a+ b]p = [a]p + [b]p, these mean

that the parties perform these operations. We also use
∑

, for example, like
∑3

i=1[ai ]p to denote

[a1]p + [a2]p + [a3]p.

– 42 –



Multiplication to obtain [ab mod p]p is a bit more complex and it requires the parties to com-

municate with each other (see Sect. 3.3.3 for the details). When we write [ab]p = [a]p × [b]p, it

means that the parties perform the multiplication protocol to compute [ab mod p]p.

3.3.3 Multiplication Protocol

3.3.3.1 In Secret Sharing Setting

The multiplication protocol in [BGW88] was very complex and a simple and efficient multiplica-

tion protocol was proposed in [GRR98]. We sketch the multiplication protocol in [GRR98].

Let’s assume that the parties have twot-degree polynomial sharings [a]p = { fa(1), . . . , fa(n)}
and [b]p = { fb(1), . . . , fb(n)} such that

fa(x) = a + a1x + · · · + atx
t mod p

and

fb(x) = b + b1x + · · · + btx
t mod p

and they want to compute at-degree polynomial sharing [ab mod p]p. We consider a 2t-degree

polynomial fab(x) = fa(x) fb(x). Then we can notice thatfab(0) = ab and fab(i) = fa(i) fb(i).

Therefore, 2t + 1(≤ n) shares can reconstructab. That is, by using Lagrange interpolation,abcan

be reconstructed with the Lagrange coefficientsλS
0,i as follows.

ab = fab(0) =
∑

i∈S
λS

0,i fab(i),

λS
x,i =

∏

i′∈S\{i}

x− i′

i − i′

whereS can be any subset such thatS ⊆ {1,2, . . . , n} and |S| = 2t + 1. Note that the Lagrange

coefficients can be computed by anyone because they involve no secret information.

BecausePi can computefab(i) = fa(i) fb(i) locally, for i ∈ S, we let Pi resharefab(i) by a

t-degree polynomial sharing [fab(i)]p. Finally, the parties can compute [ab]p by

[ab]p =
∑

i∈S
λS

0,i [ fab(i)]p.

– 43 –



3.3.3.2 In Threshold Homomorphic Setting

We also sketch the multiplication protocol in [DN03] for completeness.

Now let’s assume that there are two ciphertextsE(a) andE(b) and that parties want to compute

E(ab). Let N be the plaintext domain for a homomorphic cryptosystem. First each partyPi picks

up r i ∈ ZN at random and broadcastsE(r i) andE(r ib). Let r =
∑n

i=1 r i . All parties can now

computeE(r) = E(
∑n

i=1 r i) and E(rb) = E(
∑n

i=1 r ib). Next, the parties cooperate to decrypt

E(a + r) by threshold decryption without revealing the decryption key itself. Then all parties can

computeE(b ∗ (a + r)) = E(b)a+r becausea + r is public. The final resultE(ab) can be computed

as

E(ab) = E(b ∗ (a + r)) ∗ E(br)−1 = E(b ∗ (a + r)) ∗ E(−br).

3.3.3.3 Round and Communication Complexities

We explain the difference between the round and communication complexities with a concrete

example. Let’s assume that the parties compute [a]p× [b]p× [c]p× [d]p. If the parties perform the

multiplication protocol sequentially, the parties obtain [ab]p, [abc]p, and [abcd]p in order. Then

the round complexity of this computation is 3 rounds and the communication complexity is 3

invocations of the multiplication protocol. On the other hand, the parties can also compute [ab]p

and [cd]p in parallel, and finally compute [abcd]p. Then the complexity of this computation is 2

rounds and 3 invocations. We will evaluate the round complexity of a protocol by performing the

multiplication protocol in parallel as much as possible.

3.3.4 Bitwise Sharing

The concept of bitwise sharing is to sharea ∈ Zp(= {0,1, . . . , p − 1}) in the form of

{[a`−1]p, . . . , [a0]p} such thata =
∑`−1

i=0 2iai where ai ∈ {0,1}. We use [a]B to denote

{[a`−1]p, . . . , [a1]p, [a0]p}.

– 44 –



3.3.5 Subprotocols

We describe several subprotocols in [BB89, DFK+06] necessary for our constructions. All these

subprotocols run in a constant number of rounds. By combining these subprotocols, we will

construct our interval test, equality test, comparison, and bit-decomposition protocols that also

run in a constant number of rounds.

3.3.5.1 Joint Random Number Sharing

The parties can share a uniformly random, unknown numberr [BB89] as follows: EachPi picks

up r i ∈ Zp at random and shares it by a sharing [r i ]p = { fi(1), . . . , fi(n)} where fi(0) = r i and

fi is a random polynomial. That is,Pi distributes fi( j)’s to otherP j ’s. From each [r i ]p, the

parties compute [r]p =
∑n

i=1[r i ]p. We assume that the complexity for this is almost the same

as the complexity of 1 invocation of the multiplication protocol. We denote this subprotocol as

[r ∈R Zp]p.

3.3.5.2 Joint Random Bit Sharing

The parties can share a uniformly randoma ∈ {0,1} as follows: The parties compute [r ∈R Zp]p,

perform the multiplication protocol to obtain [r2]p and revealr2. If r2 = 0, the parties retry. If

r2 , 0, the parties computer ′ =
√

r2 such that 0< r ′ < p
2 . This can be done in polynomial

time becausep is an odd prime. Then the parties set [a]p = 2−1(r ′−1[r]p + 1). It is clear that

r ′−1r ∈ {−1,1}; hencea ∈ {0,1}. The total complexity is 2 rounds and 2 invocations. We denote

this subprotocol as [a ∈R {0,1}]p. In the threshold homomorphic setting [CDN01, DN03], this can

be computed asa = ⊕n
i=1bi wherebi ∈R {0,1} is generated byPi (see [ST06] for the details).

3.3.5.3 Unbounded Fan-In Or

Given [a`−1]p, . . . , [a0]p whereai ∈ {0,1}, the parties can compute [∨`−1
i=0ai ]p in a constant num-

ber of rounds. For this, as in [DFK+06], we can use the same technique to evaluate symmetric

Boolean functions as follows:

The parties compute [A]p = 1 +
∑`−1

i=0 [ai ]p. Note that 1≤ A ≤ ` + 1. Next, the parties define

a `-degree polynomialf`(x) such thatf`(1) = 0 and f`(2) = f`(3) = · · · = f`(` + 1) = 1. f`(x)

– 45 –



can be determined by using Lagrange interpolation. Note thatf`(A) = ∨`−1
i=0 ai . Then the parties

try to obtain [∨`−1
i=0ai ]p by computing [f`(A)]p from [A]p and f`(x). This can be done in a constant

number of rounds by using an unbounded fan-in multiplication and the inversion protocol [BB89]

as follows:

Let’s assume thatf`(x) is represented asf`(x) = α0+α1x+ · · ·+α`x` mod p. To obtain [f`(A)]p,

the parties compute [A]p, [A2]p, . . . , [A`]p because [f`(A)]p = α0 +
∑`

i=1αi [Ai ]p.

For 1 ≤ i ≤ `, the parties generate [bi ∈R Zp]p and [b′i ∈R Zp]p in parallel, compute [Bi ]p =

[bi ]p × [b′i ]p, and revealBi . Note that [b−1
i ]p can be computed as [b−1

i ]p = B−1
i [b′i ]p at the same

time (inversion protocol).

Next, the parties compute in parallel

[c1]p = [A]p × [b−1
1 ]p

[c2]p = [A]p × [b1]p × [b−1
2 ]p

[c3]p = [A]p × [b2]p × [b−1
3 ]p

...

[c`−1]p = [A]p × [b`−2]p × [b−1
`−1]p

[c`]p = [A]p × [b`−1]p × [b−1
` ]p

and reveal allci ’s.

Then the parties can compute [Ai ]p = (
∏i

k=1 ck)[bi ]p.

If A = 0, information aboutA is leaked. That is why we used [A]p = 1+
∑`−1

i=0 [ai ]p to guarantee

thatA is not zero.

The complexity of computing each component is as follows: 2 rounds and 3` invocations for

[bi ]p’s, [b′i ]p’s, andBi ’s and 2 rounds and 2` invocations forci ’s. [bi ]p×[b−1
i+1]p for 1 ≤ i ≤ `−1 can

be precomputed as [bi ]p × [b′i+1]p in the second round in parallel with [bi ]p × [b′i ]p. Therefore, the

total complexity is 3 rounds (including 2 rounds for random value generation) and 5` invocations.

Note that we can compute unbounded fan-in And and Xor similarly because a symmetric

Boolean function depends only on the number of 1’s in its inputs. Also note that the random

values necessary for this protocol can be generated in advance rather than on demand when this

– 46 –



subprotocol is used as a building block in the larger protocol, thus reducing the round complexity.

Actually all the random value generation (for bits and numbers) can be done in the first 2 rounds

(3 rounds in the setting [ST06] by using an unbounded fan-in Xor).

3.3.5.4 Prefix-Or

Given [a1]p, . . . , [a`]p whereai ∈ {0,1}, the parties can compute the Prefix-Or [b1]p, . . . , [b`]p

such thatbi = ∨i
j=1a j in a constand number of rounds. As in [DFK+06], this can be done by using

the technique from [CFL83a] as follows:

For notational convenience, let’s assume that` = λ2 for an integerλ and index the bitsak as

ai, j = aλ(i−1)+ j for i, j = 1, . . . , λ. Other cases can be adapted quite straightforwardly.

First the parties compute [xi ]p = ∨λj=1[ai, j ]p for i = 1, . . . , λ in parallel by using unbounded

fan-in Or where the size of problems isλ instead of̀ . Then the parties compute similarly [yi ]p =

∨i
k=1[xk]p for i = 1, . . . , λ in parallel. Now we can notice thatyi = 1 iff some block{ai′,1, . . . , ai′,λ}

with i′ ≤ i contains aai′, j = 1.

Next, the parties set [f1]p = [x1]p, and for i = 2, . . . , λ, set [fi ]p = [yi ]p − [yi−1]p. Now we

can notice thatfi = 1 iff {ai,1, . . . , ai,λ} is the first block containing aai, j = 1. Let i0 be such that

fi0 = 1. The parties can compute{[ai0,1]p, . . . , [ai0,λ]p} by [ai0, j ]p =
∑λ

i=1[ fi ]p × [ai, j ]p in parallel

without revealingi0.

Next, the parties compute{[bi0,1]p, . . . , [bi0,λ]p} wherebi0, j = ∨ j
k=1ai0,k by using unbounded fan-

in Or in parallel.

Finally, the parties set [si ]p = [yi ]p − [ fi ]p. Thensi = 1 iff i > i0. If we index the bits of Prefix-

Or bk asbi, j = bλ(i−1)+ j as we did forak, the Prefix-Or can be computed as [bk]p = [bλ(i−1)+ j ]p =

[bi, j ]p = [ fi ]p × [bi0, j ]p + [si ]p in the end.

When we use several invocations of unbounded fan-in Or, all the necessary random values in

unbounded fan-in Or can be generated in the first 2 rounds. Therefore, the total complexity is 7

rounds (including 2 rounds for random value generation) and 17` invocations.*1 Similarly the

Prefix-And can also be computed by using the same technique.

*1 The evaluation in [DFK+06] is 17 rounds and 20` invocations by generating random values on demand.

– 47 –



3.3.5.5 Bitwise Less-Than

Given two bitwise sharings [a]B and [b]B, the parties can compute [a < b]p without revealing

(a < b) itself. The basic idea is the same as the circuit for the millionaire’s problem. We will give

an outline of this subprotocol based on the description in [DFK+06].

For 0≤ i ≤ `−1, the parties compute [ci ]p = [ai⊕bi ]p = [ai ]+[bi ]p−2[aibi ]p in parallel and then

compute [di ]p = ∨`−1
j=i [c j ]p by using Prefix-Or, and set [ei ]p = [di − di+1]p where [è −1]p = [d`−1]p.

Finally, the parties compute [a < b]p =
∑`−1

i=0 ([ei ]p × [bi ]p) in parallel.

The complexity of computing each component is as follows: 1 round and` invocations forci ’s,

7 rounds and 17̀invocations for the Prefix-Or, and 1 round and` invocations for
∑`−1

i=0 ([ei ]p ×
[bi ]p). Becauseci ’s can be computed in parallel with random value generation in the Prefix-

Or, the total complexity is 8 rounds (including 2 rounds for random value generation) and 19`

invocations. We use [a <B b]p in order to stress thata andb are bitwise-shared. Note that ifb

is known, the complexity is 7 rounds (including 2 rounds for random value generation) and 17`

invocations by saving the invocations forci ’s and
∑`−1

i=0 ([ei ]p × [bi ]p).

3.3.5.6 Joint Random Number Bitwise-Sharing

The parties can bitwise-share a uniformly random, unknown numberr such that 0≤ r =
∑`−1

i=0 2ir i < p as follows: The parties generate each bit, [r i ∈R {0,1}]p for 0 ≤ i ≤ ` − 1 in parallel,

compute [r <B p]p by using the bitwise less-than protocol and reveal (r < p). If r ≥ p, the parties

retry.

The complexity of computing each component is as follows: 2 rounds and 2` invocations for

r i ’s and 7 rounds and 17` invocations for the bitwise less-than protocol (note thatp is known).

Becauser i ’s can be generated in parallel with random value generation in the Prefix-Or of the

bitwise less-than protocol, the complexity is 7 rounds and 19` invocations. As in [DFK+06], we

assume that at least one of four generated candidates is less thanp and the amortized complexity

is 7 rounds (including 2 rounds for random value generation) and 76` invocations. We denote this

subprotocol as [r ∈R Zp]B.

– 48 –



3.3.5.7 Bitwise Sum

Given two bitwise sharings [a]B = {[a`−1]p, . . . , [a0]p} and [b]B = {[b`−1]p, . . . , [b0]p}, the parties

can compute the bitwise sharing [d]B = {[d`]p, . . . , [d0]p} such thatd = a + b over the integers

(not mod p). By using the method of [CFL83b], the bitwise sum protocol can be performed in

constant rounds (see [DFK+06] for the details).

Based on [DFK+06] (see unbounded fan-in carry propagation in Sect. 6.4), the complexity of

the bitwise sum protocol is evaluated as follows: If the Prefix-And is computed withx rounds and

y × ` invocations, the complexity of the bitwise sum protocol is upper bounded by 2(x + 1) + 1

rounds and (2(y + 6) + 1)̀ log2 ` invocations. Assuming that all the random values are generated

in the first 2 rounds and that the complexity of the Prefix-And is 5 rounds (not including 2 rounds

for random value generation) and 17` invocations, the total complexity is 15 rounds (including 2

rounds for random value generation) and 47` log2 ` invocations.*2

We denote this subprotocol as [d]B = [a]B + [b]B.

3.4 Existing Protocols [DFK+06, ST06]

Damgårdet al. [DFK+06] have shown a novel technique to convert [a]p into [a]B. This technique

is called the bit-decomposition protocol (Fig. 3.1). Note that we can obtain [a]p from [a]B easily

by computing [a]p =
∑`−1

i=0 2i [ai ]p mod p. Also, Schoenmakers and Tuyls [ST06] have proposed

a similar bit-decomposition protocol (calledBITREP gate) in the context of multiparty computa-

tion [CDN01, DN03] based on threshold additively-homomorphic cryptosystems.

The complexity of computing each component in [DFK+06] is as follows: 7 rounds (includ-

ing 2 rounds for random value generation) and 76` invocations for [r ∈R Zp]B, 13 rounds and

47̀ log2 ` invocations for [d]B (bitwise sum), 5 rounds and 17` invocations for [q]p, that is,

[d <B p]p, and 13 rounds and 47` log2 ` invocations for [h]B (bitwise sum). The total complexity

is 38 rounds (including 2 rounds for random value generation) and 93` + 94̀ log2 ` invocations.

By using the bit-decomposition protocol, any bit-oriented operation can be performed in arith-

*2 The evaluation in [DFK+06] is 37 rounds and 55` log2 ` invocations by generating random values on demand.

– 49 –



The parties convert [a]p into [a]B.

1. The parties generate [r]B and obtain [r]p eventually.

2. The parties compute [c]p = [a]p − [r]p and revealc = a− r mod p ∈ {0,1, . . . , p− 1}.
3. The parties compute [d]B = [r]B + [c]B = {[d`]p, . . . , [d0]p}.
4. Note thatd can be represented asd = a+ qpwhereq ∈ {0,1}. The parties can compute the

bit q as [q]p = [p ≤ d]p = 1− [d <B p]p.

5. Considerg = (2` − qp) mod 2` and its bitwise sharing [g]B = {[g`−1]p, . . . , [g0]p}. Let

( f`−1, . . . , f0)2 be the bit representation of 2` − p such that 2` − p =
∑`−1

i=0 2i fi and fi ∈ {0,1}.
Then the parties can compute [g]B by [gi ]p = fi [q]p for 0 ≤ i ≤ `−1 becauseg = 0 if q = 0

andg = 2` − p if q = 1.

6. The parties now have the two following bitwise sharings, [d]B = [a+qp]B and [g]B = [(2`−
qp) mod 2`]B. Therefore, the parties can compute [h]B = [d]B + [g]B whereh = a + q2`.

7. By discarding the sharing [h`]p from [h]B, they can obtain [a]B.

Figure. 3.1 Bit-Decomposition [DFK+06]

metic circuits where inputs are given as polynomial sharings (rather than bitwise sharings) of

elements inZp.

However, the bit-decomposition protocol is not cheap, so we try to construct a simplified bit-

decomposition protocol and construct more efficient protocols for interval tests, equality tests, and

comparisons without relying on the bit-decomposition protocol.

3.5 Simplified Bit-Decomposition Protocol

In the original bit-decomposition protocol, we need 2 invocations of the bitwise sum protocol (in

Steps 3 and 6 in Fig. 3.1). We can notice that the first invocation for [d]B can be eliminated by

changing the way in which we compute [q]p based on the following observation.

In Step 4 of the original protocol, the parties compute [q]p = 1− [d <B p]p whered = r + c, c is

public, andr is bitwise-shared. Therefore, the condition, (d < p) can be changed into (r < p− c).

– 50 –



The parties convert [a]p into [a]B.

1. The parties generate [r]B and obtain [r]p eventually.

2. The parties compute [c]p = [a]p − [r]p and revealc = a − r mod p ∈ {0,1, . . . , p − 1}. If

c = 0, the parties are successfully done because [r]B is equal to [a]B by a coincidence.

3. If c , 0, next, the parties compute the bitq, [q]p = [p ≤ r + c]p = 1 − [r <B p − c]p by

using the bitwise less-than protocol.

4. Note thata can be represented asa = c+r−qpover the integers whereq ∈ {0,1}. Therefore,

we also have 2`+a = 2`+c−qp+r over the integers. Considerg̃ = (2`+c−qp) mod 2` and

its bitwise sharing [̃g]B = {[g̃`−1]p, . . . , [g̃0]p}. Let ( f̃`−1, . . . , f̃0)2 be the bit representation

of 2` + c − p such that 2` + c − p =
∑`−1

i=0 2i f̃i and f̃i ∈ {0,1}. Also, let (f̃ ′`−1, . . . , f̃ ′0)2 be

the bit representation ofc such thatc =
∑`−1

i=0 2i f̃ ′i and f̃ ′i ∈ {0,1}. Then the parties can

compute [̃g]B by [̃gi ]p = ( f̃i − f̃ ′i )[q]p + f̃ ′i for 0 ≤ i ≤ ` − 1 becausẽg = c if q = 0 and

g̃ = 2` + c− p if q = 1.

5. The parties now have the two following bitwise sharings, [r]B and [̃g]B = [(2` + c −
qp) mod 2`]B. Therefore, the parties can compute [h]B = [r]B + [g̃]B whereh = a + q2`.

6. By discarding the sharing [h`]p from [h]B, they can obtain [a]B.

Figure. 3.2 Simplified Bit-Decomposition

The parties have [r]B and p − c is public, so (r < p − c) can be computed by using the bitwise

less-than protocol without computing [d]B = [r]B + [c]B, thus eliminating one invocation of the

bitwise sum protocol.

Since we have eliminated [d]B, we need to specify how to compute [a]B in the rest of the

protocol. Fortunately, we can use [r]B itself to compute [a]B by using the bitwise sum protocol.

The simplified bit-decomposition protocol is given in Fig. 3.2.

3.5.1 Complexity of Bit-Decomposition Protocol

The complexity of computing each component is as follows: 7 rounds (including 2 rounds for

random value generation) and 76` invocations for [r ∈R Zp]B, 5 rounds and 17̀invocations for

– 51 –



Figure. 3.3 Case ofc2 ≤ c

[q]p, that is, [r <B p−c]p, and 13 rounds and 47` log2 ` invocations for [h]B. The total complexity

is 25 rounds (including 2 rounds for random value generation) and 93` + 47̀ log2 ` invocations.

3.6 Proposed Protocols Without Bit-Decomposition

3.6.1 Interval Test Protocol

In the interval test protocol, given public constantsc1, c2 ∈ Zp (wherec1 < c2) and shared secret

a ∈ Zp, the parties compute [c1 < a < c2]p without revealing (c1 < a < c2) itself.

If the parties use the bit-decomposition protocol, the parties compute [a]B from [a]p and com-

pute [c1 < a < c2]p = [c1 <B a]p × [a <B c2]p.

The basic idea of our construction is as follows: We randomizea by c = a+r and revealc where

r is a bitwise-shared random secret. We obtain an appropriate interval [r low, rhigh] from c, c1, and

c2. Then computing [c1 < a < c2]p is reduced to checking whetherr exists in the appropriate

intervalr low < r < rhigh (for example, see Fig. 3.3) by the bitwise less-than protocol.

3.6.1.1 Procedure

The parties generate [r ∈R Zp]B and obtain [r]p eventually. Next, the parties compute [c]p =

[a]p + [r]p and revealc = a + r mod p ∈ {0,1, . . . , p− 1}. At this point, no information abouta is

leaked fromc becauser is uniformly random and unknown to the parties. Now we can think that

a ∈ {−(p− c− 1), . . . ,−1,0,1, . . . , c− 1, c} becauser ∈ {0,1, . . . , p− 1}.
First, we consider the case wherec1 < c < c2 does not hold. Whenc2 ≤ c (see Fig. 3.3),

obviously, we have (c1 < a < c2) = 1 if (r low =)c−c2 < r < c−c1(= rhigh). Similarly, whenc ≤ c1

(see Fig. 3.4), if (r low =)c + p− c2 < r < c + p− c1(= rhigh), we have−(p− c1) < a < −(p− c2).

– 52 –



Figure. 3.4 Case ofc ≤ c1

Figure. 3.5 Case ofc1 < c < c2

This means that (c1 < a < c2) = 1. Therefore, the parties compute, by using the bitwise less-than

protocol,

[c1 < a < c2]p = [r low <B r]p × [r <B rhigh]p.

Next, we consider the case wherec1 < c < c2 holds (see Fig. 3.5). In this case, if (r low =

)c − c1 − 1 < r < c + p − c2 + 1(= rhigh), we have−(p − c2) ≤ a ≤ c1. This means that

(c1 < a < c2) = 0. Therefore, the parties compute

[r low < r < rhigh]p = [c− c1 − 1 <B r]p × [r <B c + p− c2 + 1]p

by using the bitwise less-than protocol and set

[c1 < a < c2]p = 1− [r low < r < rhigh]p.

3.6.1.2 Complexity of Interval Test Protocol

If we use the bit-decomposition protocol straightforwardly, the complexity of computing each

component is as follows: 38 rounds (including 2 rounds for random value generation) and 93` +

94̀ log2 ` invocations for [a]B, 5 rounds and (17̀× 2) invocations for [c1 <B a]p and [a <B c2]p,

and 1 round and 1 invocation for [c1 <B a]p × [a <B c2]p. The total complexity is 44 rounds

(including 2 rounds for random value generation) and 127` + 94̀ log2 ` + 1 invocations.

– 53 –



On the other hand, in our construction, the complexity of computing each component is as

follows: 7 rounds (including 2 rounds for random value generation) and 76` invocations for [r ∈R

Zp]B, 5 rounds and (17̀× 2) invocations for [r low <B r]p and [r <B rhigh]p, and 1 round and 1

invocation for [r low <B r]p × [r <B rhigh]p. The total complexity is 13 rounds (including 2 rounds

for random value generation) and 110` + 1 invocations.

3.6.2 LSB Protocol for Special Case of Interval Test Protocol

In order to construct our comparison protocol later, we consider computing [a < p
2 ]p. Though

it is possible for us to use the technique in Sect. 3.6.1, we compute [a < p
2 ]p more efficiently

by using special properties ofp
2 and apply this subprotocol (called the LSB protocol here) to our

comparison protocol. By a simple observation, we can notice that

a ∈ {0,1, . . . , p− 1
2
} ⇔ (2a mod p)0 = 0,

and that

a ∈ { p− 1
2

+ 1, . . . , p− 1} ⇔ (2a mod p)0 = 1

where (x)0 is the least significant bit (LSB) ofx ∈ {0,1, . . . , p − 1}. That is, ifa < p
2 , no wrap-

around modulop occurs when 2a mod p is computed and 2a mod p is even. On the other hand,

if a > p
2 , a wrap-around modulop occurs when 2a mod p is computed and 2a mod p is odd.

Therefore, if we can compute [(x)0]p from [x]p, we can use it to compute [a < p
2 ]p.

To compute [(x)0]p from [x]p, we randomizex by c = x + r and revealc wherer is a bitwise-

shared random secret. Then we can obtain [(x)0]p from (c)0 and [(r)0]p.

3.6.2.1 Procedure

The parties want to compute [(x)0]p from [x]p. The parties generate [r ∈R Zp]B and obtain

[r]p eventually. Next, the parties compute [c]p = [x]p + [r]p and revealc = x + r mod p ∈
{0,1, . . . , p−1}. If nowrap-around modulop occurs whenc is computed, we have (x)0 = (c)0⊕(r)0

and if a wrap-around modulop occurs whenc is computed, we have (x)0 = 1− {(c)0 ⊕ (r)0}. Fur-

thermore, we can use (c < r) to know whether or not a wrap-around modulop occurred whenc

was computed. That is, if (c < r) = 0, it means that no wrap-around modulop occurred, and if

– 54 –



(c < r) = 1, it means that a wrap-around modulop occurred becauser ∈ {0,1, . . . , p− 1}.
From these facts, the parties can compute [(x)0]p as

[(x)0]p = [c <B r]p × (1− {(c)0 ⊕ [(r)0]p}) + (1− [c <B r]p) × {(c)0 ⊕ [(r)0]p}
= [c <B r]p + {(c)0 ⊕ [(r)0]p} − 2[c <B r]p × {(c)0 ⊕ [(r)0]p}. (3.1)

The interpretation of Eq. (3.1) is that if (c <B r) = 1, we have (1− {(c)0 ⊕ [(r)0]p}) and otherwise

we have{(c)0 ⊕ [(r)0]p}. Becausec is public, note that (c)0 ⊕ [(r)0]p can be computed as

(c)0 ⊕ [(r)0]p =



[(r)0]p if (c)0 = 0

1− [(r)0]p if (c)0 = 1.

Also note that the parties already have [(r)0]p becauser is generated by [r ∈R Zp]B.

By using the LSB protocol, the parties can compute [a < p
2 ]p from [a]p as

[a <
p
2

]p = 1− [(2a)0]p.

3.6.2.2 Complexity of LSB Protocol

The complexity of computing each component is as follows: 7 rounds (including 2 rounds for

random value generation) and 76` invocations for [r ∈R Zp]B, 5 rounds and 17̀invocations for

[c <B r]p, and 1 round and 1 invocation for [c <B r]p × [(r)0]p. The total complexity is 13 rounds

(including 2 rounds for random value generation) and 93` + 1 invocations.

3.6.3 Comparison Protocol

In the comparison protocol, given two shared secretsa,b ∈ Zp, the parties compute [a < b]p

without revealing (a < b) itself. For example, we can compute [max(a,b)]p = [a]p + [a <

b]p × [b− a]p by using the comparison protocol.

If the parties use the bit-decomposition protocol, the parties compute [a]B and [b]B from [a]p

and [b]p and compute [a <B b]p as in [DFK+06].

It seems difficult for us to comparea andb directly without using the bit-decomposition proto-

col. Therefore, we comparea andb indirectly via the value ofp2 by computing [a < p
2 ]p, [b < p

2 ]p,

and [a− b mod p < p
2 ]p.

– 55 –



Table. 3.2 Truth Table for (a < b)

w = (a < p/2) x = (b < p/2) y = (a− b mod p < p/2) z = (a < b)

1 0 * 1

0 1 * 0

0 0 0 1

0 0 1 0

1 1 0 1

1 1 1 0

3.6.3.1 Procedure

By a simple observation, we can notice that (a < b) is determined from (a < p
2 ), (b < p

2 ), and

(a− b mod p < p
2 ). This observation can be confirmed by the truth table (Table 3.2).

When we denote (a < p
2 ), (b < p

2 ), (a−b mod p < p
2 ), and (a < b) asw, x, y, andz respectively,

thenz is represented as

z = wx̄∨ w̄x̄ȳ∨ wxȳ

= w(1− x) + (1− w)(1− x)(1− y) + wx(1− y)

= w(x + y− 2xy) + 1− y− x + xy. (3.2)

Therefore, if the parties can compute [a < p
2 ]p, [b < p

2 ]p, and [a − b mod p < p
2 ]p, they can

compute [a < b]p from Eq. (3.2) by using addition and the multiplication protocol. We can use

the LSB protocol to compute all three of these values.

3.6.3.2 Complexity of Comparison Protocol

If we use the bit-decomposition protocol straightforwardly, the complexity of computing each

component is as follows: 38 rounds (including 2 rounds for random value generation) and 2×
(93̀ + 94̀ log2 `) invocations for [a]B and [b]B and 6 rounds and 19` invocations for [a <B b]p.

The total complexity is 44 rounds (including 2 rounds for random value generation) and 205` +

188̀ log2 ` invocations.

– 56 –



On the other hand, in our construction, the complexity of computing each component is as

follows: 13 rounds (including 2 rounds for random value generation) and 3× (93̀ +1) invocations

for [a < p
2 ]p, [b < p

2 ]p, and [a − b mod p < p
2 ]p and 2 rounds and 2 invocations for Eq. (3.2).

The total complexity is 15 rounds (including 2 rounds for random value generation) and 279` + 5

invocations.

3.6.4 Equality Test Protocol

In the equality test protocol, given two shared secretsa,b ∈ Zp, the parties compute [a = b]p

without revealing (a = b) itself.

Because [a = b]p can be computed by [a− b = 0]p, we focus on computing [a = 0]p.

If the parties use the bit-decomposition protocol, the parties compute [d]B from [d]p = [a− b]p

and compute [∧`−1
i=0 (1 − di)]p by using an unbounded fan-in And as in [DFK+06]. In the secret

sharing setting, it is also possible to use secure exponentiation [d = 0]p = 1− [d]p−1
p as in [CD01]

but this requiresO(log2 p) rounds. In [BB89], the equality test protocol called normalization was

proposed to compute extended inverses, but it requiresO(p2) invocations and it will be impractical

for largep.

In our construction, we use a very simple observation that the randomizationc(= d + r) of d is

equal tor if d is zero.

3.6.4.1 Procedure

First the parties generate [r ∈R Zp]B and obtain [r]p eventually. Next, the parties compute [c]p =

[a]p + [r]p and revealc = a + r mod p ∈ {0,1, . . . , p − 1}. We can note thatc = r iff a = 0.

Therefore, the parties compute whether all bits ofc are the same as [r]B. Let (c`−1, . . . , c0)2 be the

bit representation ofc. Then the parties compute [c′i ]p for 0 ≤ i ≤ ` − 1 as

[c′i ]p =



[r i ]p if ci = 1

1− [r i ]p if ci = 0.

We can note thatc′i ∈ {0,1} and thatc′i = 1 iff ci = r i . Finally, the parties compute [a = 0]p as

[∧`−1
i=0c′i ]p by using an unbounded fan-in And.

– 57 –



3.6.4.2 Complexity of Equality Test Protocol

If we use the bit-decomposition protocol straightforwardly, the complexity of computing each

component is as follows: 38 rounds (including 2 rounds for random value generation) and 93` +

94̀ log2 ` invocations for [d]B and 1 rounds and 5` invocations for [∧`−1
i=0 (1 − di)]p. The total

complexity is 39 rounds (including 2 rounds for random value generation) and 98` + 94̀ log2 `

invocations.

On the other hand, in our construction, the complexity of computing each component is as

follows: 7 rounds (including 2 rounds for random value generation) and 76` invocations for [r]B

and 1 rounds and 5` invocations for [∧`−1
i=0 c′i ]p. The total complexity is 8 rounds (including 2

rounds for random value generation) and 81` invocations.

3.6.5 Probabilistic Equality Test Protocol

We consider another version of the equality test protocol with a very small round complexity.

We focus on computing [a = 0]p again. In our construction, we assume thatp = 3 mod 4 or

p = 5 mod 8. These imply that Legendre symbol
(−1

p

)
= −1 if p = 3 mod 4 and that

(
2
p

)
= −1 if

p = 5 mod 8. The basic idea is based on the property of quadratic residues as follows: Ifa is a

zero, we always have
(

c
p

)
=

(
r
p

)
wherec = a+ r, r is a random secret andc is a revealed value. Ifa

is not a zero, we have
(

c
p

)
,

(
r
p

)
with non-negligible probability. By checking whether

(
c
p

)
=

(
r
p

)

secretly with sufficiently many trials, we can perform the equality test ona in a probabilistic way.

Here note that we need to generate random secretr in a special way to compute
(

r
p

)
secretly.

3.6.5.1 Procedure

First we describe the case ofp = 3 mod 4. The case ofp = 5 mod 8 can be obtained quite

straightforwardly as we mention later.

The parties generate [b j ∈R {−1,1}]p, [r j ∈R Zp]p, and [r ′j ∈R Zp]p for 1 ≤ j ≤ k in parallel

wherek is chosen such that the error probability
(

1
2

)k
is negligible. The valueb j can be generated

by a joint random bit sharing. Next, the parties compute for 1≤ j ≤ k in parallel,

[c j ]p = [a]p × [r j ]p + [b j ]p × [r ′j ]p × [r ′j ]p

– 58 –



and reveal all thec j ’s. Note thatb jr ′2j is uniformly random and unknown to the parties, so no

information abouta is leaked fromc j .

Actually we can confirm the probabilities as follows:

Pr[b jr
′2
j = 0] = Pr[r ′j = 0] =

1
p

;

Pr[b jr
′2
j = y] = Pr[b j = 1] × Pr[r ′j = ±√y] =

1
2
× 2

p
=

1
p

if y is a quadratic residue;

Pr[b jr
′2
j = y] = Pr[b j = −1] × Pr[r ′j = ±√−y] =

1
2
× 2

p
=

1
p

if y is a quadratic nonresidue.

Also note that ifa = 0, ar j is always a zero and that ifa , 0, ar j is uniformly random.

If c j is a zero, the parties discard thec j and retry. The probability thatc j happens to be a zero

is 1
p and negligible in the practical setting (e.g.,p > 232).

Assuming thatc j is not a zero, we can notice that

a = 0⇒
(
c j

p

)
=


b jr ′2j

p

 = b j with prob. 1, and that

a , 0⇒
(
c j

p

)
= b j with prob.

1
2
.

The case ofa = 0 is obvious. Whena , 0, c j is uniformly random whetherb j is −1 or 1 because

ar j is uniformly random, so the probability that
( c j

p

)
= b j is 1

2.

Then the parties compute for 1≤ j ≤ k,

[x j ]p =



2−1([b j ]p + 1) if
( c j

p

)
= 1

−2−1([b j ]p − 1) if
( c j

p

)
= −1.

Note thatx j ∈ {0,1} and thatx j = 1 iff
( c j

p

)
= b j . Finally, the parties compute [a = 0]p = [∧k

j=1x j ]p

by using an unbounded fan-in And, assuming that at least one ofx j ’s is 0 if a , 0 with sufficiently

largek.

The error probability that (a = 0) = 1 whena , 0 is
(

1
2

)k
and it can be negligible if we use

sufficiently largek.

Similarly, whenp = 5 mod 8, the parties compute and reveal for 1≤ j ≤ k

c j = ar j + b′jr
′2
j mod p

– 59 –



instead ofc j = ar j + b jr ′2j mod p whereb′j = −2−1(b j − 3).

Note thatb′j ∈R {2,1} becauseb j ∈R {−1,1}. Therefore, noting that
(

2
p

)
= −1, we can notice

that

a = 0⇒
(
c j

p

)
=


b′jr
′2
j

p

 = b j with prob. 1, and that

a , 0⇒
(
c j

p

)
= b j with prob.

1
2
.

The rest of computation can be done as we did forp = 3 mod 4.

Though we assumed, for simplicity, thatp = 3 mod 4 or thatp = 5 mod 8, actually we can

extend the idea to adapt to arbitrary primes if we generateb j ∈R {y,1} such that
(

y
p

)
= −1.

3.6.5.2 Quadratic Residuosity Test Protocol

Incidentally, by using the random secretb jr2
j in Sect. 3.6.5.1, we can also construct a quadratic

residuosity test protocol where, given [a ∈ Z∗p]p, the parties can compute [
(

a
p

)
]p as follows:

Here we assume thatp = 3 mod 4 for simplicity. The parties generate [br2]p in the same way

asb jr2
j is generated in Sect. 3.6.5.1, and revealc = br2a. If c is a zero, the parties retry. The

parties can compute [
(

a
p

)
]p as

(
c
p

)
[b]p because

(
c
p

)
=

(
b
p

) (
a
p

)
= b

(
a
p

)
.

3.6.5.3 Complexity of Probabilistic Equality Test Protocol

The complexity of computing each component is as follows: 3 rounds (including 2 rounds for

random value generation) and 7k invocations for [c j ]p’s and 1 rounds and 5k invocations for

[∧k
j=1x j ]p. The total complexity is 4 rounds (including 2 rounds for random value generation) and

12k invocations.

3.6.5.4 Slight Improvement

We can utilize the theorem of [Per52] used in [Tof07] and slightly improve the efficiency of our

probabilistic equality test protocol by computing [c j ]p asc j = a+ b jr ′2j instead ofc j = ar j + b jr ′2j .

Therefore, we need 10k invocations instead of 12k in total.

This follows from the Perron’s theorem below about the distribution property of quadratic

residues. Based on this property, we still have that the probability that
( c j

p

)
= b j is roughly 1

2

whenc j = a + b jr ′2j anda , 0.

– 60 –



Theorem 2 ([Per52, Bau02]) i. Let p = 4k − 1. Let r1, r2, . . . , r2k be the2k quadratic

residues modulop with 0 and leta be a non-zero number. Then among the2k numbers

{r1 + a, . . . , r2k + a}, there arek quadratic residues (possibly including0) andk quadratic

nonresidues.

ii. Let p = 4k− 1. Letn1,n2, . . . ,n2k−1 be the2k− 1 quadratic nonresidues modulop and let

a be a non-zero number. Then among the2k− 1 numbers{n1 + a, . . . ,n2k−1 + a}, there are

k quadratic residues (possibly including0) andk− 1 quadratic nonresidues.

iii. Let p = 4k + 1. Let r1, . . . , r2k+1 be the2k + 1 quadratic residues modulop with 0 and

let a be a quadratic residue. Then among the2k + 1 numbers{r1 + a, . . . , r2k+1 + a},
there arek + 1 quadratic residues (including0) and k quadratic nonresidues. Ifa is a

quadratic nonresidue, there arek quadratic residues (not including0) andk + 1 quadratic

nonresidues.

iv. Let p = 4k + 1. Let n1, . . . ,n2k be the2k quadratic residues modulop and let a be a

quadratic residue. Then among the2k numbers{n1 + a, . . . , n2k + a}, there arek quadratic

residues (not including0) and k quadratic nonresidues. Ifa is a quadratic nonresidue,

there arek + 1 quadratic residues (including0) andk− 1 quadratic nonresidues.

3.6.6 Application of Equality Test Protocol

We consider private multiparty look-up tables (mLUT) [AC06, FGM07] as an application of our

equality test protocols and show how our efficient equality test protocols can contribute to provid-

ing one possible realization of private mLUT.

The functionality of private mLUT is as follows: parties have an array of shared secrets

([a1]p, [a2]p, . . . , [ak]p) and a shared index [σ]p and compute the output sharing [aσ]p.

The private mLUT is an important building block for secure protocols of private distributed

constraint satisfaction problems [NZ05] and private stable matching problems [Gol06, FGM07b].

In [FGM07], the technique calledmultiparty oblivious transferwas developed, which is a gener-

alization of Naor-Nissim indirect indexing [NN01]. On the other hand, in [AC06], the equality

– 61 –



test protocol is used and the output sharing [aσ]p can be computed as

k∑

i=1

[i = σ]p × [ai ]p

where our equality test protocols can be used because of the attractive property that the outputs

are also shared. In this case, the equality test protocol can be executed in parallel, so our round-

efficient probabilistic and deterministic protocols can realize round-efficient private mLUT.

3.7 Implementation

In the real implementation, we can use (odd-even) parallel prefix computation [LF80, JA03] based

on carry propagation and generation for the bitwise less-than and bitwise sum protocols as in

[BDJ+06, FJ06, Tof05] where the complexity of bitwise less-than is roughly 2+ log2(`) rounds

and 3̀ −1 invocations (2̀−1 invocations if one of the two operands is known) and the complexity

of bitwise sum is roughly 2 log2(`)−1 rounds and 5̀−2 log2(`)−4 invocations (4̀−2 log2(`)−4

invocations if one of the two operands is known). Also, instead of joint random number sharing,

we can use non-interactive pseudo-random secret sharing by Cramer, Damgård and Ishai [CDI05]

in the secret sharing setting in order to reduce the round and communication complexities. In Table

3.3, we summarize the number of invocations of main subprotocols in each protocol. Whether

we use constant-round subprotocols or non-constant-round subprotocols as building blocks, our

constructions are more efficient according to Table 3.3. Though, in the comparison protocol, we

need 3 invocations of joint random number bitwise-sharing compared with 2 in [DFK+06], this

can be done in advance and our protocol seems more advantageous in real applications.

– 62 –



Table. 3.3 Number of Invocations of Subprotocols

Protocol Random Bitwise-Sharing Bitwise Less-Than Bitwise Sum

Bit-Decomposition [DFK+06] 1 1 2

Proposed 1 1 1

Interval Test [DFK+06] 1 3 2

Proposed 1 2 0

Comparison [DFK+06] 2 3 4

Proposed 3 3 0

Equality Test [DFK+06] 1 1 2

Proposed1 1 0 0

– 63 –



Chapter 4

Multiparty Computation for

Distributed Key Generation of Paillier

Cryptosystem

In this chapter, we focus on the distributed key generation (DKG) protocol for the Paillier

cryptosystem [Pai99]. The threshold Paillier cryptosystem is a typical threshold homomorphic

cryptosystem (THC) used for multiparty computation (MPC). A special type of RSA modulus

([RSA78]) is necessary for the threshold Paillier cryptosystem and often such an RSA modulus

is assumed to be given by a trusted dealer (i.e., authority) that also distributes the shares of the

decryption key.

In order to remove such a trusted dealer, again we can make use of multiparty computation

based on secret sharing. There are several known techniques used for generating an RSA modulus

in a distributed way and we show how such techniques can be combined and adapted to the setting

of the threshold Paillier cryptosystem without a trusted dealer. The results in this chapter were

unpublished results due to the author.

– 65 –



4.1 Introduction

Many MPC protocols using THCs are Paillier-based construnctions (e.g., [CDN01, BFP+01,

DN03, HN05, HN06, ST06, Gol06, FGM07b]). Therefore, the DKG protocol for the threshold

Paillier cryptosystem is one of the most important applications of MPC because we can remove

the trusted dealer and it is the main purpose of MPC.

Related Work. The DKG protocol (e.g., [Ped91]) for discrete-log based cryptosystems (e.g.,

[ElG85]) is relatively easy and simple. However, the DKG protocol for RSA-based cryptosystems

is a non-trivial task. Boneh and Franklin [BF97] proposed the first DKG protocol for the RSA

cryptosystem. Unfortunately it cannot be applied to the threshold RSA cryptosystem [Sho00]

because for a technical reason the RSA modulus for [Sho00] must be a special type of RSA mod-

ulus that is a product of two large safe primes where a primep(= 2p′ + 1) is a safe prime ifp′

is also a prime. For the same technical reason, the threshold Paillier cryptosystem [FPS00] also

needs an RSA modulus that is a product of two safe primes. Damgård and Koprowski [DK01]

proposed how to use an RSA modulus that is not a product of two safe primes in order to relax

the condition, but the security proofs of their scheme were based on the non-standard complexity

assumption. On the other hand, Fouque and Stern [FS01] proposed how to use an RSA modulus

that is not a product of two safe primes and the security proofs of their scheme were based solely

on the standard complexity assumption. Algesheimer, Camenisch, and Shoup [ACS02] proposed

a novel DKG protocol that can generate such a special type of RSA modulus directly. However,

finding safe primes can be very time-consuming and we are not aware whether there are infinitely

many safe primes, so it will be more flexible for us to be able to use a wider class of RSA moduli

as in [FS01]. Damgård and Jurik proposed a generalized Paillier cryptosystem [DJ01] and another

homomorphic cryptosystem [DJ03] that can be considered as a mix of ElGamal and Paillier cryp-

tosystems and both the threshold versions of [DJ01, DJ03] need RSA moduli that are products

of two safe primes. One advantage of [DJ03] over the Paillier cryptosystem is that because the

secret key of [DJ03] can be generated at random without the knowledge of the factors of the RSA

modulus, the RSA modulus can be system-wide and reused by any set of parties that performs

– 66 –



MPC. Our distributed sieving protocol is applicable to both [DJ01] and [DJ03]. Damgård and

Dupont [DD05] proposed how to use general RSA moduli for threshold RSA signatures with the

observation that resultant signatures can be verified with the public key after they are generated

from signature shares even if an adversary has a non-negligible chance of giving acceptable proofs

for bad signature shares. However, the technique in [DD05] requires that we can recognize that

the threshold signature generation or threshold decryption is done correctly and the techinique

will not be applied to the context of our threshold decryption in the worst case because we may

not be able to recognize the correct subset of decryption shares in case oft < n
2 (rather thant < n

3)

wheren is the number of parties andt is the number of parties the adversary can corrupt. Also,

our distributed sieving protocol will still be useful for [DD05] because it can guarantee thatp−1
2

and q−1
2 do not contain small factors whereN = pq is the RSA modulus and identify faulty parties

by making the error probability of zero knowledge proofs small.

Building on [BF97, FS01, ACS02], we show how the techniques from [BF97, FS01, ACS02]

can be utilized to realize the threshold Paillier cryptosystem as well as the threshold RSA signature

scheme without a trusted dealer.

4.2 Building Blocks

In addition to the building blocks introduced in Chapter 3, we make use of the following.

4.2.1 Original Paillier Cryptosystem

First we describe the original Paillier cryptosystem, which is based on theDecisional Composite

Residuosity Assumption(DCRA). That is, the semantic security of this cryptosystem is based

on the difficulty of distinguishingN-th residues from non-N-th residues. The encryption and

decryption processes are as follows.

• N = pq (RSA modulus). We assume the bit length ofp is the same as that ofq.

• The public keyPK is a pair of (N, g) whereg = N + 1.

• The decryption keyS K is λ(N) = lcm(p− 1,q− 1) whereλ is called a Carmichael lambda

function.

– 67 –



• Encryption:

Given a plaintextm ∈ ZN, the ciphertextc is

c = E(m, x) ≡ gmxN modN2

wherex ∈ Z∗N is a random number.

Note that

E(m1, x1) × E(m2, x2) = E(m1 + m2, x1x2) modN2.

• Decryption:

m = D(c) ≡ L(cλ(N) modN2)
L(gλ(N) modN2)

modN

whereL(u) = u−1
N , u ∈ {u < N2 | u ≡ 1 modN}.

Note thatL-function is not a modular computation.

Proof of correctness: From the definition of Carmichaelλ function,

λ(N2) = lcm(ϕ(p2), ϕ(q2)) = lcm(p(p− 1), q(q− 1)) = Nλ(N),

whereϕ is the Eulerϕ function.

Because of the property of Carmichaelλ function, we have

∀x ∈ Z∗N2, xλ(N2) = xNλ(N) ≡ 1 modN2.

Therefore,cλ(N) = (gmxN)λ(N) = gmλ(N)xNλ(N) ≡ gmλ(N) modN2.

As a result, we have

D(c) ≡ L(cλ(N) modN2)
L(gλ(N) modN2)

≡ L(gmλ(N) modN2)
L(gλ(N) modN2)

≡ L(1 + λ(N)mN modN2)
L(1 + λ(N)N modN2)

(∵ g = N + 1)

≡ λ(N)m modN
λ(N) modN

≡ m modN.

□

– 68 –



Actually, we can use anyg if the order ofg is a multiple ofN in ZN2. Here we can use the

specialg = N + 1 whose order is exactlyN in ZN2 without degradation of security [DJ01].

4.2.2 Threshold Paillier Cryptosystem

The threshold Paillier cryptosystem was proposed in [FPS00], which uses the technique similar to

the threshold RSA signature scheme [Sho00]. The decryption scheme is a bit different from that

of the original Paillier cryptosystem. We describe the (t + 1,n) threshold Paillier cryptosystem

[FPS00] with a trusted dealer.

Key Generation and Distribution Phase:

1. The trusted dealer generates an RSA modulusN = pqwherep andq are safe primes. That

is, p = 2p′ + 1, andq = 2q′ + 1 wherep′ andq′ are also prime, and gcd(N, ϕ(N)) = 1.

2. The dealer picks upβ ∈ Z∗N at random, and computes the following values,

m = p′q′, θ = mβ modN, ∆ = n!.

Becauseλ(N2) = lcm(ϕ(p2), ϕ(q2)) = 2Nm, note that

∀x ∈ Z∗N2, x2Nm ≡ 1 modN2.

3. The public keyPK and the decryption keyS K arePK = (N, g, θ) andS K = βm where

g = N + 1.

The ciphertextc of a messageM is defined asc = gM xN modN2 wherex ∈ Z∗N is random.

4. In order to share the decryption keyS K = βm, the dealer generates a polynomialf with ai

chosen at random from{0,1, . . . ,Nm− 1},

f (x) = βm+ a1x + a2x2 + · · · + atx
t modNm,

and sendsf (i) to each partyPi (1 ≤ i ≤ n) through the secure channel.

Also the dealer picks up a random valuer ∈ Z∗
N2 and publishes the verification keysVK

andVKis as

VK = v = r2 modN2,

– 69 –



VKi = v∆ f (i) modN2.

These verification keys are necessary for the parties to prove that the decryption procedure

is done correctly. For a technical reason,v∆ f (i) is used instead ofvf (i) for VKi .

Decryption Phase:

Now the parties decrypt a ciphertextc = gM xN modN2 whereM is the plaintext.

1. Each partyPi publishesci = c2∆ f (i) modN2 by using its secret share, which we call the

partial decryption. AlsoPi publishes the zero knowledge proof forf (i) = logv∆ VKi =

logc4∆(ci)2. We accept only the partial decryptions with the valid zero knowledge proofs.

The reason we usef (i) = logc4∆ (ci)2 instead off (i) = logc2∆ ci is to make sure that we are

working in QN2 as in [Sho00]. The structure ofQN2 is explained in Sect. 4.2.2.1.

2. By combiningt + 1 valid partial decryptions of the subsetS of the parties, we can obtain

M = L(
∏

i∈S
c2µi

i modN2) × 1
4∆2θ

modN

whereµi = ∆ × λS
0,i ∈ Z, andL(u) = u−1

N .

Proof of correctness:
∏

i∈S
c2µi

i = c4∆
∑

i∈S f (i)µi

= c4∆
∑

i∈S ∆ f (i)λS
0,i

= c4∆2mβ

= (gM xN)4∆2mβ

= g4∆2mβM (∵ ∀x, x2Nm = 1 modN2)

= 1 + 4∆2mβMN modN2 (∵ g = N + 1).

Therefore,

L(
∏

i∈S
c2µi

i modN2) = 4∆2mβM = M × 4∆2θ modN.

– 70 –



∆ andθ are public information. Thus, we have

M = L(
∏

i∈S
c2µi

i modN2) × 1
4∆2θ

modN.

□

Note that anyone can verify that the dealer published the correctVKi ’s as follows. By combin-

ing t + 1 VKi ’s of any subsetS, we can obtain

∏

i∈S
VKµi

i =
∏

i∈S
v∆2 f (i)λS

0,i = v∆2(mβ+kNm) = r2∆2(mβ+kNm) = r2∆2mβ modN2

for some integerk.

Therefore, by checking if (r2∆2mβ)N ?
= 1 modN2, we can verify the correctness ofVKi ’s.

4.2.2.1 Why we need two safe primes

In this threshold scheme, the dealer has to generate two safe primes. The reason can be explained

as follows similarly as in [Sho00]. We denote byQN2 the subgroup of squares inZ∗
N2. That is,

QN2 = {x ∈ Z∗N2 |
(

x
p

)
= 1 &

(
x
q

)
= 1}

where
(

x
p

)
is the Legendre symbol. By the Chinese Remainder Theorem,

|QN2 | = p− 1
2
× p× q− 1

2
× q = Nm.

Also, QN2 is cyclic. Actually, by choosingGQN2 such that

GQN2 ≡ g2
p2 mod p2 (where gp2 is a generator ofZ∗p2)

GQN2 ≡ g2
q2 modq2 (where gq2 is a generator ofZ∗q2),

the order ofGQN2 is Nm, and generatesQN2.

Therefore, the number of the generators ofQN2 is

ϕ(Nm) = ϕ(pqp′q′) = (p− 1)(q− 1)(p′ − 1)(q′ − 1).

When the dealer picks up a random valuer ∈ ZN2, and computesv = r2 modN2, v is a generator of

QN2 with overwhelming probabilityϕ(Nm)
Nm , and thenVKi = v∆ f (i) modN2 completely determines

– 71 –



f (i) modNm. Thus, if the order ofGQN2 does not contain small factors, the probability that the

partyPi can publish the bad partial decryption with a valid zero knowledge proof by findingf ′(i)

such thatVKi = v∆ f (i) = v∆ f ′(i) and f (i) , f ′(i) modNm is negligible. This condition is important

to prevent the parties from disrupting the decryption phase and to identify the faulty parties. On

the other hand, if the order ofGQN2 contains a small factorθ and it happens thatvθ = 1 modN2,

thenVKi = v∆ f (i) = v∆( f (i)+kθ) wherek is some integer. This means that instead off (i), f (i) + kθ

can be used for publishing the bad partial decryption. That is why we need two safe primes to

guarantee that the order ofGQN2 does not contain small factors and to make the error probability

of zero knowledge proofs small.

4.2.3 Secret Sharing over the Integers

In Sect. 3.3.1.1 of Chapter 3, we introduced a polynomial secret sharing scheme over a prime

finite field. Here we need a secret sharing scheme over the integers [GJKR96, FGMY97, Rab98],

which is a variant of [Sha79]. Typically this scheme is used in the setting where the modulus is

also a (shared) secret. We describe the (t + 1,n) secret sharing over the integers.

Suppose the dealer wants to share a secrets ∈ [−M,M]. Then the dealer of the secret generates

a polynomial,

f (x) = ∆s+ a1x + a2x2 + · · · + atx
t

where∆ = n!, random valuesai ∈R [−K∆2M,K∆2M] and K = 2O(κ) with security parameterκ

chosen such that 1/K is negligible.

Now we assume that the adversary has collectedt secret shares of a subsetS′ ⊂ {1,2, . . . , n}.
We prove that with high probability a polynomialr(x) exists such thatr(0) = ∆s′(, ∆s), r(i) = f (i)

for i ∈ S′, and the coefficients ofr(x) are in the correct range. Ifr(x) exists for each guesss′, then

the adversary cannot guess the correct secret.

We consider a polynomialh(x) such thath(0) = ∆(s− s′) andh(i) = 0 for i ∈ S′. h(x) can be

computed by Lagrange interpolation as

h(x) =
∑

i∈S′∪{0}
h(i)λS′∪{0}

x,i .

– 72 –



Therefore, if we sayS′ = {i1, i2, . . . , it}

h(x) = ∆(s− s′)
(x− i1)(x− i2) · · · (x− it)
(0− i1)(0− i2) · · · (0− it)

.

The coefficient ofxt−i of h(x) is

∆(s− s′)∏
j∈S′(− j)

×
∑

B⊂S′,|B|=i


∏

j∈B
(− j)

 .

Because
∏

j∈S′(− j) divides∆, the coefficient of xt−i is an integer. The coefficient is bounded (in

absolute value)

∑

B⊂S′,|B|=i

∆(s− s′) ≤ ∆(s− s′)
(
t
i

)
=

∆(s− s′) × t!
i! × (t − i)!

≤ ∆2(s− s′) ≤ 2∆2M.

Note that if we sayr(x) = f (x) − h(x), thenr(0) = ∆s′, r(i) = f (i) for i ∈ S′, the coefficients of

r(x) are integers, and in the range [−(K∆2M + 2∆2M),K∆2M + 2∆2M]. The probability that the

coefficients ofr(x) will not be in the correct range is upper bounded by a union bound,

t × 2∆2M
K∆2M

=
2t
K

which is negligible ifK is sufficiently huge (sayK = 2100) becauset is typically small. Therefore,

for each guesss′, with high probability, there exists a valid polynomialr(x). Thus, the adversary

cannot guess the correct secret. The proof here is a variant of the proof in [Rab98].

We usually use the following modified polynomial,

f (x) = ∆(∆s+ a1x + a2x2 + · · · + atx
t)

where∆ = n! andai ∈R [−K∆2M,K∆2M].

The advantage of using this polynomial is that all the sharesf (i)’s become the multiples of∆.

When we reconstruct∆2sby

∆2s = f (0) =
∑

i∈S
f (i)λS

0,i ,

f (i)λS
0,i is an integer becausef (i) is a multiple of∆ and the denominator ofλS

0,i divides∆. There-

fore, the intermediate computation can be done over the integers, not including the rational num-

bers. Note that the reconstructed secret we have when a secret integers is shared over the integers

is ∆2s instead ofs.

– 73 –



4.2.4 BGW Protocol Modulo a Non Prime

In Sect. 3.3.2 in Chapter 3, we assumed that all arithmetic operations were performed modulo a

prime. However, it is also possible for the parties to run the BGW protocol modulo a non prime

M as mentioned in [BF97]. IfM has no prime divisors smaller thann wheren is the number of

all the parties, then the BGW protocol can be used in the same way as in Sect. 3.3.2 because the

denominators of the Lagrange coefficients can have the inverses moduloM.

Running the BGW protocol moduloM containing small factors needs a slight modification. In

our setting considered in Sect. 4.4.1, we have only to considerM that is a prime smaller thann.

For example, let’s considerM = 3. If n ≥ M(= 3), we cannot use Shamir secret sharing modulo

M because we cannot have enough points in the filedFM. However, we can handle such a case by

using Shamir secret sharing over an algebraic extension field ofFM that can contain more thann

points.

4.2.5 Joint Random Invertible Number Sharing

This protocol is due to [BB89]. By using the joint random number sharing in Sect. 3.3.5.1, the

parties generate two random sharings [s]p and [r]p, compute [sr]p and revealsr. If sr , 0, then

the parties can obtain the sharing [r]p wherer is a random invertible number. Otherwise, the

parties repeat the protocol. This protocol can also be used over the extension fieldFpe.

If the computation is done modulo a non primeM, the conditionsr , 0 is replaced with

gcd(sr,M) = 1 and if this condition holds, the parties can obtain a sharing [r]M wherer is an

invertible element in the ringZM.

Alternatively, each partyPi can pick up an invertible elementr i ∈ Z∗M (or r i ∈ F∗p) and compute

[r]M =
∏n

i=1[r i ]M (or [r]Fpe =
∏n

i=1[r i ]Fpe).

4.3 DKG Protocol [BF97]

The protocols [BF97, FMY98, MWB99] describe how to generate an RSA modulus and share

the secret key in a distributed way. [MWB99] describes the implementation and optimization of

– 74 –



[BF97] in detail. [FMY98] has added robustness to [BF97] in order to cope with any minority

of malicious parties. For simplicity, we focus on [BF97] and its RSA modulus generation part

and we do not inlcude the optimization used in [MWB99, FS01] in our description though it can

also be used for us. We also need these protocols to construct our threshold Paillier cryptosystem

without a trusted dealer.

4.3.1 High-Level Overview

In [BF97], the parties perform the following basic steps to compute an RSA modulusN = pq.

1. Every partyPi exceptP1 picks up random (k − log2(n) − 1)-bit secretspi andqi such that

pi ≡ qi ≡ 0 mod 4. P1 also picks up random (k − log2(n) − 1)-bit secretsp′1 andq′1 such

that p′i ≡ q′i ≡ 3 mod 4 and setsp1 = 2k−1 + p′1,q1 = 2k−1 + q′1. Heren is the number of

the parties. Clearly, shared candidatesp =
∑n

i=1 pi andq =
∑n

i=1 qi arek-bit integers. The

distributions ofp andq are not uniform but as shown in [BF97], the distributions have at

least (k− log2(n) − 1)-bits of entropy. We assume thatn is odd andn = 2` + 1 for somè .

The protocol here is designed to be` private. That is, any subset of` or less thaǹ parties

cannot reveal the factorization ofN.

2. The parties agree on some large primeP whereP > 22k > N, and all arithmetic operations

are done moduloP.

3. By using the BGW protocol [BGW88], then parties compute

N = pq = (p1 + · · · + pn) × (q1 + · · · + qn) =

n∑

i=1

pi ×
n∑

i=1

qi modP

without revealingp andq. BecauseN < P, the parties can computeN.

4. The parties perform biprimality test for checking ifN is a product of two primes in a

distributed way. If the test fails, the protocol is restarted.

Note that after the computation is done, the parties have additive shares ofp and q over the

integers.

– 75 –



4.3.2 Distributed Computation of RSA Modulus N by BGW Protocol

We see how the parties compute and publishN = (
∑

pi) × (
∑

qi) by using the classical BGW

protocol in detail.

1. Each partyPi generates two random̀-degree polynomialsfi ,gi ∈ ZP[x] such that

fi(x) = pi + a1x + a2x2 + · · · + a`x
` modP,

gi(x) = qi + b1x + b2x2 + · · · + b`x
` modP.

Also, Pi generates a random 2`-degree polynomialhi ∈ ZP[x] such that

hi(x) = 0 + c1x + c2x2 + · · · + c2`x
2` modP.

Note that fi(0) = pi , gi(0) = qi , andhi(0) = 0. hi(x) is necessary for randomization in the

BGW protocol.

2. Pi computes the following values:

pi, j = fi( j), qi, j = gi( j), hi, j = hi( j) for j = 1, . . . ,n.

Pi sends the triple〈pi, j , qi, j , hi, j〉 to P j through the secure channel.

3. After receiving the above triple from other parties,Pi computes

Ni =


n∑

j=1

p j,i




n∑

j=1

q j,i

 +

n∑

j=1

h j,i modP,

andPi publishesNi .

4. Now we consider the following polynimial,

α(x) =


n∑

j=1

f j(x)




n∑

j=1

g j(x)

 +

n∑

j=1

h j(x) modP.

Note thatNi = α(i), andα(0) = N. Becauseα(x) is a 2̀ -degree polynomial, and we have

n (= 2` + 1) shares, we can compute coefficients ofα(x) by using Lagrange interpolation.

Thus, we can obtain

N = α(0) =
∑

i∈S
Niλ

S
0,i modP

– 76 –



whereS = {1,2, . . . , n}.
Note that if the parties do not publishNi , the parties can haveN in the additive sharing by

computingNiλ
S
0,i locally without revealingN. That is,N =

∑n
i=1 si wheresi = Niλ

S
0,i and

si is a share forPi . That is, we can convert a polynomial sharing into an additive sharing

easily in this way. This technique is calledpoly-to-sum[FGMY97] and we will use this

conversion in Sect. 4.5.

4.3.3 Distributed Biprimality Test for N

Boneh and Franklin showed how the parties can check ifN is a product of two primes without

revealingp andq. Their novel distributed biprimality test consists of two parts. Here we assume

that p ≡ q ≡ 3 mod 4. This condition can be assured by havingP1 pick up the secretsp1 ≡ q1 ≡
3 mod 4, and all other parties pick up the secretspi ≡ qi ≡ 0 mod 4.

Biprimality Test 1:

1. The parties agree on a randomg ∈ Z∗N such that the Jacobi symbol
(

g
N

)
= 1.

2. P1 broadcastsv1 ≡ g
N−p1−q1+1

4 modN. All other parties broadcastvi ≡ g−
pi +qi

4 modN.

3. The parties compute and check if

v ≡
n∏

i=1

vi ≡ g
N−p−q+1

4
?≡ ±1 modN.

If v . ±1, the parties declare thatN is not a product of two primes.

Note that ifN is a product of two primes, then

v ≡ g
N−p−q+1

4 ≡ g
(p−1)(q−1)

4 ≡ g
ϕ(N)

4 modN.

Sketch of proof: Supposep andq are distinct primes. Then,
(
g
p

)
=

(
g
q

)
(∵

( g
N

)
= 1).

– 77 –



Becausep−1
2 and q−1

2 are odd (∵ p ≡ q ≡ 3 mod 4), we have,

g
ϕ(N)

4 ≡ (g
p−1
2 )

q−1
2 ≡

(
g
p

) q−1
2

≡
(
g
p

)
mod p,

g
ϕ(N)

4 ≡ (g
q−1

2 )
p−1
2 ≡

(
g
q

) p−1
2

≡
(
g
q

)
modq.

Thus, it follows thatg
ϕ(N)

4 ≡ ±1 modN. Therefore, ifN is a product of two primes,N is always

accepted by the parties.

WhenN is not a product of two primes, we consider two subgroupsG andH of Z∗N such that

G = {x |
( x
N

)
= 1},

H = {x | x ∈ G & x
N−p−q+1

4 ≡ ±1 modN}.

Note thatH is a subgroup ofG. If N is a product of two primes, we knowH = G as we have seen

above. IfN is not a product of two primes, we can prove|H| ≤ |G|
2 by showing the existence of

an elementx such thatx ∈ G & x < H. The more details can be found in [BF97]. Therefore, we

have at least12 witnesses inG to rejectN which is not a product of two primes. We can repeat the

biprimality test1 to obtain the desired security level. □

Biprimality Test 2:

The parties perform the additional biprimality test2 to cope with the specialN where

N = pq, p = rd1
1 , q = rd2

2 , d1 > 1, q ≡ 1 modrd1−1
1 ,

andr1 andr2 are primes.

In this special case, it may happen thatH = G, and the parties may acceptN falsely thoughN is

not a product of two primes. In order to reject such a specialN, we consider a groupTN and its

subgroupH′ such that

TN = (ZN[x]/(x2 + 1))∗/Z∗N,

H′ = {x | x ∈ TN & x(p+1)(q+1) = 1}.

The parties perform the Fermat test inTN as follows.

– 78 –



1. The parties agree on a randomh ∈ TN.

2. P1 broadcastsu1 = hN+p1+q1+1. All other parties broadcastui = hpi+qi .

3. The parties compute and check if

u =

n∏

i=1

ui = hN+p+q+1 = h(p+1)(q+1) ?
= 1.

If u , 1, the parties declare thatN is not a product of two primes.

Sketch of proof: Similarly, supposep andq are distinct primes. Then the polynomialx2 + 1 has

no root inFp andFq becausep ≡ q ≡ 3 mod 4. Therefore,Fp[x]/(x2 + 1) andFq[x]/(x2 + 1) are

quadratic extensions ofFp andFq. It follows that the order ofTp = (Zp[x]/(x2 + 1))∗/Z∗p is p + 1.

This can be confirmed by

|Tp| =
|(Zp[x]/(x2 + 1))∗|

|Z∗p|
=

p2 − 1
p− 1

= p + 1.

Similary, |Tq| = q + 1. By the Chinese Remainder Theorem,TN = Tp × Tq. Hence

|TN| = |Tp| × |Tq| = (p + 1)(q + 1).

Thus,
∀h ∈ TN, h|TN | = h(p+1)(q+1) = 1.

Therefore, ifN is a product of two primes,N is always accepted by the parties.

If N is not a product of two primes, we can prove|H′| ≤ |TN |
2 by showing the existence of an

elementx such thatx ∈ TN & x < H′. The more details can be found in [BF97]. Therefore, we

have at least12 witnesses inTN to rejectN which is not a product of two primes. We can repeat

the biprimality test2 to obtain the desired security level. □

4.4 Relaxing Condition on Safe Primes

As we have seen in Sect. 4.2.2, the dealer needs two safe primes to generate an RSA modulus

N = pq for the threshold Paillier cryptosystem. That is,p = 2p′ + 1, q = 2q′ + 1 wherep′,

andq′ are also primes. The reason we need safe primes is to makeQN2 a cyclic group and have

– 79 –



the sufficiently large number of generators inQN2. By choosing a generator for the verification

key VK, eachVKi can completely determine the party’s secret share, and prevent the party from

publishing the false decryption. Furthermore, ifN is a product of two safe primes, an element

chosen at random fromQN2 is a generator with overwhelming probability.

However, as mentioned in [FS01], we can observe that even ifp′ andq′ are not primes,QN2 can

be cyclic if gcd(p′,q′) = 1. Also, by making sure thatp′ andq′ do not contain the prime factors

that are not more than a sufficiently large sieving boundB, we can ensure that the number of the

generators inQN2 is large.

We show how these conditions can be assured by our improvements to the protocols in [FS01].

4.4.1 Our Improved Distributed Sieving Protocol for p′ and q′

The basic idea behind [FS01] is to make sure that

gcd(p− 1,4B′) = gcd(2p′,4B′) = 2,

gcd(q− 1,4B′) = gcd(2q′,4B′) = 2

whereB′ = 3× 5× 7× 11× · · · × B (a product of all the primes up to a sieving boundB). When

these conditions hold,p′ andq′ do not contain the prime factors up toB and it ensures that we

have many generators inQN2. In [FS01], it is suggested thatB > 216.

In [FS01], the parties compute and publish

T = (p− 1) + 4B′R′

over the integers by using the simplified version of the GCD protocol in [CGS00] whereR′ is a

random secret integer chosen appropriately. By computing gcd(T,4B′), the parties can check if

gcd(p − 1,4B′) = 2 holds. However, this leaks the informationp − 1 mod 4B′(= T mod 4B′).

Even if we computeT = (p− 1)R+ 4B′R′ by using the GCD protocol whereRandR′ are random

secret integers chosen appropriately, it can happen that gcd(T,4B′) , 2 though gcd(p−1,4B′) = 2

when gcd(R,4B′) , 1. Then the good candidatep will be rejected. We avoid such a problem by

combining the trial division protocol in [ACS02] and the BGW protocol modulo a non prime

[BF97].

– 80 –



The parties perform the following steps for bothp andq. Here we describe only the case ofp.

At the beginning, the parties have the shares such thatp =
∑n

i=1 pi .

Proposed Distributed Sieving Protocol for p′ and q′:

1. The parties can easily share

p′ =
p− 1

2
=

p1 − 1
2

+

n∑

i=2

pi

2
= p′1 +

n∑

i=2

p′i =

n∑

i=1

p′i .

wherep′i is each party’s additive share over the integers.

2. Write B′ = M0
∏u

j=1 M j whereM0 has no prime factors smaller thann and eachM j is a

prime smaller thann.

3. In order to check if gcd(p′,2) = 1, the parties can run the trial division protocol as follows.

Note that actuallyp′(= p−1
2 ) is odd becausep ≡ 3 mod 4, so the parties do not need to

check if gcd(p′,2) = 1. We describe the protocol here for completeness.

（a）Each partyPi reshares its sharep′i over the appropriate extension fieldF2v by a poly-

nomial sharing as in Sect. 3.3.1.1. Here we can assume that each party is assigned a

unique point in the extension fieldF2v wheren < 2v.

（b）The parties can sharep′ overF2v as in Sect. 3.3.2 by adding all the shares sent by other

parties.

（c）The parties revealp′, which is equal top′ mod 2 and if it is 0, it means that gcd(p′,2) =

2 and the candidatep is discarded.

4. In order to check if gcd(p′,M0) = 1, the parties run the trial division protocol as follows:

（a）Each partyPi reshares its sharep′i modulo M0 by a polynomial sharing as in Sect.

3.3.1.1. Here we can simply assume that each partyPi is assigned a pointi.

（b）The parties can sharep′ moduloM0 as in Sect. 3.3.2 by adding all the shares sent by

other parties.

（c）The parties generate a random invertible number [r]M0 (see Sect. 4.2.5), compute

[rp′]M0 and revealrp′ mod M0. If gcd(rp′,M0) , 1, it means thatp′ contains some

factor ofM0 and the candidatep is discarded.

5. In order to check if gcd(p′,M j) = 1 for 1≤ j ≤ u, the parties run the trial division protocol

– 81 –



as follows:

（a）Each partyPi reshares its sharep′i over the appropriate extension fieldFMv
j
by a poly-

nomial sharing as in Sect. 3.3.1.1. Here we can assume that each party is assigned a

unique point in the extension fieldFMv
j
wheren < Mv

j .

（b）The parties can sharep′ over FMv
j

as in Sect. 3.3.2 by adding all the shares sent by

other parties.

（c）The parties generate a random invertible number [r]FMv
j

such thatr ∈ F∗M j
(see Sect.

4.2.5), compute [rp′]FMv
j
and revealrp′, which is equal torp′ mod M j . If rp′ = 0 mod

M j , it means thatp′ contains factorM j and the candidatep is discarded.

Note that the trial division protocol can be run in parallel to reduce the round complexity.

4.4.2 Making sure that gcd(p′,q′) = 1

In order to make sure that gcd(p′,q′) = 1, [FS01] uses the observation that

gcd(p− 1,q− 1)|gcd(N − 1, ϕ(N)).

Proof: We haveϕ(N) = (p− 1)(q− 1) = N − p− q + 1 = (N − 1)− (p− 1)− (q− 1). Therefore,

(N − 1) − ϕ(N) = (p − 1) + (q − 1). Thus, gcd(N − 1, ϕ(N)) = gcd((N − 1) − ϕ(N), ϕ(N)) =

gcd((p− 1) + (q− 1), ϕ(N)). Now we saya = p− 1, b = q− 1. Then,

gcd(p− 1,q− 1) = gcd(a,b),

gcd(N − 1, ϕ(N)) = gcd(a + b,ab).

Obviously, gcd(a,b) divides gcd(a + b,ab). □

In [FS01], the parties compute and publish

T′ = ϕ(N) + (N − 1)R′

over the integers by using the simplified version of the GCD protocol in [CGS00] whereR′ is a

random secret integer chosen appropriately. By computing gcd(T′,N−1), the parties can check if

– 82 –



gcd(ϕ(N),N−1) = 4 holds. However, this leaks the informationϕ(N) modN−1(= T′ modN−1).

Becauseϕ(N) < N−1, the informationϕ(N) is leaked. Even if we computeT′ = ϕ(N)R+(N−1)R′

by using the GCD protocol whereRandR′ are random secret integers chosen appropriately, it can

happen that gcd(T′,N − 1) , 4 though gcd(ϕ(N),N − 1) = 4 when gcd(R,N − 1) , 1. Then the

good candidateN will be rejected. We avoid such a problem as we did in Sect.4.4.1.

In our setting, we havep ≡ 3 mod 4 andq ≡ 3 mod 4, so we have 4|N − 1 and 4|ϕ(N)(=

(p− 1)(q− 1)). On the other hand, gcd(p− 1,q− 1) = gcd(2p′,2q′) = 2× gcd(p′,q′). Therefore,

if gcd(N−1
4 , ϕ(N)

4 ) = 1, we have gcd(p′,q′) = gcd(p−1
2 , q−1

2 ) = 1.

Note that the parties haveϕ(N) in the additive sharing over the integers after the computation

of N. Actually,

ϕ(N) = N − p− q + 1 =

n∑

i=1

ϕi

whereϕ1 = N + 1− p1− q1 andϕi = −pi − qi for 2 ≤ i ≤ n. Each partyPi can computeϕi locally.

Furthermore, the parties haveϕ(N)
4 in the additive sharing over the integers because 4|ϕ1 and 4|ϕi

for 2 ≤ i ≤ n.

In order to check if gcd(N−1
4 , ϕ(N)

4 ) = 1 holds, we can take the same approach we proposed in

Sect. 4.4.1. That is, in Sect. 4.4.1,B′ is a public value andp′ =
p−1
2 is a shared secret and here

N−1
4 is a public value andϕ(N)

4 is a shared secret. Therefore, ifN−1
4 = 2e1 M0

∏u
j=1 M

ej

j whereM0

has no prime factors smaller thann and eachM j is a prime smaller thann, the parties check if

gcd(ϕ(N)
4 ,M0) = 1 and gcd(ϕ(N)

4 ,M j) = 1 for 1 ≤ j ≤ u hold by using our distributed sieving

protocol in Sect. 4.4.1. Note that the parties do not need to check if gcd(ϕ(N)
4 ,2) = 1 because

ϕ(N)
4 (= (2k1 + 1)(2k2 + 1)) is odd wherep = 4k1 + 3 andq = 4k2 + 3.

4.4.3 Generators of QN2

When gcd(p′,q′) = 1, andp′ andq′ do not contain the prime factors less thanB, the number of

the generators ofQN2 is

](generators ofQN2) = ϕ(pqp′q′) = pqp′q′
(
1− 1

p

) (
1− 1

q

) (
1− 1

B1

) (
1− 1

B2

) (
1− 1

B3

)
· · ·

whereBi ’s are primes, andB < B1 < B2 < B3 < · · · .
By picking upk′-tuple verification keys〈VK 1, . . . ,VK k′〉 from QN2 at random, the probability

– 83 –



that the tuple ofVK i ’s generatesQN2 is high if we adopt large enough security parametersk′ and

B as shown in [FS01].

4.5 Threshold Paillier Cryptosystem Without Trusted Dealer

We show how to construct the threshold Paillier cryptosystem without a trusted dealer building

on the protocols introduced in this chapter. We revisit the threshold Paillier cryptosystem with a

trusted dealer. As we have seen in Sect. 4.2.2, the dealer has to pick up a randomβ ∈ Z∗N and

computeθ = mβ modN wherem = p′q′. Also, the dealer distributes the secret shares forβm by

using the polynomial

f (x) = βm+ a1x + a2x2 + · · · + atx
t modNm.

In order to remove the dealer, the parties must computeθ = mβ modN so that no parties can know

β or m, and shareβm over the integers instead of modNmbecause no parties should knowm. We

use the observations thatϕ(N) = (p− 1)(q− 1) = 4m is a multiple ofm, and the parties haveϕ(N)

in the additive sharing
∑n

i=1 ϕi . We denoteϕ(N) by ϕ. In order to realize the (t + 1,n) threshold

Paillier cryptosystem, the parties perform the following steps.

Key Generation Phase:

1. Then parties perform the distributed RSA modulus generation protocol in Sect. 4.3, and

the additional protocol in Sect. 4.4.1 to make sure thatQN2 is cyclic. As a result, they

publishN and haveϕ in the additive sharingϕ =
∑n

i=1 ϕi over the integers.

2. Each partyPi picks up a randomβi ∈ Z∗N. By using the BGW protocol moduloN, the

parties compute and reveal

θ′ = βϕ =


n∑

i=1

βi




n∑

i=1

ϕi

 modN

as they computedN = (
∑n

i=1 pi)(
∑n

i=1 qi) modP. θ′ becomes part ofPK.

3. Using the sameβi ’s, the parties compute the shares of

∆4βϕ =


n∑

i=1

∆2βi




n∑

i=1

∆2ϕi



– 84 –



over the integers by the BGW protocol. The parties, however, do not reveal∆4βϕ itself.

Instead, they convert the 2t-degree polynomial sharing of∆4βϕ into the additive sharing of

∆4βϕ over the integers (poly-to-sum) where each sharesi satisfies (assumingn = 2t + 1)

∆4βϕ =

n∑

i=1

si .

Becauseβi < N,
∑n

i=1 βi < nN, |ϕi | < N, and
∑n

i=1 ϕi < N, each share ofβi andϕi is

bounded by∆(∆N + t×∆2NKnt)(≈ t∆3NKnt) whereK is chosen such thattK is negligible.

Therefore, eachsi is roughly bounded by ((t∆3NKnt) × n)2.

4. Pi generates a polynomial,

fi(X) = ∆(∆si + ai,1X + · · · + ai,tX
t),

to resharesi in the (t + 1,n) threshold secret sharing over the integers whereai, j ∈R

[−K∆2((t∆3NKnt) × n)2,K∆2((t∆3NKnt) × n)2].

Note that if we sayf (X) =
∑n

i=1 fi(X), then f (0) = ∆6βϕ.

5. Pi computesfi( j) for 1 ≤ j ≤ n, and sendsfi( j) to P j through the secure channel.

6. After receiving the shares from other parties,P j computesf ( j) =
∑n

i=1 fi( j). f ( j) is the

secret share of (t + 1,n) secret sharing of∆6βϕ.

7. The parties agree onk′-tuple verification keys〈VK 1 modN2, . . . ,VK k′ modN2〉 chosen

at random, and each partySi publishesk′-tupleVKi ’s

〈VK 1,i = (VK 1)∆ f (i) modN2, . . . ,VK k′,i = (VK k′)
∆ f (i) modN2〉.

Decryption Phase:

Now the parties decrypt a ciphertextc = gM xN modN2 whereM is the plaintext.

1. Pi publishes the partial decryptionci = c2∆ f (i) modN2 by using its secret share. AlsoPi

publishes the zero knowledge proofs for

f (i) = logc4∆ (ci)
2 = log(VK 1)∆ VK 1,i = · · · = log(VK k′ )∆ VK k′,i .

We accept only the partial decryptions with the valid zero knowledge proofs. The reason

– 85 –



we usef (i) = logc4∆(ci)2 instead off (i) = logc2∆ ci is to make sure that we are working in

QN2.

2. By combiningt + 1 valid partial decryptions of the subsetS of the parties, we can obtain

M = L(
∏

i∈S
c2µi

i modN2) × 1
4∆8θ′

modN

whereµi = ∆ × λS
0,i ∈ Z, andL(u) = u−1

N .

Proof of correctness:
∏

i∈S
c2µi

i = c4∆
∑

i∈S f (i)µi

= c4∆
∑

i∈S ∆ f (i)λS
0,i

= c4∆8βϕ

= (gM xN)4∆8βϕ

= g4∆8βϕM (∵ ∀x, xNϕ = 1 modN2)

= 1 + 4∆8βϕMN modN2 (∵ g = N + 1).

Therefore,

L(
∏

i∈S
c2µi

i modN2) = 4∆8βϕM = M × 4∆8θ′ modN.

∆ andθ′ are public information. Thus, we have

M = L(
∏

i∈S
c2µi

i modN2) × 1
4∆8θ′

modN.

□

– 86 –



Chapter 5

Concluding Remarks

Every story has a happy ending and if the ending is not happy,

then it means the story has not ended yet.

— Author Unknown

In this dissertation, we handled two main subjects among privacy applications, which are called

Ciphertext-Policy Attribute-Based Encryption and Multiparty Computation respectively and we

realized the CP-ABE schemes where ciphertext policies can be hidden and efficient MPC proto-

cols. These techniques are useful and can be deployed in the real world to solve the privacy issues.

However, there is still room for improvement and we briefly mention a number of possibilities for

further research.

Ciphertext-Policy Attribute-Based Encryption. The first CP-ABE scheme [BSW07] had a se-

curity proof only in the generic group model. Therefore, it was important to seek for CP-ABE

schemes that have security proofs based on standard number theoretic assumptions. Though the

scheme in [CN07] is provably secure, it can support only a limited type of access structure for

ciphertext policies and the recent line of work [GJP+08, Wat08] offers provably secure CP-ABE

schemes with more expressive access structures. In Chapter 2, we have discussed the two CP-

ABE schemes that have the additional property that ciphertext policies can be hidden and it may

be interesting to seek for constructions based on [GJP+08, Wat08] in which we can hide ciphertext

policies.

– 87 –



To support more expressive non-monotonic access structures and handle negated attributes effi-

ciently, it will be useful to construct a provably secure CP-ABE scheme with non-monotonic and

hidden access structures by using the techniques from [OSW07, SW08]. If it is possible, we will

be able to reduce the ciphertext size.

The scheme in [KSW08] can be more expressive than our constructions, but the ciphertext size

can beO(dn) whered ≥ 2 andn is the number of attributes when it realizes the full expressibility.

Thus it will be challenging to construct a provably secure CP-ABE scheme with advanced access

structures and small ciphertext size.

Shi et al. [SBC+07] achieved a predicate encryption scheme supporting wider range queries

with a relaxed security notion called match-revealing security, while the standard security notion

used in this dissertation is called match-concealing security. Relaxing the security notion may be

one of the promising approaches to constructing efficient encryption schemes with more advanced

access structures.

Multiparty Computation. A protocol for integer division is an important primitive which is miss-

ing in this dissertation. In the division protocol, given shared secretsa andb, the parties compute

a sharing ofb a
bc. In [ACS02, FJ06], the division protocols were proposed to perform a modulo

reduction. If the range of the shared secretsa andb is known in advance, then the comparison

protocol can be executed multiple times to computeb a
bc or a protocol for computing a sharing

of b 2k

b c can be used to obtainb a
bc where modulo reductions are assumed to be repeated andk is

appropriately chosen. If we can come up with a much more efficient protocol than these known

techniques, it will be useful and may be applicable to generating shared safe primes.

We described our protocols in the honest-but-curious model. However, it will be important to

make our protocols robust against active adversaries and it is a non-trivial task if we want to make

them robust without losing too much efficiency. To make our protocols robust, we may need new

different techniques as the robust version [OK05] of [ACS02].

We did not assume that shared secrets were within the known limited range, but by assuming

so, we may be able to come up with more efficient protocols for more specific situations without

adhering to constant-round protocols. The line of work [Tof05, BDJ+06, FJ06, Tof07, BCD+08,

– 88 –



DT08, VIFF] shows the feasibility of such MPC protocols and it will be challenging and mean-

ingful to solve large-scale real-world problems with a working implementation of practical and

special-purpose protocols as the aims of [VIFF, SSCM].

– 89 –



References

[ACD+06] M. Abdalla, D. Catalano, A. Dent, J. Malone-Lee, G. Neven, and N. Smart, “Identity-

based encryption gone wild,” Proc. International Colloquium on Automata, Languages

and Programming (ICALP), LNCS 4052, pp.300–311, Springer-Verlag, 2006.

[ACS02] J. Algesheimer, J. Camenisch, and V. Shoup, “Efficient computation modulo a shared

secret with application to the generation of shared safe-prime products,” Proc. Crypto

2002, LNCS 2442, pp.417–432, Springer-Verlag, 2002.

[AC06] T. Atkinson and M.C. Silaghi, “An efficient way to access an array at a secret index,”

Cryptology ePrint Archive 2006/157, 2006.

[BB89] J. Bar-Ilan and D. Beaver, “Non-cryptographic fault-tolerant computing in a constant

number of rounds of interaction,” Proc. ACM Symposium on Principles of Distributed

Computing (PODC 1989), pp.201–209, 1989.

[BFP+01] O. Baudron, P.-A. Fouque, D. Pointcheval, G. Poupard, and J. Stern, “Practical multi-

candidate election system,” Proc. 20th ACM Symposium on Principles of Distributed

Computing (PODC 2001), pp.274–283, 2001.

[Bau02] E.P. Bautista, “A square root bound on the minimum distance of some quadratic double

circulant codes overF5 andF7,”

Dissertation available fromhttp://mathsci.math.admu.edu.ph/∼banjo/

[BMR90] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure protocols,”

Proc. 22nd ACM Symposium on Theory of Computing (STOC 1990), pp.503–513, 1990.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorem for non-

cryptographic fault-tolerant distributed computation,” Proc. 20th Annual ACM Sympo-

sium on Theory of Computing (STOC 1988), pp.1–10, 1988.

– 91 –



[BSW07] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based encryp-

tion,” Proc. IEEE Symposium on Security and Privacy, pp.321–334, 2007.

[BCD+08] P. Bogetoft, D.L. Christensen, I. Damgård, M. Geisler, T. Jakobsen, M. Krøigaard,

J.D. Nielsen, J.B. Nielsen, K. Nielsen, J. Pagter, M. Schwartzbach, and T. Toft, “Multi-

party computation goes live,” Cryptology ePrint Archive 2008/068, 2008.

[BDJ+06] P. Bogetoft, I. Damgård, T. Jakobsen, K. Nielsen, J. Pagter, and T. Toft, “A practical

implementation of secure auctions based on multiparty integer computation,” Financial

Cryptography 2006, LNCS 4107, pp.142–147, Springer-Verlag, 2006.

[BB04] D. Boneh and X. Boyen, “Short signatures without random oracles,” Proc. Eurocrypt

2004, LNCS 3027, pp.56–73, Springer-Verlag, 2004.

[BBG05] D. Boneh, X. Boyen, and E.-J. Goh, “Hierarchical identity based encryption with con-

stant size ciphertext,” Proc. Eurocrypt 2005, LNCS 3494, pp.440–456, Springer-Verlag,

2005.

[BBS04] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,” Proc. Crypto 2004,

LNCS 3152, pp.41–55, Springer-Verlag, 2004.

[BF97] D. Boneh and M. Franklin, “Efficient generation of shared RSA keys,” Proc. Crypto 1997,

LNCS 1233, pp.425–439, Springer-Verlag, 1997.

[BF01] D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing,” Proc.

Crypto 2001, LNCS 2139, pp.213–229, Springer-Verlag, 2001.

[BW07] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on encrypted data,”

Proc. Theory of Cryptography Conference (TCC 2007), LNCS 4392, pp.535–554,

Springer-Verlag, 2007.

[BW06] X. Boyen and B. Waters, “Anonymous hierarchical identity-based encryption (without

random oracles),” Proc. Crypto 2006, LNCS 4117, pp.290–307, Springer-Verlag, 2006.

[Cac03] C. Cachin, “An asynchronous protocol for distributed computation of RSA inverses and

its applications,” Proc. ACM Symposium on Principles of Distributed Computing (PODC

2003), pp.153–162, 2003.

[CHL05] J. Camenisch, S. Hohenberger, and A. Lysyanskaya, “Compact e-cash,” Proc. Eurocrypt

2005, LNCS 3494, pp.302–321, Springer-Verlag, 2005.

– 92 –



[CHK03] R. Canetti, S. Halevi, and J. Katz, “A forward-secure public-key encryption scheme,”

Proc. Eurocrypt 2003, LNCS 2656, pp.255–271, Springer-Verlag, 2003.

[CHK04] R. Canetti, S. Halevi, and J. Katz, “Chosen-ciphertext security from identity-based

encryption,” Proc. Eurocrypt 2004, LNCS 3027, pp.207–222, Springer-Verlag, 2004.

[CGS00] D. Catalano, R. Gennaro, and S. Halevi, “Computing inverses over a shared secret mod-

ulus,” Proc. Eurocrypt 2000, LNCS 1807, pp.190–207, Springer-Verlag, 2000.

[CFL83a] A.K. Chandra, S. Fortune, and R.J. Lipton, “Lower bounds for constant depth circuits

for prefix problems,” Proc. International Colloquium on Automata, Languages and Pro-

gramming (ICALP), LNCS 154, pp.109–117, Springer-Verlag, 1983.

[CFL83b] A.K. Chandra, S. Fortune, and R.J. Lipton, “Unbounded fan-in circuits and associative

functions,” Proc. 15th ACM Symposium on Theory of Computing (STOC 1983), pp.52–

60, 1983.

[Cha07] M. Chase, “Multi-authority attribute based encryption,” Proc. Theory of Cryptography

Conference (TCC 2007), LNCS 4392, pp.515–534, Springer-Verlag, 2007.

[CCD88] D. Chaum, C. Cr̂epeau, and I. Damgård, “Multi-party unconditionally secure proto-

cols,” Proc. ACM Symposium on Theory of Computing (1988), pp.11–19, 1988.

[CN07] L. Cheung and C. Newport, “Provably secure ciphertext policy ABE,” Proc. ACM Con-

ference on Computer and Communications Security (CCS 2007), pp.456–465, 2007.

[CD01] R. Cramer and I. Damgård, “Secure distributed linear algebra in a constant number of

rounds,” Proc. Crypto 2001, LNCS 2139, pp.119–136, Springer-Verlag, 2001.

[CDI05] R. Cramer, I. Damgård, and Y. Ishai, “Share conversion, pseudorandom secret sharing

and applications to secure computation,” Proc. 2nd Theory of Cryptography Conference

(TCC 2007), LNCS 3378, pp.342–362, Springer-Verlag, 2005.

[CDN01] R. Cramer, I. Damgård, and J.B. Nielsen, “Multiparty computation from threshold

homomorphic encryption,” Proc. Eurocrypt 2001, LNCS 2045, pp.280–300, Springer-

Verlag, 2001.

[DD05] I. Damgård and K. Dupont, “Efficient threshold RSA signatures with general moduli

and no extra assumptions,” Proc. Theory and Practice of Public-Key Cryptography (PKC

2005), LNCS 3386, pp.346–361, Springer-Verlag, 2005.

– 93 –



[DFK+06] I. Damgård, M. Fitzi, E. Kiltz, J.B. Nielsen, and T. Toft, “Unconditionally secure

constant-rounds multi-party computation for equality, comparison, bits and exponentia-

tion,” Proc. 3rd Theory of Cryptography Conference (TCC 2007), LNCS 3876, pp.285–

304, Springer-Verlag, 2006.

[DI05] I. Damgård and Y. Ishai, “Constant-round multiparty computation using a black-box

pseudorandom generator,” Proc. Crypto 2005, LNCS 3621, pp.378–394, Springer-Verlag,

2005.

[DJ01] I. Damgård and M. Jurik, “A generalisation, a simplification and some applications of

Paillier’s probabilistic public-key system,” Proc. Theory and Practice of Public-Key Cryp-

tography (PKC 2001), LNCS 1992, pp.119–136, Springer-Verlag, 2001.

[DJ03] I. Damgård and M. Jurik, “A length-flexible threshold cryptosystem with applications,”

Proc. 8th Australasian Conference, Information Security and Privacy (ACISP 2003),

LNCS 2727, pp.350–364, Springer-Verlag, 2003.

[DK01] I. Damgård and M. Koprowski, “Practical threshold RSA signatures without a trusted

dealer,” Proc. Eurocrypt 2001, LNCS 2045, pp.152–165, Springer-Verlag, 2001.

[DN03] I. Damgård and J.B. Nielsen, “Universally composable efficient multiparty computation

from threshold homomorphic encryption,” Proc. Crypto 2003, LNCS 2729, pp.247–264,

Springer-Verlag, 2003.

[DT08] I. Damgård and R. Thorbek, “Efficient conversion of secret-shared values between differ-

ent fields,” Cryptology ePrint Archive 2008/221, 2008.

[ElG85] T. ElGamal, “A public key cryptosystems and a signature scheme based on discrete

logarithm,” Proc. Crypto 1984, LNCS 197, pp.10–18, Springer-Verlag, 1985.

[FKN94] U. Feige, J. Kilian, and M. Naor, “A minimal model for secure computation,” Proc. 26th

ACM Symposium on Theory of Computing (STOC 1994), pp.554–563, 1994.

[FPS00] P.-A. Fouque, G. Poupard, and J. Stern, “Sharing decryption in the context of voting or

lotteries,” Proc. Financial Cryptography 2000, LNCS 1962, pp.90–104, Springer-Verlag,

2000.

[FS01] P. A. Fouque, and J. Stern, “Fully distributed threshold RSA under standard assumptions,”

Proc. Asiacrypt 2001, LNCS 2248, pp.310–330, Springer-Verlag, 2001.

– 94 –



[FGMY97] Y. Frankel, P. Gemmell, P. Mackenzie, and M. Yung, “Optimal resilience proactive

public-key Cryptosystems,” Proc. 38th IEEE Symposium on Foundation of Computer

Science (FOCS), pp.384–393, 1997.

[FMY98] Y. Frankel, P. D. MacKenzie, and M. Yung, “Robust efficient distributed RSA-key gen-

eration,” Proc. 30th ACM Symposium on Theory of Computing (STOC 1998), pp.663–

672, 1998.

[FGM07] M. Franklin, M. Gondree, and P. Mohassel, “Multi-party indirect indexing and appli-

cations,” Proc. Asiacrypt 2007, LNCS 4833, pp.283–297, Springer-Verlag, 2007.

[FGM07b] M. Franklin, M. Gondree, and P. Mohassel, “Improved efficiency for private stable

matching,” Proc. Cryptographers’ Track at the RSA Conference (CT-RSA 2007), LNCS

4377, pp.163–177, Springer-Verlag, 2007.

[FJ06] S. L. From and T. Jakobsen, “Secure multi-party computation on integers,” Master’s The-

sis,http://www.daimi.au.dk/∼mas/uni/thesis/index.html, 2006

[GJKR96] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust and efficient sharing of

RSA functions,” Proc. Crypto 1996, LNCS 1109, pp.157–172, Springer-Verlag, 1996.

[GRR98] R. Gennaro, M.O. Rabin, and T. Rabin, “Simplified VSS and fast-track multiparty com-

putations with applications to threshold cryptography,” Proc. 17th ACM Symposium on

Principles of Distributed Computing (PODC 1998), pp.101–110, 1998.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game or a com-

plete theorem for protocols with honest majority,” Proc. 19th ACM Symposium on The-

ory of Computing (STOC 1987), pp.218–229, 1987.

[Gol06] P. Golle, “A private stable matching algorithm,” Proc. Financial Cryptography and Data

Security, LNCS 4107, pp.65–80, Springer-Verlag, 2006.

[GJP+08] V. Goyal, A. Jain, O. Pandey, and A. Sahai, “Bounded ciphertext policy attribute based

encryption,” Proc. International Colloquium on Automata, Languages and Programming

(ICALP), LNCS 5126, pp.579–591, Springer-Verlag, 2008.

[GPS+06] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-

grained access control of encrypted data,” Proc. ACM Conference on Computer and

Communications Security (CCS 2006), pp.89–98, 2006.

– 95 –



[HN05] M. Hirt and J.B. Nielsen, “Upper bounds on the communication complexity of op-

timally resilient cryptographic multiparty computation,” Proc. Asiacrypt 2005, LNCS

3788, pp.79–99, 2005.

[HN06] M. Hirt and J.B. Nielsen, “Robust multiparty computation with linear communication

complexity,” Proc. Crypto 2006, LNCS 4117, pp.463–482, 2006.

[JJ00] M. Jakobsson and A. Juels, “Mix and match: secure function evaluation via ciphertexts,”

Proc. Asiacrypt 2000, LNCS 1976, pp.162–177, 2000.

[JA03] H. Jordan and G. Alaghband “Fundamentals of parallel processing,” Prentice Hall, 2003.

[Jou00] A. Joux, “A one round protocol for tripartite Diffie-Hellman,” Proc. ANTS-IV, pp.385–

394, 2000.

[KTS07] A. Kapadia, P. P. Tsang, and S. W. Smith, “Attribute-based publishing with hidden cre-

dentials and hidden policies,” Proc. Network & Distributed System Security Symposium

(NDSS 2007), pp.179–192, 2007.

[KSW08] J. Katz, A. Sahai, and B. Waters, “Predicate encryption supporting disjunctions, poly-

nomial equations, and inner products,” Proc. Eurocrypt 2008, LNCS 4965, pp.146–162,

Springer-Verlag, 2008.

[LF80] R. Ladner and M. Fischer, “Parallel prefix computation,” Journal of the Association for

Computing Machinery vol.27, pp.831–838, 1980.

[LS08] D. Lubicz and T. Sirvent, “Attribute-based broadcast encryption scheme made efficient,”

Proc. Africacrypt 2008, LNCS 5023, pp.325–342, Springer-Verlag, 2008.

[MWB99] M. Malkin, T. Wu, and D. Boneh, “Experimenting with shared RSA key generation,”

Proc. Internet Society’s 1999 Symposium on Network and Distributed System Security

(SNDSS 1999), pp.43–56, 1999.

[MNT01] A. Miyaji, M. Nakabayashi, and S. Takano, “New explicit conditions of elliptic curve

traces for FR-reductions,” IEICE Trans., Fundamentals, E84-A(5), pp.1234–1243, 2001.

[MF06] P. Mohassel and M.K. Franklin, “Efficient polynomial operations in the shared-

coefficients setting,” Proc. Theory and Practice of Public-Key Cryptography (PKC 2006),

LNCS 3958, pp.44–57, Springer-Verlag, 2006.

[NN01] M. Naor and K. Nissim, “Communication preserving protocols for secure function evalu-

– 96 –



ation,” Proc. 33rd ACM Symposium on Theory of Computing (STOC 2001), pp.590–599,

2001.

[Nec94] V. I. Nechaev, “On the complexity of a deterministic algorithm for a discrete logarithm,”

Mat. Zametki, 55(2), pp.91–101, 189, 1994.

[NO07] Takashi Nishide, Kazuo Ohta, “Multiparty computation for interval, equality, and com-

parison without bit-decomposition protocol,”10th International Conference on Theory

and Practice of Public-Key Cryptography (PKC 2007), Beijing, China, April 16–20,

2007. Lecture Notes in Computer Science (LNCS) 2250, pp.343–360, Springer-Verlag,

2007.

[NYO08] Takashi Nishide, Kazuki Yoneyama, Kazuo Ohta, “Attribute-based encryption with

partially hidden encryptor-specified access structures,”6th International Conference on

Applied Cryptography and Network Security (ACNS 2008), New York, USA, June 3–6,

2008. Lecture Notes in Computer Science (LNCS) 5037, pp.111–129, Springer-Verlag,

2008.

[NZ05] K. Nissim and R. Zivan, “Secure DisCSP protocols - from centralized towards distributed

solutions,” Proc. 6th Workshop on Distributed Constraint Reasoning (DCR-05), 2005.

[OK05] E. Ong and J. Kubiatowicz, “Optimizing robustness while generating shared secret safe

primes,” Proc. Theory and Practice of Public-Key Cryptography (PKC 2005), LNCS

3386, pp.120–137, Springer-Verlag, 2005.

[OSW07] R. Ostrovsky, A. Sahai, and B. Waters, “Attribute-based encryption with non-

monotonic access structures,” Proc. ACM Conference on Computer and Communications

Security (CCS), pp.195–203, 2007.

[Pai99] P. Paillier, “Public-key cryptosystems based on composite degree residue classes,” Proc.

Eurocrypt 1999, LNCS 1666, pp.223–238, Springer-Verlag, 1999.

[Ped91] T. Pedersen, “A threshold cryptosystem without a trusted party,” Proc. Eurocrypt 1991,

LNCS 547, pp.522–526, Springer-Verlag, 1991.

[Per52] O. Perron, “Bemerkungen̈uber die verteilung der quadratischen reste,” Mathematische

Zeitschrift, vol.56, no.2, pp.122–130, 1952.

[Rab98] T. Rabin, “A simplified approach to threshold and proactive RSA,” Proc. Crypto 1998,

– 97 –



LNCS 1462, pp.89–104, Springer-Verlag, 1998.

[RSA78] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signature and

public-key cryptosystems,” Communication of the ACM, vol.21, no.2, pp.120–126, 1978.

[SW05] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” Proc. Eurocrypt 2005, LNCS

3494, pp.457–473, Springer-Verlag, 2005.

[SW08] A. Sahai and B. Waters, “Revocation systems with very small private keys,” Cryptology

ePrint Archive 2008/309, 2008.

[ST06] B. Schoenmakers and P. Tuyls, “Efficient binary conversion for Paillier encrypted values,”

Proc. Eurocrypt 2006, LNCS 4004, pp.522–537, Springer-Verlag, 2006.

[Sch80] J.T. Schwartz, “Fast probabilistic algorithms for verification of polynomial identities,” J.

ACM, vol.27, no.4, pp.701–717, 1980.

[Sco02] M. Scott, “Authenticated ID-based key exchange and remote log-in with simple token

and PIN number,” Cryptology ePrint Archive 2002/164, 2002.

[Sha79] A. Shamir, “How to share a secret,” Communications of ACM, vol.22, no.11, pp.612–

613, 1979.

[SBC+07] E. Shi, J. Bethencourt, H. Chan, D. Song, and A. Perrig, “Multi-dimensional range

query over encrypted data,” Proc. IEEE Symposium on Security and Privacy, pp.350–

364, 2007.

[Sho97] V. Shoup, “Lower bounds for discrete logarithms and related problems,” Proc. Eurocrypt

1997, LNCS 1233, pp.256–266, Springer-Verlag, 1997.

[Sho00] V. Shoup, “Practical threshold signatures,” Proc. Eurocrypt 2000, LNCS 1807, pp.207–

220, Springer-Verlag, 2000.

[SSCM] SecureSCM Project.http://securescm.org/

[Tof05] T. Toft, “Secure integer computation with applications in economy,” Technical Report

available fromhttp://www.dinapigen.dk/TOMAS/publications.html

[Tof07] T. Toft, “Primitives and applications for multi-party computation,” Dissertation available

from http://www.dinapigen.dk/TOMAS/publications.html

[VIFF] The Virtual Ideal Functionality Framework.http://viff.dk/

[Wat08] B. Waters, “Ciphertext-policy attribute-based encryption: an expressive, efficient, and

– 98 –



provably secure realization,” Cryptology ePrint Archive 2008/290, 2008.

[Yao82] A.C. Yao, “Protocols for secure computation,” Proc. 23rd IEEE Symposium on Founda-

tion of Computer Science (FOCS), pp.160–164, 1982.

[Yao86] A.C. Yao, “How to generate and exchange secrets,” Proc. 27th IEEE Symposium on

Foundation of Computer Science (FOCS), pp.162–167, 1986.

[Zip79] R. Zippel, “Probabilistic algorithms for sparse polynomials,” Proc. EUROSAM 1979,

LNCS 72, pp.216–226, Springer-Verlag, 1979.

– 99 –



Acknowledgements

First of all I would like to thank my advisor, Kazuo Ohta for his endless encouragement, optimism,

enthusiasm, advice, and patience. He was always available as a reliable oracle and gave me many

hints on doing research whenever I got stuck on research problems and things were so unclear. He

always understood my situation and gave me timely advice that helped me pick good directions

even when we seemed to be in adversity. His casual word “Let’s join the race” led me to come up

with the first result, the comparison protocol. I am so indebted to him for his guidance during my

Ph.D. study.

I am also grateful to Noboru Kunihiro for teaching me the basics of IBE that was very useful

for my research on ABE and sharing a room with me at PKC 2007 that I enjoyed so much.

My special thanks go to Kazuki Yoneyama for sharing with me his broad knowledge on cryp-

tography, not ignoring my stupid questions, and collaboration.

I also thank Tomas Toft for the discussion at TCC 2006 and giving me his idea of the LSB

protocol included in this dissertation.

I express my gratitude to Ming-Deh Huang for giving me an opportunity to do research on

cryptography under his supervision during my master’s study, which still preoccupies me and led

me to this dissertation.

I also extend my gratitude to the members of my dissertation committee for their willingness to

serve on the committee and helpful comments on this dissertation.

Being a member of this laboratory allowed me to have chances to interact with many good

people in the field of information security that I would not have met if I had not taken a step into

research on cryptography, who include Tetsuya Izu, Mitsugu Iwamoto, Bagus Santoso, Yoshikazu

Hanatani, Yasuhiko Hiehata, Seiji Okuaki, Eiichiro Fujisaki, and Miyako Ohkubo. Especially I

– 101 –



thank Seiji Okuaki for sharing with me the similar struggles as a part-time Ph.D. student, Eiichiro

Fujisaki for having time for me and his advice, and Miyako Ohkubo for giving me a chance to

give a talk in front of Prof. Adi Shamir at IPA, which was a memorable moment.

I thank Fumiko Sekiguchi for fun chats and helping me cope with non-cryptographic paperwork

at the university.

I thank the product development team that I am a member of in the company for allowing me

to take days off to attend the academic conferences when we were so busy.

Finally I thank my family for always being supportive of my life.

Takashi Nishide,

Shinmaruko, September 13, 2008.

– 102 –



List of Publications Related to the

Dissertation

Related Publications

Journal Papers

1. Takashi Nishide, Kazuo Ohta, “Constant-Round Multiparty Computation for Interval Test,

Equality Test, and Comparison”, IEICE Transactions on Fundamentals, Vol. E90–A, No.5,

pp.960–968, May 2007.

2. Takashi Nishide, Kazuki Yoneyama, Kazuo Ohta, “Attribute-Based Encryption with Par-

tially Hidden Ciphertext Policies”, IEICE Transactions on Fundamentals (To Appear), Jan-

uary 2009.

Refereed Conference Papers (with Formal Proceedings)

1. Takashi Nishide, Kazuo Ohta, “Multiparty Computation for Interval, Equality, and Com-

parison without Bit-Decomposition Protocol”,10th International Conference on Theory

and Practice of Public-Key Cryptography (PKC 2007), Beijing, China, April 16–20, 2007.

Lecture Notes in Computer Science (LNCS) 2250, pp.343–360, Springer-Verlag, 2007.

2. Takashi Nishide, Kazuki Yoneyama, Kazuo Ohta, “Attribute-Based Encryption with Par-

tially Hidden Encryptor-Specified Access Structures”,6th International Conference on Ap-

plied Cryptography and Network Security (ACNS 2008), New York, USA, June 3–6, 2008.

– 103 –



Lecture Notes in Computer Science (LNCS) 5037, pp.111–129, Springer-Verlag, 2008.

Patents

1. 西出隆志,太田和夫, “秘密分散情報処理システム”, 特開 2008–20871(P2008–20871A)

– 104 –



List of All Publications

Journal Papers

1. Takashi Nishide, Kazuo Ohta, “Constant-Round Multiparty Computation for Interval Test,

Equality Test, and Comparison”, IEICE Transactions on Fundamentals, Vol. E90–A, No.5,

pp.960–968, May 2007.

2. Takashi Nishide, Kazuki Yoneyama, Kazuo Ohta, “Attribute-Based Encryption with Par-

tially Hidden Ciphertext Policies”, IEICE Transactions on Fundamentals (To Appear), Jan-

uary 2009.

Refereed Conference Papers (with Formal Proceedings)

1. Takashi Nishide, Kazuo Ohta, “Multiparty Computation for Interval, Equality, and Com-

parison without Bit-Decomposition Protocol”,10th International Conference on Theory

and Practice of Public-Key Cryptography (PKC 2007), Beijing, China, April 16–20, 2007.

Lecture Notes in Computer Science (LNCS) 2250, pp.343–360, Springer-Verlag, 2007.

2. Takashi Nishide, Kazuki Yoneyama, Kazuo Ohta, “Attribute-Based Encryption with Par-

tially Hidden Encryptor-Specified Access Structures”,6th International Conference on Ap-

plied Cryptography and Network Security (ACNS 2008), New York, USA, June 3–6, 2008.

Lecture Notes in Computer Science (LNCS) 5037, pp.111–129, Springer-Verlag, 2008.

– 105 –



Patents

1. 西出隆志,太田和夫, “秘密分散情報処理システム”, 特開 2008–20871(P2008–20871A)

Non-refereed Papers

1. Takashi Nishide, Kazuo Ohta, “How to Compare Two Polynomially Shared Secrets Pri-

vately”, Symposium on Cryptography and Information Security (SCIS 2006), January

2006.

2. Takashi Nishide, Kazuki Yoneyama, Kazuo Ohta, “Attribute-Based Encryption with Par-

tially Hidden Ciphertext Policies”, IEICE Technical Report, ISEC2007-125, pp.93–100,

December 2007.

3. Takashi Nishide, Kazuki Yoneyama, Kazuo Ohta, “Attribute-Based Encryption with Hid-

den Encryptor-Specified Policies”, Symposium on Cryptography and Information Security

(SCIS 2008), January 2008.

– 106 –



Author Biography

Takashi Nishide was born in Osaka, Japan, on June 5, 1973. He received his B.S. degree in

information science from the University of Tokyo, Tokyo, Japan, in March 1997, and his M.S.

degree in computer science from the University of Southern California, California, USA, in 2003,

respectively. Since 1997, he has been working at Hitachi Software Engineering Co., Ltd. and

engaged in developing security products. His reserch interests include public-key cryptosystems

and cryptographic protocols. Since April 2005, he had been a Ph.D. student at the Graduate

School of Electro-Communications, the University of Electro-Communications, working towards

his Ph.D. degree as a part-time student and finished the doctor course in March 2008. Mr. Nishide

is a member of the International Association for Cryptology Research (IACR).

– 107 –


