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Abstract—High-resolution, short-range sensors that can be ap-
plied in optically challenging environments (e.g., in the presence
of clouds, fog, and/or dark smog) are in high demand. Ultra-
wideband millimeter-wave radars are one of the most promising
devices for the above applications. For target recognition using
sensors, it is necessary to convert observational data into full
3-dimensional (3-D) images with both time-efficiency and high
accuracy. For such conversion algorithm, we have already pro-
posed the range points migration (RPM) method. However, in the
existence of multiple separated objects, this method suffers from
inaccuracy and high computational cost due to dealing with many
observed range points. To address this issue, this study introduces
Doppler-based range points clustering into the RPM method.
The results from numerical simulations, assuming 140-GHz band
millimeter radars, show that the addition of Doppler velocity
into the RPM method results in more accurate 3-D images with
reducing computational costs.

Index Terms—Range points migration(RPM), Multi-static
UWB Doppler Radar, Short range sensing

I. INTRODUCTION

Short-range, millimeter-wave radar systems have significant
advantages including higher spatial resolution and applicability
to optically harsh environments (e.g., dark smog, fog, or strong
back light) and show promise for various sensing applications
such as collision-avoidance sensors for automobiles and watch
sensors for elderly or disabled persons living alone. Recently,
140-GHz radar systems have attracted attention because this
frequency minimizes the absorption of moisture vapor, al-
lowing the detection of targets from automobiles in high-
moisture environments. Moreover, the size of the transmitting
and receiving modules can be considerably reduced, making
the actual implementation of the system more flexible. Various
studies on 3-D imaging algorithms focused on short-range
sensing have been reported, most of which are based on the
delay-and-sum (DAS) approach, for example, beamforming,
time-reversal algorithms [1], and range migration methods [2]
or Kirchhoff migration [3]. However, these studies required
high computational costs to obtain full three-dimensional (3-
D) voxel images and also suffered from limited accuracy for
objects with continuous boundaries because of the pointwise
target assumption.
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To address these issues, a non-parametric, fast, 3-D imaging
method called shape estimation algorithm based on boundary
scattering transform and extraction of directly scattered waves
(SEABED) was developed based on reversible transforms
between the time delay and the target boundary [4]. How-
ever, this method has fundamental drawbacks; for example,
it requires a range point connection procedure during pre-
processing, which is difficult in richly interfered situations.
The range points migration (RPM) method was developed as
a promising method for solving this problem [5]. This method
achieves a batch conversion from range points abbreviated
as RP (a set of antenna location and observed range points)
to scattering center points with one-to-one correspondence.
The RPM method converts each range point (referred to as
Main RP) to each scattering center by assessing the focusing
degree using all surrounding RPs (called Sub RPs). Notably,
this method resolves an inherent paring problem between the
range and direction of arrival using a Gaussian kernel-based
statistical approach. Thus, RPM is free from complicated
pre-processing involving connecting or paring range points.
This feature confers the significant advantages of both lower
computational cost and higher accuracy for locating scattering
centers on continuous boundaries, even in richly interfered
cases.

Based on the above merits, the RPM method has been
successfully applied to short range sensing issues, including
the experimental validation [6], the though-the-wall extension
[7] or the three-dimensional ultrasonography imaging issues
[8]. In addition, the millimeter radar application assuming
140-GHz band UWB signal has been investigated using a
multi-static configuration [9]. The multi-static configuration
considerably reduces the time required for data acquisition
compared to the radar scanning model, which is necessary for
achieving real-time imaging. However, when a sensor receives
many reflection echoes, assuming multiple objects or objects
with complicated shapes, this method suffers from large
computational cost and inaccuracy. This occurs because RPM
assesses a focusing degree using all surrounding RPs (called
SubRPs) during the conversion from targeted RPs (called
Main RPs) to scattering points, and SubRPs might include
unnecessary one. To improve the efficiency and accuracy of
the RPM method, this paper introduces a Doppler velocity-
based RP clustering algorithm that enhances imaging accuracy
by selecting an appropriate set of SubRPs. While Doppler
based data clustering or separation has been demonstrated in
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Fig. 1. System model.

lots of literature, there are no investigations for incorporating
the RPM for improving both computational efficiency and
accuracy. Furthermore, the proposed method can associate a
Doppler velocity with each scattering center, which greatly
assists in human body recognition as demonstrated in [10].
The results obtained from numerical simulations assuming
140 GHz band UWB radar system, show that the proposed
method considerably improves both computational cost and
accuracy for 3-D imaging, where the effective imaging points
also increases by decomposing the multiple echoes within
same range gate by discriminating the Doppler frequency.

II. SYSTEM MODEL

Figure 1 shows the system model. The model assumes that
each target has an arbitrary 3-D shape with a clear boundary
and a unique velocity. Antennas are arranged in an array on
the y = 0 plane to form a multi-static radar configuration. The
locations of the transmitting and receiving antennas are defined
as LT = (XT , 0, ZT ) and LR = (XR, 0, ZR), respectively.
For each combination of LT and LR, the recorded electric
field is denoted as s′(LT,LR, t, τ), where t denotes a fast
time and τ denotes a slow time sampled by the pulse repetition
interval. s(LT,LR, t, τ) is the output of the Wiener filter of
s′(LT,LR, t, τ) calculated as;

s(LT,LR, t, τ) =

∫ ∞

−∞
W (ω)S′(LT,LR, ω, τ)e

jωtdω, (1)

where S′(LT,LR, ω, τ) is the form of Fourier transform of
s′(LT,LR, t, τ) as to t. W (ω) is defined as

W (ω) =
Sref(ω)

∗

(1− η)S2
0 + η|Sref(ω)|2

S0, (2)

where η = 1/(1 + (S/N)−1), and Sref(ω) is the reference
signal in the frequency domain, which is the complex con-
jugate of that of the transmitted signal. S0 is a constant for
dimension consistency. This filter is an optimal MSE (Mean
Square Error) linear filter for additive noises. Since we need
to deal with multiple reflection signals from multiple objects,

it is quite difficult to determine optimal η, so an appropriate
η is determined empirically. s(LT,LR, t, τ) is converted to
s(LT,LR, R, τ), using R′ = ct/2 with the radio wave speed
c. Then, the range-Doppler signals as S(LT,LR, R

′, V ′
D) is

obtained by using the one-dimensional Fourier transform of
s(LT,LR, R

′, τ) as to τ . q ≡ (LT,LR, R, VD)
T is defined

as the range point (RP), which is extracted from the local
maxima of S(LT,LR, R

′, V ′
D) regarding to R′ and V ′

D as;

∂|S(LT,LR, R
′, V ′

D)|/∂R′ = 0
∂|S(LT,LR, R

′, V ′
D)|/∂V ′

D = 0
|S(LT,LR, R

′, V ′
D)| ≥ αmax |S(LT,LR, R

′, V ′
D)|

 . (3)

This study assumes that each RP is assigned to each scattering
center on target boundary, and the conversion from the RPs to
target boundary points is regarded as an imaging process.

III. CONVENTIONAL METHODS

Various methods for the reconstruction of target shapes
in short-range 3-D imaging have been proposed based on
the DAS approach, including beam-forming and Kirchhoff
migration. Although the DAS-based methods provide accurate
images of point-wise targets, they cannot offer sufficient accu-
racy for non-point-wise targets; moreover, the computational
cost becomes enormous in 3-D imaging due to the signal
synthesizing approach with all received signals in each voxel
evaluation.

The RPM method has been developed to overcome the
above issues [5], and has been extended to the multi-static
observation model [9]. This method assumes that a target
boundary point exists on an ellipsoid with focal points LT

and LR and major radius R. To extract the target point, this
method assumes that the actual target boundary point should
be included in all the possible intersection points determined
by other range points. To determine a target point p̂(qi) cor-
responding to range point qi, this method extracts the optimal
intersection points by assessing the spatial accumulation of
intersection points calculated by other range points (called
SubRPs) as

p̂(qi) = arg max
pint(qi;ql,qm)∈Pi

∑
(qj ,qk)∈Qall

g(qi; qj , qk)

× exp

{
−
||pint(qi; qj , qk)− pint(qi; ql, qm)||

2σ2
r

}
. (4)

Here, pint(qi; qj , qk) denotes the intersection points among
the three ellipsoids, which is determined by the range points
qi, qj , and qk, Pi denotes a set of these intersection points
and σr is determined considering the spatial density of the
accumulated intersection points. Qall denotes a set of all range
points. The weighting function g(qi; qj , qk) is defined as

g
(
qi; qj , qk

)
= s

(
qj

)
exp

{
−
D

(
qi, qj

)
2σ2

D

}

+s (qk) exp

{
−D (qi, qk)

2σ2
D

}
, (5)

where σD is determined empirically and D(qi, qj) denotes the
actual separation of the two sets of transmitting and receiving
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Fig. 2. Range points clustering in RPM scheme.

antennas as

D(qi, qj) = min
(
∥LT,i −LT,j∥2 + ∥LR,i −LR,j∥2 ,

∥LT,i −LR,j∥2 + ∥LR,i −LT,j∥2
)
. (6)

Note that, in Eq. (4), the optimal combination of ql and qm

is determined by full search for all possible combinations.
Notably, in this method, each range point qi is related

to a target point p(qi) with one-to-one correspondence. The
RPM does not require the connection of range points before
processing, allowing the accurate conversion from range points
to target points, even in richly interfered cases. The RPM
evaluates the degree of accumulation of the intersection points
of ellipsoids for a targeted RP as qi (named as Main RP)
defined by other surrounding range points (named as SubRPs,
qj , qk in Eq. (4). Figure 2 shows an example conversion
between target points and range points in a multi-static con-
figuration; the lower figure shows the cross-sectional view at
(XT, ZT, ZR) = const.. In this case, each antenna receives a
maximum of three RPs, and RPM converts a MainRP qi to
target boundary point using surrounding all Sub RPs. However,
in the presence of multiple objects, the increasing number of
SubRPs seriously increases the computational cost due to the
large number of intersection points of the three ellipsoids,
which must all be numerically solved. In addition, in the
case of multiple objects, the combination of range points from
different targets introduces inaccuracy in the calculation of the
actual scattering point.

IV. PROPOSED METHOD

Range clustering represents a promising solution for the
above issues. In terms of computational efficiency and recon-
struction accuracy, the SubRPs are included in the same target
cluster of Main RP. In the case of multiple targets, if the Main
RP caused from the n-th target, should be processed using only
the SubRPs from the n-th target. Figure 2 shows an example of
correctly clustered range points. As shown in this figure, only
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Fig. 3. Example for Doppler based range point clustering.

a set of SubRPs (red broken circles) is necessary to evaluate
MainRP (red solid circle), and other RPs may introduce error
into the final image. However, it is generally difficult to cluster
the range points without a priori knowledge of target shape or
location, because the range points assuming multiple scatter
are overlapped on data space as Figure 2.

To appropriately cluster SubRPs for each MainRP without
a priori information about target shape, this paper introduces
Doppler-based range points clustering as a preprocessing step
within the RPM method. The new method assumes that a
group of range points generated from an object has almost
the same Doppler velocity, and that each range point can be
clustered by its associated Doppler velocity before the RPM
process. This method introduces the following criteria for qi

(denoted as Main RP) and qj (denoted as SubRPs);

ϵ(qi, qj) ≡ |VD,i − VD,j | (7)

The set of SubRPs that satisfies ϵ(qi, qj) ≤ ϵth is denoted
as Qi, and the target point p̂(qi) is calculated in Eq. (4),
switching from Qall to Qi. Figure 3 shows the example of
Doppler velocity based range points clustering. After extract-
ing range-Doppler map for each antenna combination as LT

and LR, local maxima of |S(LT,LR, R
′, V ′

D)| are extracted
as Doppler velocity associated range points. This method
confers an additional advantage; multiple range points within
the same range gate but with different Doppler velocities can
be decomposed, increasing the effective target points.

The procedure of the proposed method is as follows:
Step 1) Observed data are acquired as outputs of the Wiener

filter s(LT,LR, R
′, τ) .

Step 2) S(LT,LR, R
′, V ′

D) are obtained by applying
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Fig. 4. Scattering center points obtained by the original RPM method in
noiseless case.

the one-dimensional discrete Fourier transform to
s(LT,LR, R

′, τ) in terms of τ .
Step 3) Range points qi are extracted from local maxima

|S(LT,LR, R
′, V ′

D)| as to R′ and V ′
D, and a set of

all RPs is defined as Qall.
Step 4) Range points are clustered by the criteria expressed

in Eq. (7) as Qi.
Step 5) qi is converted to a target point p̂(qi) by RPM

using Qi in Eq. (4).
Step 6) For each target point p̂(qi), the associated Doppler

velocity VD,i is calculated.

V. EVALUATION IN NUMERICAL SIMULATION

This section evaluates the performance of the original RPM
and the newly proposed method using numerical simulation.
The transmitting signal forms a pulse modulated signal with
a center frequency of 140 GHz and a 10-dB bandwidth
of 10 GHz. The center wavelength λ is 2.1 mm, and the
theoretical range resolution in the air is 15 mm. The pulse
repetition interval is 37.5 µs, and the number of pulse hits
is 56. Thus, the Doppler velocity resolution is 0.5 m/s, and
the maximum unambiguous range is 20 m. It assumes that
the target is a human body approximated as an aggregation
of 11 ellipsoids corresponding to the head, upper and lower
torsos, arms, and legs (Fig. 1). For simplicity, we consider
the stepping motion of human body at same position, where
the Doppler velocity of each part is summarized as Table
I. The numbers of transmitting and receiving antennas are
4 and 25, respectively, and the minimum array spacing is
50 λ. The received time-series data are generated by GO
(Geometrical Optics) approximation without consideration of
multiple scattering among targets. The GO is the forward
solver based on higher frequency approximation, where the
dominant propagation path can be determined by the law of
reflection in optics[11]. The motivation for applying GO is
that it requires much less computational cost compared with
other forward solver, such as FDTD or MoM methods, and
we deal with smoothed surface target, the roughness of which
is quite larger than the assumed center wavelength (2mm).

Fig. 5. Scattering center points obtained by the proposed method in noiseless
case.

TABLE I
DOPPLER VELOCITIES FOR EACH PART OF HUMAN BODY.

Doppler velocity Parts
-1.0 m/s Right lower arm & Left lower leg
-0.5 m/s Right upper arm & Left upper leg

0 m/s Head & Lower and Upper torso
0.5 m/s Left upper arm & Right upper leg
1.0m/s Left lower arm & Right lower leg

Figures 4 and 5 show the images reconstructed by the original
RPM and the proposed methods, respectively. ϵth = 0.5 m/s
is set in this case. The color of each target point obtained
by the proposed method indicates the Doppler velocity. As
in Fig. 4, there are some points largely deviated from actual
boundary, which are caused by evaluating unnecessary SubRPs
in Eq. (4). On the contrary, Fig. 5 demonstrates that the
proposed method considerably increases the accurately located
scattering centers associated with Doppler velocity, compared
with those obtained by the original RPM. This improvement
occurred because the range points corresponding to each part
of the human body are correctly clustered by difference in
Doppler velocity. It should be also noted that the proposed
method decomposes multiple range points included in same
range resolution based on Doppler velocity; this increases the
number of target points, which is another advantage of this
method. However, there are non-negligible deviations from
an actual boundary for scattering center points reconstructed
by both the original and proposed RPM. These errors are
mainly caused by the interferences among reflection signals
from different parts in the same range gate, then, to reduce
these errors, it is promising to introduce a super resolution
filter, such as Capon or MUSIC algorithm, which has been
demonstrated in [12].

For the quantitative evaluation, the reconstruction error
denoted by e(pest

i ) is introduced as

e(pest
i ) = min

ptrue
∥pest

i − ptrue∥2, (i = 1, 2, · · · , NT), (8)

where pest
i and ptrue are the locations of the i-th estimated

point and the true target point (namely, the group of discretized
points on ellipsoid surface with sufficiently dense sample in
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Fig. 6. Cumulative distribution for the reconstruction error e in noiseless
case.

this case), respectively, and NT is the total number of pest
i .

Figure 6 shows the cumulative distribution for e(pest
i ) in

each method. The numbers of reconstructed points satisfying
e < 10λ(= 21mm) are 116 (41% of total points) for the
original RPM method and 441 (74% of total points) for the
new method. The calculation times using a Xeon 3.10 GHz
processor are 550 s for original RPM and 160 s for the new
method.

Performance evaluations in noisy cases are described as fol-
lows. To simulate a noisy situation, we added white Gaussian
noise to the received time-series data. Table II denotes the
average ratio for satisfying e < 10λ(= 21mm) and that of
mean value of e for the original and new methods in noisy
situations at S/N=30 dB, where each quantity is averaged
over 100 different noise patterns. S/N is defined as the ratio
of the peak instantaneous signal power for all polarization
data to the average noise power after applying a matched
filter. It should be noted that the above definition is the most
strict estimation of S/N and considers the locality of signal
in both the time and frequency domains, and the signals with
S/N = 30 dB are practically available by coherent integration
procedure, demonstrated in [12]. The results shown in Table II
demonstrate that our proposed method still retains more than
70 % points satisfying e < 10λ(= 21mm), which is improved
from that obtained by the original method as less than 50 %.
Finally, it should be noted that, in the actual scenario, we
should consider the multiple reflection among objects, which
would incur an image distortion in any method. However, this
kind of distortion is predicted to be not so serious, because
the amplitude of higher order multiple reflections would be
considerably lower compared to that of direct scattering, and
a time gating process for such kind of multiple reflections
also could suppress the false image. It is also our future
work to discriminate the multiple reflection components by
recognizing Doppler velocities.

VI. CONCLUSION

This paper incorporated a range points clustering algorithm
based on Doppler velocity into the RPM method to achieve ac-
curate and high-speed 3-D imaging. The numerical simulation

TABLE II
ACCURACY ANALYSIS AT S/N=30DB.

Original RPM Proposed Method
Average ratio satisfying e < 10λ 49.2 % 72.1%

12.8 λ 7.8 λ
Average of ē (26.9mm) (16.4mm)

assuming 140 GHz band UWB radar system and human body
imaging issue, has demonstrated that the proposed method
remarkably enhances the number of accurately reconstructed
points associated with the Doppler velocity by decomposing
multiple range points within same range gate, while reducing
the required computational time compared to the conventional
RPM method. Further acceleration of this method would
be done by introducing more efficient algorithm to search
the optimal intersection points in Eq. (4), while the present
algorithm relies on full search of possible intersection points.
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