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Abstract

High-level abstractions for parallel programming are still immature. Computations on complicated data
structures such as pointer structures are considered as irregular algorithms. General graph structures,
which irregular algorithms generally deal with, are difficult to divide and conquer. Because the divide-
and-conquer paradigm is essential for load balancing in parallel algorithms and a key to parallel program-
ming, general graphs are reasonably difficult. However, trees lead to divide-and-conquer computations
by definition and are sufficiently general and powerful as a tool of programming. We therefore deal with
abstractions of tree-based computations.

Our study has started from Matsuzaki’s work on tree skeletons. We have improved the usability
of tree skeletons by enriching their implementation aspect. Specifically, we have dealt with two issues.
We first have implemented the loose coupling between skeletons and data structures and developed a
flexible tree skeleton library. We secondly have implemented a parallelizer that transforms sequential
recursive functions in C into parallel programs that use tree skeletons implicitly. This parallelizer hides
the complicated API of tree skeletons and makes programmers to use tree skeletons with no burden.
Unfortunately, the practicality of tree skeletons, however, has not been improved. On the basis of the
observations from the practice of tree skeletons, we deal with two application domains: program analysis
and neighborhood computation.

In the domain of program analysis, compilers treat input programs as control-flow graphs (CFGs)
and perform analysis on CFGs. Program analysis is therefore difficult to divide and conquer. To resolve
this problem, we have developed divide-and-conquer methods for program analysis in a syntax-directed
manner on the basis of Rosen’s high-level approach. Specifically, we have dealt with data-flow analysis
based on Tarjan’s formalization and value-graph construction based on a functional formalization.

In the domain of neighborhood computations, a primary issue is locality. A naive parallel neighbor-
hood computation without locality enhancement causes a lot of cache misses. The divide-and-conquer
paradigm is known to be useful also for locality enhancement. We therefore have applied algebraic for-
malizations and a tree-segmenting technique derived from tree skeletons to the locality enhancement of
neighborhood computations.
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Chapter 1

Introduction

1.1 Background and Motivation

In the history of computer science, parallel computing and parallel machines are classic topics. In the
research on programming languages, parallel programs (i.e., programs exploiting parallel machines) and
parallel programming (i.e., to develop parallel programs) are never new topics. However, the current
status of parallel programming is very immature. The most popular language used in practice for
describing parallel programs is FORTRAN, which is one of the oldest programming languages, together
with MPI, which is a low-level communication construct. Abstractions for parallel programming are
very limited and low-level compared with sequential (i.e., non-parallel) programming. Therefore, parallel
programming is considered as a research problem for the next 50 years [HPP09].

Automatic parallelization and optimization are closely relevant to parallel programming because these
promote high-level programming that is oblivious of low-level issues that compilers can resolve. Auto-
matic parallelization and optimization for index access to arrays in nested for loops were well studied
[AKO01, BHRS08, GGL12, YFRS13]. For good or ill, they help FORTRAN survive so far. Meanwhile,
although accumulative computation is generally difficult to parallelize, methods for automatic paralleliza-
tion of accumulative linear recursions were developed [MMM™*07, MM10, SI11la, FG94, RF00|. In this
sense, the foundations of the abstractions for parallel programming on linear structures are now available.
However, more complicated structures are difficult to deal with in parallel programming. Foundations
for dealing systematically with them have not been solidly established.

Actually, problems/algorithms that involve more complicated structures, e.g., linked structures and
sparse representations than random-access arrays are called irreqular ones in the context of parallel
programming'. A systematic approach to implementing irregular algorithms is a big issue in parallel
programming and a hot topic in recent studies [KBIT09].

The computational structure in irregular problems forms a graph. Since (general) graphs do not
have recursive structures, irregular algorithms are not recursively defined in general. This means that
irregular algorithms are generally not contained in the divide-and-conquer paradigm. Divide and conquer
is, however, essential to parallel computing and has been used as the key notion extensively in parallel
programming [BFGS12, FLR98, BCH194, Ski93]. Irregular problems/algorithms are therefore inherently
difficult to deal with in parallel programming.

Instead of general irregular algorithms, we focus on tree-based algorithms. Although tree-based
algorithms are usually considered as irregular ones, their computational structures are based on trees
but not (general) graphs. Trees have recursive structures and tree-based algorithms utilize this trait. As
a result, the large part of a tree-based algorithm is recursively defined and adopts the divide-and-conquer
paradigm. Tree-based algorithms are therefore relatively tractable in parallel programming.

Computations with trees are of high importance. Trees are fundamental data structures in functional
programming because they by definition match recursive functions. It is no exaggeration to say that
computations with trees cover the core part of functional programming. In parallel programming, trees

Ihttp://www.cs.cmu.edu/"scandal/alg/whatis.html



2 CHAPTER 1. INTRODUCTION

work as abstractions for load balancing [MM11b, MMHT09, Mor13] and scheduling [LKK13] because they
can represent divide-and-conquer structures directly. These facts promise that high-level abstractions and
systematic methods for computations with trees are useful for a wide range of applications. In particular,
we can even expect that these lead to a versatile method for divide-and-conquer load balancing.

1.2 Overview of This Dissertation

In this dissertation, we deal with parallel programming with trees in a divide-and-conquer manner, which
leads to good load balancing. Our study has started from Matsuzaki’s work [Mat07b| on tree skeletons
[Ski96, GCS94|, which are divide-and-conquer parallel patterns on trees. Although Matsuzaki’s work
investigated the theoretical aspect of tree skeletons, it left much room for improvement on the practical
aspect, especially usability. We therefore have improved the usability of tree skeletons on two aspects.
One is the modularity and flexibility of library implementation [Mat07a]. We have achieved loose coupling
between tree data structures and tree skeletons in our library implementation. Our library is consequently
more flexible than existing ones. The other is the complicated APIs of tree skeletons. We have developed
a parallelizer that transforms sequential recursive functions in C into tree skeleton calls on the basis of the
formalization by Matsuzaki at al. [MHTO06]. Our parallelizer hides the complicated API of tree skeletons
from programmers and enables programmers to use tree skeletons implicitly.

Although we have improved the usability of tree skeletons on the two aspects successfully, program-
ming with tree skeletons is still not useful in practice. We have noticed that a purely structural approach
that tree skeletons adopt per se is counter-intuitive and it is important to examine the interpretations
of trees and the underlying data of trees. This observation suggests the fundamental importance of
application domains. We therefore have determined to distance ourselves from Matsuzaki’s work on tree
skeletons and focused on two domains: program analysis and spatial computation.

We have dealt with program analysis based on abstract syntax trees (ASTS) because its computational
structure is similar to tree skeletons. Specifically, we have dealt with data-flow analysis and value-graph
construction, which are the foundations of compiler optimizations. In AST-based approaches, goto/label
statements are troublesome because a syntax-directed handling of them is difficult. From the perspective
of irregular algorithms, goto/label statements cause computations on general graphs and become an
obstacle to divide-and-conquer computations. In fact, compilers use control-flow graphs, which are
general directed graphs, as input programs to most kinds of program analysis. As a result, they are
difficult to parallelize in a divide-and-conquer manner. On the basis of the notion of Rosen’s high-level
data-flow analysis [Ros77, Ros80], which does not deal with goto/label statements, we have developed
a mostly divide-and-conquer method for data-flow analysis and and value-graph construction to ASTs
containing few goto/label statements.

We have dealt with spatial computation based on neighborhood (or simply neighborhood computa-
tion) because of its practical importance in various applications. Although this computation is usually
trivial to perform in a divide-and-conquer manner, its naive divide-and-conquer implementation is in-
sufficient. Because cache efficiency is of high importance for this computation, a cache-efficient divide-
and-conquer implementation like cache-oblivious algorithms [FLPR99, BGS10] is desired. We therefore
have investigated cache-efficient divide-and-conquer approaches to two kinds of neighborhood compu-
tations. We first have dealt with stencil computation, which is a regular array-based computation but
very popular in scientific computing, and have developed a linear algebraic optimization for enhancing
its cache efficiency. We secondly have dealt with iterative traversal of space-partitioning trees, which is
a typical algorithmic pattern found in N-body problems and machine learning, and have developed a
skeleton-based technique for enhancing its cache efficiency.

Through the practice of parallel programming in the two domains, we have confirmed our observation
on parallel programming with trees.

1.3 Contributions and Organization of This Dissertation

This dissertation consists of three parts:
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e Part I deals with programming with tree skeletons. This part is overall based on Matsuzaki’s work
[Mat07b] on tree skeletons (Chapter 2). We deal with problems on the usability of tree skeletons.
We present a tree interface to achieve loose coupling between the implementation of trees and
that of tree skeletons (Chapter 3). We present a parallelizer for recursive functions in C to enable
implicit use of tree skeletons (Chapter 4). We describe observations on programming with trees
from limitations of tree skeletons (Chapter 5).

e Part II deals with syntax-directed programming in the domain of high-level program analysis
(Chapter 6). On the basis of the notion of Rosen’s high-level data-flow analysis [Ros77, Ros80], we
present syntax-directed methods for data-flow analysis (Chapter 7) and for value-graph construction
(Chapter 8). These methods perform mostly in a divide-and-conquer manner by taming goto/label
statements.

e Part III deals with cache-efficient divide-and-conquer programming in the domain of neighbor-
hood computations (Chapter 10). We present a linear algebraic optimization for enhancing the
cache complexity of stencil computation (Chapter 11) and present a skeleton-based technique for
enhancing the cache complexity of iterative traversal of space-partitioning trees (Chapter 12).

The individual results above have been published or presented. Chapter 3 was published in [SM14a),
Chapter 4 was published in [SM13], Chapter 7 was published in [SM14b], Chapter 8 was presented in
[Sat14b], Chapter 11 was presented in [SI11b|, and Chapter 12 was presented in [Sat14a].
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Chapter 2

Tree Skeletons

In this chapter, we introduce tree skeletons [Ski96, GCS94], which are background knowledge for Part I.
Refer to Matsuzaki’s Ph.D. thesis [Mat07b] for more details.

2.1 What Is the Skeleton?

Algorithmic skeletons [Col89] (or simply skeletons) are patterns of parallel computing. Skeletons are high-
level abstractions for parallel programming. By composing skeletons, we can develop parallel programs
in a high-level and structured manner [DGTY95].

There are roughly two kinds of skeletons [RG02, GVL10]: task-parallel ones and data-parallel ones.
Task-parallel skeletons, or task skeletons for short, represent and manipulate tasks. Typical task skeletons
are pipe and farm, which respectively correspond to serial composition of tasks and parallel composition.
A structure that task skeletons construct is an analogy to a circuit. Task skeletons exploit parallelism
of computations represented by this circuit; e.g., pipe exploits parallelism in pipelining. We use the
term parallelism as a synonym for independence of (sub)computations. Although serial compositions
by pipe do not have so-called parallelism in their circuits, pipelined computations on their circuits have
parallelism.

Data-parallel skeletons manipulate collections in parallel. More precisely, they are collective parallel
operations on a certain data structure. The most popular data-parallel skeleton is map: it takes a
unary function and a collection, and yields a new collection consisting of the results that we obtain by
applying the given function to each element of the given collection. map can be defined over various data
structures. For example, if map takes a list and yields a new list, this map is called a list skeleton (i.e.,
a collective parallel operation over lists). Data-parallel skeletons are thus classified by their target data
structures.

We deal with data-parallel skeletons in this dissertation. Readers may consider task skeletons to be
more general than data-parallel skeletons. This is true in the sense that task skeletons are independent
of target data structures. Although individual data-parallel skeletons have more specific purposes than
task skeletons, data-parallel skeletons per se are no less versatile. The difference between both is essen-
tially in formalization of computation. When we use data-parallel skeletons, we first formalize target
computation as a data structure. For example, if the specification of target computation is a linear
recursion (or, a sequence of functions), we may use a list(s) to formalize it. We then use list skeletons
to describe the specification as a parallel program. That is, data-parallel skeletons do not always handle
data structures that are input/output in target computations. Formalization with data structures is
essential for programming with data-parallel skeletons. This introduces rich computational structures
into specifications. In this sense, programming with data-parallel skeletons is more structured than doing
with task skeletons, and therefore we deal with it.
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2.2 Formalization with Data Structures

To explain the importance of computational structures formalized by data structures, we briefly introduce
lists and list skeletons [Ski93] based on functional programming. We write a list by enumerating elements
with commas and enclosing them with brackets; e.g., [0,1,2]. We call a list in this form a list literal.

We first describe a notation for data types of trees in this dissertation. We use a restricted form of
context free grammars for defining a data type as a nonterminal symbol. A lowercase term (e.g., a and
x) denotes a metavariable. A capitalized term that is not defined in grammars, i.e., does not appear
in the left-hand side of any production rule, denotes a terminal symbol, and a capitalized term that is
defined in grammars denotes a nonterminal symbol that denotes a data type. Terminal symbols may
have argument lists like functions to specify associated metavariables and symbols. The production rules
of any nonterminal symbol can be distinguished from its leftmost terminal symbol as in LL grammars.
Pattern matching on the data type is therefore deterministic.

The data type of lists is usually defined as the following grammar:

List,, = Cons(x, List,), where z is of type «,
List, = Nil.
Here, x denotes a metavariable over list elements. Nil denotes the empty list (i.e., []). Cons(z,y) denotes

a list whose head is z and whose tail is y; e.g., Cons(ay, [az2,as]) = [a1,a2,a3]. This is called the cons
list. For example, a list (literal) [a1, as, as] is a synonym of the unique cons list:

Cons(ay, Cons(ag, Cons(as, Nil))).
The data type of lists can be also defined as the following grammar:

JList, = Join(JListy, JListy),
JList,, = Singleton(z), where z is of type «,
JList, = Nil.
Singleton(x) denotes a singleton list (i.e., [x]). Join(x,y) denotes the concatenation of two lists « and

y; Join([a1], [az,as]) = [a1,az2,as]. This is called the join list. In contrast to the cons list, [a1, as, as]
can be represented by, for example, the following four join lists:

Join(Singleton(ay), Join(Singleton(as), Singleton(as))),
Join(Join(Singleton(ay), Singleton(asz)), Singleton(as)),
Join(Join(Singleton(ay), Singleton(as)), Join(Nil, Singleton(as))), and
Join(Singleton(aq), (Join(Singleton(asz), Join(Singleton(as), Nil)))).
We can understand this equivalence from the algebraic property of the interpretation of Join, i.e.,

the concatenation of two lists. For example, we can define a concatenation operator ++ over lists by
using list literals as follows:

[a1,...,an] H [b1,.- s bm] = [a1,. . an, b1, ., b,
(] ==,
T

where m,n > 1 and x denotes a list. It is important that ++ is associative; for any z, y, and z,
T+ (y + 2) = (z ++y) ++ 2, and that [] is the identity of ++. By using ++, we can confirm the
equivalence among the four join lists as follows:

[a1] + ([az] + [as]) = [a1, a2, a5],
([a1] + [az]) ++ [a3] = [a1, a2, as],
([a1] ++ [az]) ++ ([] ++ [as]) = [a1, az, as3],
[a1] ++ ([az] + ([as] ++[])) = [a1, a2, as]
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This means that the four join lists are contained in the same equivalence class modulo interpreting Join
as ++. From the perspective of data structures, the associativity of ++ and its identity [] enable us to
transform join lists in the same equivalence class.

A high degree of freedom in structure among lists in an equivalence class is of primary importance
for parallel programming. We can improve structural parallelism of join lists by balancing them. For
example, we consider map, which can be defined with list literals as follows:

map(f,[a1,...,a,]) = [f(a1),..., f(an)], wheren >1,
map(f,[]) = [].

We can define map over List, as

map(f, Cons(z,y)) = Cons(f(x), map(f,y)),
map(f, Nil) = Nil.

We can also define map over JList, as

map(f, Join(z,y)) = Join(map(f,z), map(f,y)),
map(f, Singleton(z)) = Singleton(f(z)),
map( f, Nil) = Nil.

Then, let us consider map(f, [a1,az2,a3]). The recursions for the cons list and the fourth join list are
almost the same because the shapes of both list representations are equivalent. Their recursion depth is
4. The recursion for the third join list is, however, different from them. It halves a given list recursively
and therefore its recursion depth is 3. In general, given a list of length n, map over List, costs O(n)
parallel steps but map over JList, costs O(lgn) parallel steps. Balancing join lists leads to load balancing
of list skeletons. This is why the join list is seen as a parallel implementation of the list.

The definition of map over JList, does not specify load balancing itself but simply exploits structural
parallelism of a given join list. The interpretation of JList, expresses room for load balancing on the
basis of the associativity of the interpretation of Join (i.e., ++).

The algebraic properties of the interpretation of JList, affect the specifications of list skeletons. For
example, we consider reduce defined as follows:

reduce(®, L@, [a1,---,an]) =a1 @ - Da,, wheren =1,
reduce(®, tg, []) = to-

reduce has the algebraic conditions that @ is associative and (g is the identity of ®. We can understand
it from the definition of reduce over JList,:

reduce(®, tg, Join(z,y)) = reduce(®, tg, ) @ reduce(d, tg), y),
reduce(®, v, Singleton(z)) = «,
reduce(®, tg, Nil) = g.

reduce thus interprets Join as @ and Nil as tg. The join lists in an equivalence class must be equivalent
for every list skeleton. For example, reduce(®, v, [a1, a2, a3]) have to yield the same result among the
four join lists. To ensure the equality of their results, the algebraic conditions on @ and g are necessary.
They are derived from the interpretation of JList,. From the perspective of list skeletons, such algebraic
conditions are the representation of their parallelism.

The definitions of data-parallel skeletons are oblivious of parallel computing and therefore data-
parallel skeletons enable high-level parallel programming. Parallelism of data-parallel skeletons is de-
scribed in target data structures (and more specifically, the interpretations of data types). Formalization
with data structures is therefore crucial for high-level parallel programming.
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Figure 2.1: Tlustration of a segmented tree. On left is view decomposed into its local trees, where
double-circle nodes denote hole nodes and dotted edge denote missing edges; on right is view of its global
tree.

2.3 Divide and Conquer on Segmented Trees

2.3.1 Segmented Trees

Tree skeletons [Ski96, GCS94, Mat07b| deal with full binary trees. We define full binary trees to formalize
tree skeletons as the following grammar:

BinTree, = Branch(z, BinTree,, BinTree,,),
BinTree, = Leaf (x),

where x denotes a metavariable over values of type . We call the value of z a payload value. Branch
and Leaf denote the kinds of nodes; we call them node symbols.

Although BinTree,, is seemingly similar to JList,, both interpretations are different. Unlike Join,
the interpretation of Branch is generally not associative because rotations are not applicable to every
tree. We cannot balance trees of type BinTree,, preserving their meaning. BinTree, therefore does
not guarantee load balancing of tree skeletons. For example, a tree of type BinTree, may form a linear
structure like the cons list. The recursion depth for such a tree will be O(n), where n is the number of
nodes. To achieve robust load balancing such that it guarantees asymptotic speedup regardless of input
trees, we have to consider restructuring of arbitrarily shaped trees.

Like join lists for list skeletons, we use segmented trees' for tree skeletons. A segmented tree is a
tree segmented into its subtrees and its one-hole contexts. Figure 2.1 illustrates a segmented tree. A
one-hole context is a subtree that loses the descendant subtrees of one node. This node, i.e., a parent
of missing subtrees, is called a hole node. For example, {1} and {2,4,5} on the left of Figure 2.1 are
one-hole contexts and 1 and 4 are hole nodes. A hole node is an internal node in the whole tree but
pretends to be a leaf node in the one-hole context. Every segment (i.e., subtree or one-hole context) of
a segmented tree is a tree and we call it a local tree. We also call the tree structure of all segments in a
segmented tree a global tree, where the node of a global tree is a segment. Therefore, the nodes of each
segment in Figure 2.1 reduces to a single node in the view of its global tree.

! The same term was not used in [Mat07b] but an equivalent notion was used.
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We can define segmented trees as the following SegTree,,:

SegTree, = Branch(Context,, SegTree,, SegTree,,),
SegTree, = Leaf (BinTree,),

Context, = Branchy(z, Contexty, BinTreey),
Context, = Branchs(x, BinTree,,, Context,),
Contexto = Hole(z).

Here, BinTree, denotes the subtrees of an original tree, Context, denotes the one-hole contexts, and
Hole(z) denotes the hole nodes. As seen from the grammar above, the root-to-hole path in a one-hole
context is the main difference between subtrees and one-hole contexts. Note that the formalization above
of segmented trees is inherently similar to ternary trees [Mat07b, MM11b]. By following the grammar
above, we describe the segmented tree shown in Figure 2.1 as

Branch(cy, Branch(ca, Leaf (1), Leaf (s2)), Branch(cs, Leaf (s3), Leaf (s4))),
where ¢; = Hole(1),

¢o = Branchy (2, Hole(4), Leaf (3)),

c3 = Branchy(3, Leaf (6), Branchs (7, Leaf (10), Hole(11))),

51 = Leaf(S),
sg = Branch(9, Leaf (12), Leaf (13)),
s3 = Leaf (14),

)
s4 = Leaf (15).

2.3.2 Properties of Segmented Trees

Segmented trees have two important properties. The first is that the operations of parallel tree contrac-
tion [Rei93] guarantee parallel reduction of every segment. The second is that the m-bridging technique
[Rei93] enables us to partition an arbitrarily shaped tree into segments of almost balanced sizes. The
details of tree contraction operations and m-bridging shall be described later.

The segmented trees derived from a tree are contained in an equivalence class modulo appropriate
interpretations of tree contraction operations. Tree skeletons can exploit this degree of freedom in
structure of segmented trees. If we use segmented trees whose segment sizes are balanced, tree skeletons
achieve an excellent load balancing. Note that any tree can be seen as a segmented tree that consists
of the single segment. The equivalence class of the segmented trees derived from a given tree therefore
contains the given tree.

Along the structure of a segmented tree, the divide-and-conquer computation over a segmented tree is
two-tiered; it consists of computation over a local tree and computation over a global tree. A segmented
tree is therefore well-suited to distributed memory. By laying an entire segment upon the local memory
of a processor, we can perform the entire computation over each local tree in parallel. In this case, the
computation over a global tree requires a collective communication on distributed-memory machines.
This communication is efficient because a global tree is much smaller than its original tree.

2.4 Tree Contraction Operations

In this section, we briefly describe tree contraction operations on the basis of Reference [Rei93].

There are two basic operations: RAKE and COMPRESS. The RAKE operation is to contract a leaf and
its parent to an internal node. The COMPRESS operation is to contract an internal siblingless node and
its parent to an internal node. Figure 2.2 illustrates RAKE and COMPRESS. The original tree contraction
algorithm by Miller and Reif [MR85] uses RAKE and COMPRESS.

Although RAKE and COMPRESS are intuitive, an intermediate result in a series of these applications
to a full binary tree becomes a general (i.e., non-full) binary tree. However, if we perform a pair of
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& RAKE % COMPRESS k

Figure 2.2: RAKE operation and COMPRESS operation.

SHUNT, SHUNT;
s ——

Figure 2.3: SHUNT operations.

applications of RAKE and COMPRESS at once as illustrated in Figure 2.2, the intermediate results from
full binary trees remain full binary trees. This pair of applications of RAKE and COMPRESS is called
the SHUNT operation. Specifically, the SHUNT operation is to contract the siblings of a leaf node and
an internal node, and their parent to an internal node, as illustrated in Figure 2.3. We can consider two
symmetrical instances of the SHUNT operation for binary trees. In this dissertation, SHUNT, means the
SHUNT operation that applies RAKE to a left leaf and SHUNT; means the SHUNT operation that applies
RAKE to a right leaf. The cost-optimal tree contraction algorithm on EREW PRAM by Abrahamson et
al. [ADKP89] uses the SHUNT operation.

2.5 Definitions of Tree Skeletons

Parallel tree contraction algorithms guarantee asymptotically linear speedup for arbitrarily shaped trees.
Because of this excellent algorithmic property, existing formalizations [Ski96, GCS94, Mat07b, MMHT09]
of tree skeletons are based upon parallel tree contraction algorithms. However, in this dissertation, we do
not deal with these algorithms themselves because they are not very useful for implementation. If we use
optimal algorithms, the parallel time complexity of the divide-and-conquer computation over a global
tree improves from O(p) to O(lgp) but synchronization/communication steps increase in practice. We
therefore adopt sequential manners for computations on global trees. Note that bulk synchronous com-
munication steps are O(1) and the amount of communication data is O(p) in a collective communication
for the computation over a global tree on distributed-memory machines.

We assume that the sizes of the segments of a given segmented tree are sufficiently balanced. This
is not a responsibility of tree skeletons. We have to give tree construction operations appropriate in-
terpretations for using tree skeletons. The appropriate interpretations here mean that the results of a
tree skeleton equal for any segmented tree in the equivalence class. This requirement is represented as
algebraic conditions on the parameters of tree skeletons, as in the reduce list skeleton.

We introduce three representative tree skeletons reduce, uAcc, and dAcc. The sequential definition of
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reduce is the following bottom-up reduction:

reduce: (8 x a x 8 — 8) x (o« — B) x BinTree, — f8
reduce(kp, k1, Branch(x,l,r)) = kp(reduce(kp, k1,1), z, reduce(kp, k1, 7)),
reduce(kp, k1, Leaf (z)) = k().

The parallel definition of reduce takes, instead of a simple tree of type BinTree,, a segmented tree of type
SegTree,,. Recall that for the divide and conquer over a segment tree, the appropriate interpretations of
tree contraction operations must be given. The parallel definition of reduce therefore requires additional
parameter operators: 7, ¢, ¥;, and .. ; and 1, respectively correspond to SHUNT; and SHUNT,..
To conform the reduce of a segmented tree to that of a simple tree, the parallel definition of reduce
necessitates some algebraic conditions among parameter operators. The parallel definition of reduce is:

reduce : (8 x a x B — §) x (a— B) x (@ — ) x (3 x 7 x 8 — f)
X(yxyxB—>7)x(8xyxvy—7)x SegTree, — 3
reduce(kp, kr, T, , U1, ¥, t) = red(t),
where red(Branch(c,l,1)) = ¢(red(l), redCrt(c), red(r)),
red(Leaf (t)) = reduce(kp, kr,t),
redCzt(Branchy (z,1, 1)) = ¥ (redCrt(l), 7(x), reduce(kp, k1, 7)),
redCxt(Branchs(z,l,r)) = 1, (reduce(kp, kL, 1), 7(x), redCxt(r)),
redCzt(Hole(x)) = 7(x)
{Algebraic conditions}
kB(Z’ €, T) = ¢(l7 T(CL’), r)a
Oy, ),5,r) = S n(y s 9,7), 7).
oy, o,y 1") = (U, oLy, y'), 7).

)

Although the parallel definition above is seemingly involved, it simply interprets node symbols by using
given operators, as in the sequential definition. The definition above formalizes reduce over SegTree,, but
does not describe its actual computation. The actual computation of reduce consists of two phases. The
first is the bottom-up reduction of every local tree; the second is the bottom-up reduction of a global
tree. In the first phase, we use kg and kj, for reducing complete subtrees. As a result, for a one-hole
context, the root-to-hole spine remains. We use 7, 9;, and v, for reducing such spines. We use ¢ for
reducing a global tree.

uAcc (upward accumulation) is an accumulative version of reduce, i.e., the following accumulation:

uAcc: (B x a x 8 — B) x (o« = B) x BinTree, — BinTreeg
uAcc(kp, k1, Branch(x,1,7)) = Branch(kg(root(l'), z, root(l')),l', r"),
where I' = uAcc(kp, kr, 1),
r’ = uAcc(kp, kr,7),
root(Branch(z,l,r)) = x,
root(Leaf (x)) = x,
uAcc(kp, ki, Leaf (z)) = Leaf (ki (z)).

uAcc constructs a tree that has the same shaped as a given tree and whose payload values are intermediate
values in reduce. The payload value of the root of a resultant tree equals to the result of reduce. The
operators given to uAcc and the algebraic conditions on them are the same as those of reduce. The
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parallel definition of uAcc is:

WAce: (B x a x B ) x (a— B) x (a —7) x (Bx7x B f)
X (Bxyxy—=7)x(yxyxB—7)x SegTree, — SegTreeg
uAcc(kp, kL, T, d, 1, ,, Branch(c,l,7)) = Branch(c',l',7"),
where ¢’ = updPath((segRoot(l"), segRoot(l')), uAccCtz(c)),
! = uAcc(kp, kr, T, ¢, ¥, ¥, 1),
r’ = uAcc(kp, ki, T, &, 01, Pr, 1),
uAccCtz(Branchy (z,1,7)) = Branchy (2", 1",7"),
where " = iy (ctzRoot(1"), 7(x), ctzRoot(r")),
" = uAccCtx(l),
r" = uAcc(kp, kr,7),
uAceCtz(Branchs(z,1,7)) = Brancha(x”,1",7"),
where z” = 1, (ctzRoot(l"), 7(z), ctzRoot (1)),
" = uAcc(kp, kr,1),
r" = uAccCtz(r),
uAccCtx(Hole(x)) = Hole(T(x)),
updPath((xy, x,), Branchy (z,l, 1)) = Branchy(¢(x;, z, x,.),1,r),
updPath((xy, x,), Branchs(z,l, 1)) = Branchs(¢(xy, x, x,.),1,r),
updPath((z;, z,), Hole(x)) = Hole(p(xy, x, x,)),
segRoot(Branch(c,l,1)) = ctzRoot(c),
segRoot(Leaf (t)) = root(t),
ctzRoot(Branchy(z,l, 1)) =
ctzRoot(Branchy(z,l,r)) = x,
ctzRoot(Hole(z)) = «,
uAcc(kp, ki, T, , U1, ¥, Leaf (t)) = Leaf (uAcc(kp, k1, t)),
where {Algebraic conditions}
kp(l,z,r) = ¢(l,7(x),r),
(Ot 7),,7) = O, (e 9, 7)),
oLy, o'y 7)) = o', (¥r (L y,y), "))
Here, one-hole contexts that uAccCtzr yields and updPath consumes are intermediate results defined as
the following grammar:
Contextg ~, = Branch(x, Contextg , BinTreeg),
Context ~, = Brancho(x, BinTreeg, Contextg ~),
Conteatg = Hole(x),
where x denotes a metavariable over values of type 7. The definition above merely formalizes uAcc
over SegTree,. The actual computation of uAcc consists of three phases. The first is the bottom-up
accumulation of every local tree; the second is the bottom-up accumulation of a global tree; the third
is the bottom-up accumulation of all root-to-hole paths of every one-hole context by using the payload
values of the missing children of the hole nodes in a resultant tree.
The sequential definition of dAcc (downward accumulation) is the following top-down accumulation:
dAcc: (B x a— ) x (8 x a— ) x 8 x BinTree, — BinTreeg
dAcc(gi, gr, €, Branch(z,l,r)) = Branch(e,dAcc(gi, gr, g1(e, x),1),dAcc(gr, 9r, 9- (e, x), 7)),
dAcc(gi, gr, €, Leaf (x)) = Leaf (e).
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The parallel definition of dAcc also requires additional parameter operations: 7, 7., p, and ®. @
corresponds to COMPRESS and p corresponds to RAKE. It also necessitates algebraic conditions among
parameter operators. The parallel definition of dAcc is:

dAcc: (Bxa—-0)x(Bxa—B)xBx(a—7)x(a—7)
X (B xy— ) x(yxy—7)x SegTree, — SegTreegy
dAcc(g1, gr, €, 71, Tr, p, ®, Branch(c,l,7)) = Branch(c',l',7"),
where ¢ = dAccCtz(e, c),
" = dAcc(gi, g, ple, redPath (T, c)), 71, T, p, D, 1),
r" = dAcc(gi, g, p(e, redPath(7,, ¢)), 71, Try p, ®, 1),
redPath(t, Branchy (z,1,1)) = 7;(z) @ redPath(T,1),
redPath(t, Branchs(z,1,7)) = 7.(x) @ redPath(r,r),
redPath(r, Hole(x)) = 7(x),
dAccCtz(e, Branchy(x,1,7)) = Branchy (e, dAccCtx(gi(e, z),1),dAcc(g1, gr, gr(€, ), 7)),
dAccCtz(e, Branchs(x,l, 1)) = Brancha(e,dAcc(g1, gr, gi(e, x), 1), dAccCtz (g, (e, x),r)),
dAccCtx (e, Hole(x)) = Hole(e),
dAcc(gi, 9r» €, 715 T, p, ®, Leaf (t)) = Leaf (dAcc(gi, gr, €, 1)),
where {Algebraic conditions}
aile,2) = ple,n(x)),
gr(e,x) = ple, 7r(x)),
plple,y).y') = ple.y ®y').
The definition above merely formalizes dAcc over SegTree,. The actual computation of dAcc consists of
three phases. The first is the reduction of the root-to-hole paths of every one-hole context by using 7y,
7, and @; the second is the top-down accumulation of a global tree by using p; the third is the top-down

accumulation of every segment by using a given e or the payload values of the hole nodes in a resultant
tree as initial values.






Chapter 3

Interface Between Data Structures and
Skeletons

This chapter has a content almost identical to our publication [SM14a].

3.1 Introduction

Since parallel machines are widespread, parallel computing can be ubiquitous. Parallel programming is,
however, still an expensive task even for expert programmers. To make parallel programming be cheap
and next-door, we require high-level abstractions for parallel computing.

Skeletons [?, RG02| are patterns of parallel computing. Data-parallel skeletons are ones classified
by their target data structures, e.g., lists [Ski93], matrices [EHKTOT7], and trees [Ski96, GCS94]. These
computational patterns denote high-level specifications over target data structures. The data-parallel
skeletons therefore provide a high-level abstraction for parallel computing over target data structures.

Data-parallel skeleton libraries provide a pair of the implementation of a data structure and that of
a set of skeletons over it. This pair is tightly coupled because parallel access to such a data structure
relies on its implementation. However, loose coupling between the implementations of data structures
and those of the operations over them is important for modularity and flexibility. For example, C++
STL achieves such loose coupling. Most sequence operations defined in <algorithm> operate sequence
containers uniformly, regardless of their implementations, e.g., a variable-length array <vector> and a
doubly-linked list <1ist>, where these have different cost models on access. C++ STL enables us to
select various implementations of containers that fit use cases. Loose coupling between skeletons and
data structures in skeleton libraries will enable us to select implementations of a data structure.

Selection of implementation is actually valuable for tree skeletons. Because tree data are inherently
non-uniform, the implementations of tree structures often require taming their non-uniformity for tree
skeletons. For example, a full binary tree, whose every internal node has exactly two children, is required
for the brevity of the APIs of tree skeletons. To use tree skeletons, we have to transform non-full binary
trees into full binary trees by filling missing leaf nodes with dummy nodes. This transformation is
obviously undesirable overhead. We can elude this overhead if we can select an implementation of binary
trees that pretends to be a full binary tree by returning a common dummy node when missing leaf nodes
are demanded.

A similar situation can be found in XML processing. DOM trees derived from XML documents are
ranked unbounded-degree trees. In XML processing by using tree skeletons [Ski97, NEM*07], input
DOM trees are preprocessed into full binary trees by inserting internal nodes and dummy leaf nodes.
It is valuable to elude this preprocessing by using an implementation of DOM trees that pretends to
be full binary trees. In addition, it is known that the bracket structures of XML documents are worth
preserving for efficient parallel computing [KMEQ7]. An appropriate implementation of tree structures
greatly relies on their input/output formats. A general-purpose yet efficient implementation of trees is
extremely difficult.

17
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Since we cannot uniquely define an efficient implementation of tree structures for tree skeletons,
flexible switching of instances of tree-structure implementation is desirable. However, as in usual im-
plementations of data-parallel skeletons, the existing ones of tree skeletons are tightly coupled with
tree-structure implementation and do not support such flexible switching.

To resolve this problem, we have designed an interface between tree skeletons and tree-structure
implementation on the basis of iterators. Our interface clarifies the requirements of tree-structure im-
plementation and supports loose coupling. We have implemented our interface on the basis of C++
templates and implemented tree skeletons [Mat07a] in SkeTo! by using our interface.

We have used C++ templates extensively for our generic implementation. Enormous unreadable
error messages at compile time are a known problem with such template-based implementations [ME10].
Our new implementation of tree skeletons tames error messages by using a type-checking technique.

This chapter presents our design and implementation of tree skeletons as well as describes cases where
our interface design works effectively. This chapter also reports the results of preliminary experiments.

The following are our major contributions:

e We have designed an interface between tree skeletons and tree-structure implementation on the
basis of iterators (Section 3.3). We describe the benefits of our design for tree skeleton libraries
(Section 3.5).

e We have implemented our interface on the basis of C++ templates and implemented array-based
tree skeletons [Mat07a] by using our interface (Section 3.4). Our new implementation tames enor-
mous error messages at compile time by using a type-checking technique.

e We report the results of preliminary experiments on our new implementation of tree skeletons
(Section 3.6). No significant overhead of the use of our interface was observed. The flexibility and
efficiency of the implementation derived from our interface design were demonstrated.

3.2 'Tree Skeleton Library

In this section, we introduce the SkeTo library. SkeTo were implemented in C-++ with MPI? for
distributed-memory machines such as clusters. It provides data-parallel skeletons as generic function
templates that take function objects and the distributed implementations of their target data structures.

SkeTo is based on the single-program multiple-data (SPMD) model along MPI. A program that uses
SkeTo runs in multiple MPI processes. Each process performs the same computation by default except
for the internals of skeletons and distributed data structures. For example, we can use list skeletons in
SkeTo as shown Figure 3.1. A notable point is that each variable provides the same view among all
processes. All parallel computing is closed in the internals of skeletons and distributed data structures.
This design is not specific to SkeTo but common in data-parallel skeleton libraries.

An experimental version of SkeTo contained an array-based implementation [Mat07a] of tree skeletons.
As mentioned in Section 2.3, segmented trees are well-suited to distributed memory. The distributed
implementation of segmented trees is as follows. The entire of each local tree lies in the local memory
of a process. Global trees are replicated among all processes because their sizes are reasonably small.
Each node of a global tree contains a segment and the rank of a MPI process to which we assign the
segment. A global tree lying in the local memory of each process includes only the segments assigned to
the process. That is, the replicated global tree in a process is different in locally lying segments from that
in another process. In the rest of this chapter, we intentionally confuse MPI processes with processors
in parallel algorithms and do MPI process ranks with processor numbers.

Even though the global tree of a segmented tree is replicated among all processors, computations on
global trees require collective communications because of intermediate results for segments that do not
locally lie. The root processor gathers scattered intermediate results, performs computations on global
trees exclusively, and scatters the results over the other processors. Replicated global trees specify the
sources and destinations in message passing.

Ihttp://sketo.ipl-lab.org/
2http://www.mpi-forum.org/
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int sketo::main(int argc, char **xargv)
{
// All processes perform the following two lines equally.
int *raw_array = new int[n];
initialize(raw_array, n);
// Construction of a distributed list of length n.
sketo::dist_list<int> dl(n, raw_array);
// Application of list skeleton map with a function object f.
sketo::dist_list<int> ret = sketo::list_skeletons::map(f, dl)
// Gather distributed data of ret to raw_array.
// All processes can observe the elements of ret via raw_array.
ret.gather (raw_array, n);
// Application of list skeleton reduce with +.
// All processes can observe its result via sum.
int sum = sketo::list_skeletons::reduce(std::plus<int>(), 0, dl);
return O;
}

Figure 3.1: Example use of list skeletons in the SkeTo library.

3.3 Our Interface of Trees

In this section, we describe our interface of trees for tree skeletons. The primary part of our interface
is an iterator for trees. The concept of iterators itself is very common; they are extensively used in
C++. The iterator is only an abstraction of pointers. The requirements of iterators for tree skeletons
are important. We describe our iterators in the following two subsections.

3.3.1 Iterators over a Tree

Tree structures are necessary for computation on trees. However, an iterator that points to a node
does not have to return its children. We have only to be able to perform both bottom-up and top-
down reductions of trees by using iterators. For example, we can perform both reductions of a tree
in its preorder/postorder traversal by using a stack. Actually, preorder/postorder traversal is essential
for depth-first search, and depth-first search is a traversal pattern appropriate to both reductions. We
therefore base iterators upon preorder/postorder traversal.

We do not have to extract from a node its children, but we have to know whether it is a leaf
node or an internal node. Otherwise, we could not reduce a tree by using a stack. A requirement of
preorder/postorder iterators is therefore to return node symbols as well as payload values.

Postorder and reverse preorder are more appropriate for bottom-up reduction. Preorder and reverse
postorder are more appropriate for top-down reduction. Which of preorder and postorder is more ap-
propriate relies on input/output formats. XML, which is a popular serialization format of trees, adopts
preorder. We therefore adopt preorder and reverse preorder for iterators over a tree.

3.3.2 Global Iterators and Local Iterators

A segmented tree is a two-tiered tree; a segment is a local tree and all the segments constitute a global
tree. It is therefore natural to define an iterator over a local tree, i.e., a local iterator and an iterator over
a global tree, i.e., a global iterator. Figure 3.2 illustrates the traversals of local/global preorder iterators.
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h

Figure 3.2: Illustration of traversals of local/global preorder iterators. On left is traversal of local iterator
of segment {3,6,7,10,11}; on right is that of global iterator.

Since tree skeletons require similar computational patterns for both trees, we can use preorder iterators
and reverse preorder ones for both local ones and global ones. However, there are different requirements
for both iterators.

On the side of local trees, iterators have to take account of hole nodes. Hole nodes are leaves in local
trees but are internal nodes in the whole of a segmented tree. The operators to apply to hole nodes
therefore can differ form those to apply to true leaf nodes in reducing local trees. A requirement of local
iterators is to distinguish hole nodes in addition to leaf ones and internal ones.

On the side of global trees, their nodes have additional information: processor assignment. To enable
skeletons to perform an arbitrary collective communication of the distributed data of global trees, the
information of processor assignment must be shared among all processors. A requirement of global
iterators is therefore to return the processor assignment of a target segment.

There is an additional recommendation for global trees because their sizes dominate the amount of
intermediate data. For example, in reduce, each segment is reduced into a single intermediate value. We
have to align and buffer such intermediate data in collective communication. The number of the segments
assigned to a processor determines this buffer size. Although we can calculate it through iterations by
a global iterator, it is redundant to calculate it again on each collective communication. We therefore
consider that the size information of a global tree should be cheaply accessible without iterations by
global iterators and without communication.

3.3.3 Tree Construction

Another important point of our interface is tree construction. In existing implementations of skeletons,
calls of the constructors of data structures are hard-coded. This hard coding causes tight coupling be-
tween the implementations of skeletons and those of data structures. Skeletons should not determine
the implementation of constructors; constructors should be given to skeletons. In our design, the im-
plementation of trees determines the constructors used in skeletons. Tree construction required in tree
skeletons is to clone the same shaped tree of a given tree. Therefore, our interface has a shape-cloning
constructor of trees. Shape-cloning constructors should be able to construct trees of SegTree,, for any «
but their payload values are unspecified.

3.4 Owur Implementation

We implemented our interface and tree skeletons in the SkeTo library. SkeTo is implemented in C+—+ with
MPI for distributed-memory machines. SkeTo adopts the SPMD model and conceals parallel execution
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template <typename A>

struct global_tree_impl : factory_impl {
typedef global_iterator_impll1<A> preorder_iterator;
typedef global_iterator_impl2<A> reverse_preorder_iterator;
typedef segmented_tree<A> tree_type;
preorder_iterator begin();
reverse_preorder_iterator rbegin();
int num_segments () ;
int num_leaf_segments ();
int num_internal_segments ();
int num_local_leaf_segments(int p);
int num_local_internal_segments (int p);
int max_num_local_leaf_segments ();
int max_num_local_internal_segments ();

};

struct factory_impl {
template <typename B>
struct new_tree {
typedef global_tree_impl<B> type;
s
template <typename A, typename B>
static void new_shape_clone(const global_tree<A>& src,
global_tree_impl<B>*& dst);
+s

template <typename A>
struct local_tree_impl {
typedef local_iterator_impll1<A> preorder_iterator;
typedef local_iterator_impl2<A> reverse_preorder_iterator;
preorder_iterator begin();
reverse_preorder_iterator rbegin();

};

Figure 3.3: Simplified implementation of our tree interface.

from users. Each skeleton in SkeTo returns the same value at every process except for the internals of
distributed data structures.

In this section, we describe our implementation of tree skeletons. Our implementation of both algo-
rithms and data structures was based upon prior work [Mat07a]. Refer to it for the details.

3.4.1 Template-based Implementation of Our Tree Interface

We implemented our tree interface on the basis of C++ templates. Figure 3.3 shows an implementation
of our tree interface in C++ templates. The class templates global_tree_impl and local_tree_impl
respectively implement the interface of global trees and that of local trees. Both provide the types
of iterators as members preorder_iterator and reverse_preorder_iterator. A member function
begin() returns a preorder iterator at the root of a receiver tree. A member function rbegin() returns a
reverse preorder iterator at the last of the preorder traversal of a receiver tree. Member functions suffixed
with _segments return size information on a receiver global tree in constant time. Here, leaf/internal
segments mean those that are leaf/internal nodes in their global tree; local segments at processor p mean
ones assigned to p. The numbers of them are not necessarily required for implementing tree skeletons
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template <typename A>

struct global_iterator_impl {
node_tag_type tag();
int proc();
local_tree<A>& segment ();
global_iterator <A>& operator++();
bool available ();

+s

template <typename A>

struct local_iterator_impl {
node_tag_type tag();
A% leaf_value();
A% branch_value ();
A% terminal_value();
local_iterator <A>& operator++();
bool available();

};

Figure 3.4: Simplified implementation of our iterator interface.

but are often useful for implementing typical communication patterns. Only the tree_type member
of global_tree_impl is part of our interface for type checking rather than our tree interface. Its type
segmented_tree<A> merely declares SegTree, by the type name for type checking and therefore tree
skeletons do not care about the definition. We shall explain the details later.

We designed the functionality of tree construction as a separate class, which we called a factory.
factory_impl implements a factory of global_tree_impl. A factory has two members: a function
template new_shape_clone() and a class template new_tree. The former is an implementation of the
construction of shape-cloned trees. The latter works as a type-level function that returns the concrete
type of shape-cloned trees constructed in new_shape_clone(), given a type of their payload values.
For example, given int, new_tree<int>::type returns global_tree_impl<int>, a specific class that
implements our tree interface. Both members are also part of the interface of global trees. This is why
global_tree_impl inherits factory_impl.

Figure 3.4 also shows an implementation of our iterator interface. Both local and global iterators
support the prefix unary ++ operator overloading and have member functions tag() and available().
The prefix ++ to iterators makes them take a step forward; available () tests whether a receiver iterator
has reached the end of traversal; tag() returns the tag of a current node. A tag represents node symbols
as well as whether a node is the hole. A member function segment () of global iterators returns a current
segment and proc() returns a process rank assigned to the segment. Member functions leaf_value(),
branch_value(), and terminal_value() of global iterators return the payload value of a current node.
Which of the three we can call is determined by using tag(). Although the payload values of a tree are
of the same type currently, our iterator interface is designed to support a tree whose payload values are
of different types between leaf nodes and internal ones.

Note that tree skeletons require only members that consist of our tree interface including factories
and iterators. They do not impose any other requirement on implementation such as the inheritance of
a specific class.

For brevity, we omit const iterators, whose pointee objects are read-only as pointed by const pointers,
from Figures 3.3 and 3.4. The const iterators over a tree work as input iterators in tree skeletons, while
non-const iterators work as output iterators.

We implemented tree structures by using the array-based representation given in prior work [Mat07a].
It stores the nodes of a tree into an array in preorder. A main difference from the prior work is that we
store each of data members (i.e., tags and payload values) into a separate array. That is, we adopted a
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structure-of-array representation in contrast to the array-of-structure one adopted in the prior work. As
a result, we saved the space for tags successfully.

3.4.2 Generic Implementation of Tree Skeletons

The algorithms that we have implemented are the same as those of prior work [Mat07a]. A traversal of
trees was implemented as a loop with use of a stack. We used an input iterator of an input tree for the
reduction of trees. We used an input iterator of an input tree and an output iterator of an output tree
for the accumulation of trees. In the accumulation, an input iterator and an output one run in lockstep,
and an output tree is updated through the output iterator. This output iterator is write-only. We used
no iterator for intermediate data because we store them into raw arrays; instead we used indices simply.

When skeletons perform computation over a global tree, they first gather intermediate data dis-
tributed among all processes onto the root process. Then, the root process performs computation over a
global tree, and finally distributes its resultant data to all other processes. In communication, we have
to buffer intermediate data. Our implementation does not serialize payload values but pack them simply
into buffers. We implemented the overlap of packing and communication by using double buffering.

We segregated intermediate values on the basis of their types. For example, the intermediate values
after the first phase of reduce form a global tree whose internal nodes have payload values of type v and
whose leaf nodes have payload values of type 8. We represented this intermediate global tree as two
arrays: the one of values of type 8 and the one of values of type 7. We do not have to store node symbols
because they are the same as the ones of input global trees. In traversing a global tree, intermediate
values are stored into these two arrays one by one. Since the order of node symbols preserves, two-array
representation is consistent. Existing implementations had used the union type of 8 and v. We do
not adopt this approach because the use of the union type in C++ restricts 8 and v to POD types.
Besides, the use of union is generally space-inefficient. Our two-array representation of intermediate
data is appropriate.

We took a little care of the genericity of implementation. We used template parameters (i.e., type
parameters) as generally as possible. For example, we did not use the payload-value type of an input
tree explicitly in tree skeletons by passing payload values directly to parameter operators. This enables
the implementation of tree skeletons to deal with an input tree that has payload-value types different in
internal nodes and leaf nodes.

3.4.3 Type Checking of Tree Skeletons

We implemented tree skeletons with function templates as generally as possible. As a result, many
template parameters were used in their implementation. Such an implementation is known to generate
enormous unreadable error messages at compile time [ME10|. This cause is that the semantics of C++
adopts structural typing for template parameters, whose type constraints are implicitly generated in the
definitions of templates. When a template parameter breaks a type constraint generated in the depths of
template libraries, C++ compilers therefore will show its generated point as its breaking point together
with a long backtrace to report type errors. This is not helpful for library users.

We have dealt with this problem by forcing to generate all of type constraints at the signature of each
tree skeleton. For example, we prepared a class template reduce_signature that generates the type
constraints of reduce, for its implementation reduce, as shown in Figure 3.5. Now, reduce_signature
works as a type-level partial function from the valid types of the parameters of reduce to the result type
of reduce. Specifically, Its instantiation such as reduce_signature<F1,F2,F3,F4,F5,F6,T> corresponds
to type-level function application and the result_type member of its instantiation corresponds to the
result of application. If types given to reduce_signature are invalid as the types of the parameters of
reduce, result_type cannot be accessed, i.e., this type-level application is invalid. It is therefore partial
as a type-level function. We used reduce_signature for calculating the result type from the template
parameters at the signature of reduce. Thus, the signature of reduce has been undefined with respect
to arguments of invalid types. Type error messages for the calls of reduce with arguments of invalid
types shall arise only at their call sites successfully.
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template <class KB, class KL, class Tau, class Phi,
class Psil, class Psir, class Tree>
struct reduce_signature;

template <typename A, typename B, typename C>
struct reduce_signature<B(B,A,B),

B(A),

c(p),

B(B,C,B),

c(,c,B),

c(B,C,C),

segmented_tree<A> > {
typedef B result_type;
};

template <class KB, class KL, class Tau, class Phi,
class Psil, class Psir, class Tree>
typename reduce_signature<typename KB::function_type,
typename KL::function_type,
typename Tau::function_type,
typename Phi::function_type,
typename Psil::function_type,
typename Psir::function_type,
typename Tree::tree_type
>::result_type
reduce (const KB &kB, const KL &KkL,
const Tau &tau, const Phi &phi,
const Psil &psil, const Psir &psir, const Tree &t)
{
return reduce_impl (/% omitted =*/);

}

Figure 3.5: Simplified snippet of our implementation of reduce. Partial specialization of class template
reduce_signature works as declaration of signature of reduce.

We assume operator/tree arguments to have the function_type/tree_type members that are types
declared for type checking. This is an interface for type checking. reduce_signature checks the
function_type/tree_type members of operator/tree arguments instead of the types of themselves at
the signature of reduce. The implementation of skeletons does not check whether the declared types of
arguments are compatible with the actual types. The compatibility between both is a responsibility on
the side of operators and trees.

We can implement the compatibility checking of function_type/tree_type in a superclass. For
example, the partially specialized definition of the check class template in Figure 3.6 checks whether its
subclass of type Impl has the function signature of R(A1) in the constructor, and declares the signature
as function_type. We can check an operator class by making it inherit check like dup_int in Figure
3.6. If the signature of operator() of dup_int were incompatible with pair<int,int>(int), which is
declared in the inheritance of check, its compilation would fail and a type error message would arise
successfully in the constructor of check instantiated from the definition of dup_int. Note that this type
checking is safe regardless of the implementation of operator() because its call site in the constructor
of check is not realizable in runtime

We have separated the type checking of individual arguments of skeletons from that of application of
skeletons, by using the type-checking interface based on the function_type/tree_type members. Since
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template <class Impl, typename Signature> struct check;

template <class Impl, typename R, typename Al>
struct check<Impl,R(A1)> {
typedef R function_type(Al);
check () {
if (false) {
R r = static_cast<const Impl&>(*this)(A1());

}
}
3
struct dup_int : public check<dup_int ,pair<int,int>(int)> {
pair<int,int> operator () (int x) const;
} op;

Figure 3.6: Example for checking signatures of operators. Superclass template check verifies and declares
signature of call operation of subclass dup_int.

the arguments of skeletons are required to have these members, this style of type checking is intrusive,
i.e., opposite to the non-intrusive style conventional in C++. Although we can implement type checking
in a non-intrusive style through type-level computation based on the C++11 standard at the signature
of skeletons, we have adopted this member-based intrusive style to achieve a clear separation of concerns
in type checking. Consequently, we have obtained both a clear declaration of the signatures of skeletons
and helpful messages of type errors on individual arguments. These benefits from separation of concerns
in type checking is particularly valuable for tree skeletons because their signatures are complicated.
Note that we do not claim the novelty of our type-checking technique. Type checking of template
parameters is a common issue in C++ template metaprogramming. In fact, the C++ concept [SS12],
which is a functionality for general type checking of template parameters, is under discussion on the next
C++ standard and partially emulated by the Boost Concept Check Library®. Rather than a general
and/or versatile one, our type-checking technique is a minimalism specialized for checking function
signatures. For example, we can sophisticate the type-checking code of check in Figure 3.6 by using type
traits, which are type-level predicates, and static_assert in the C++11 standard. Nevertheless, our
implementation is simple yet sufficient to generate helpful error messages even in the C+-+03 standard.

3.5 Benefits of Our Design

Our interface design of tree skeletons is greatly advantageous to their implementation as well as has great
potential to improve data-parallel skeleton libraries. In this section, we describe cases where our design
works efficaciously.

Our design is particularly valuable for tree skeletons owing to the heterogeneousness and versatility
of trees. The heterogeneousness of trees strongly motivates skeleton implementors to specialize represen-
tations of trees. The versatility of trees strongly motivates skeleton users to switch views of trees. We
explain these in the following subsections.

3.5.1 Specialization of Representation

Trees are heterogeneous. For example, the types of payload values may not be uniform. Consider
(untyped) nested lists. A nested list is represented by a tree whose leaf nodes are the elements of the
nested list and whose internal nodes have no payload value. Such trees are not unusual. Generally, a tree

3http://www.boost.org/doc/libs/release/libs/concept_check/
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that represents a recursive decomposition of a set has meaningful data only in its leaf nodes. Such trees
can be found in intermediate results. The result of path-wise reduction (i.e., a reduction version of dAcc)
is directly represented by a tree that has no internal payload value. For efficiency of parallel computing,
the representation of such trees are desired to be specialized to save the space of their internal nodes.

Not only in payload values, trees may be also heterogeneous in structures. For example, binary trees
may be non-full, i.e., have a single-child internal node with a missing leaf, while tree skeletons accept
only full binary trees for the brevity of these APIs. A way to deal with non-full binary trees in tree
skeletons is, as mentioned in Section 3.1, to fill these missing leaves with dummy nodes of a default value.
For efficiency, such filled trees are desired to have a specialized representation to save space of dummy
nodes. Besides, we may have to deal with trees with high-degree nodes (i.e., hubs). We can also deal
with such a tree by converting the whole tree into a full binary tree. For space efficiency, however, it is
natural to give hubs special treatment in representation.

The input/output formats of trees used in practice are also heterogeneous. For example, both XML
and JSON are widely used in the web. In relational databases, nested sets [Cell2] are popular. For
efficiency, it is valuable to specialize the representation of trees in a specific format. Actually, the
preservation of the bracketed structures of XML documents leads to an efficient implementation of tree
skeletons [KMEOQT].

A more advanced case is implementation of template-based fusion methods [ME10, EM14]. These
are a technique to eliminate intermediate data by decorating data structures with specific computations.
Because decorated data structures pretend the results of the computation of decoration, they avoid
constructing the whole of the results. This technique can be seen as a specialization of representations
equipped with computations.

In summary, skeleton implementors are greatly motivated to specialize the representations of trees
from the perspective of efficiency. If the implementation of tree skeletons is tightly coupled with that
of trees, we have to implement tree skeletons for each implementation of trees. This is excruciatingly
unproductive. The implementation of tree skeletons loosely coupled with that of trees enables us to
avoid such unproductiveness. Our design achieves such a loosely coupled implementation of skeletons
and therefore promotes specialization of tree representation.

3.5.2 Multiple Views

Trees are versatile. We can find uses of trees for modeling something in various contexts. This means
that a tree probably has another view of data. For example, consider XML documents. They are usually
modeled as DOM trees but are actually bracketed texts. We would sometimes like to deal with them
as texts regardless of their brackets. For example, consider grep (i.e., regular expression matching and
filtering) for texts that have dropped their brackets. We can implement grep for texts by using prefix
sums [Ble93], i.e., one of list skeletons. We would then like to use a list view of a DOM tree.

Of course, in this case, it is sufficient to flatten a DOM tree into a list of its leaf texts. However,
data-parallel skeleton libraries hardly deal with such flattening because construction of data structures
is generally restricted in parallel computing. We can elude such flattening by encoding grep on trees but
this is not desirable for skeleton users. An implementation of trees that provides a list view of leaves is
appropriate both to implementation and practical use.

Our design is appropriate for providing multiple views. Our interface defines a view of trees. Whether
its underlying implementation is a tree or not, an implementation of our interface behaves as a segmented
tree for tree skeletons.

An inverse of this is also possible. For example, we consider a way of extending our implementation
of binary trees to provide a list view of its leaves. An important point here is that a one-hole context
corresponds to two local lists of leaves. A simple way to dealing with it is to assign indices of local lists to
each local tree. We assign an index to a subtree and two indices to a one-hole context. Then, we define
a global iterator for the list view as an unordered iterator of indexed elements. It traverses a global tree
and respectively returns the local lists in each segment with their indices. We would hardly change a
local iterator. It is sufficient to skip internal nodes. Since two local lists are separated at the hole node
in a one-hole context, a local iterator over a one-hole context begins its root or its hole. We consider in
general that the design of global iterators shall be a key.
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Table 3.1: Execution time (in seconds) of tree skeletons with/without our interface.

No. of nodes. N With our interface Without our interface
’ ’ reduce uAcc dAcc | reduce uAcc dAcc
128 x 2%0 0.753 1.360 1.127 | 0.658 1.425 1.285
256 x 220 1.518 2.677 2.250 1.332  2.780 2.509
512 x 220 3.063 5471 4.538 | 2.659 5.666 5.051

To provide multiple views is also valuable for efficient implementation. Existing tree skeletons necessi-
tate the preprocessing of input trees of non-full binary ones or unbounded-degree ones. This preprocessing
is large overhead. Without actual preprocessing, it is sufficient to provide a view of preprocessed trees.
In particular, we should not encode unbounded-degree trees into full binary trees. Parallel tree contrac-
tion, which is the basis of tree skeletons, can be applied to unbounded-degree trees more efficiently than
binary trees [MM11a]. Tree skeletons should therefore provide a way to operate unbounded-degree trees
as they are. Our interface is useful for implementing trees compatible both with binary tree skeletons
and unbounded-degree tree ones.

In summary, our design leads to multiple views of trees as well as various data structures. Multiple
views are particularly valuable for trees. They enable us to use a combination of skeletons over different
data structures although this is difficult to do in existing data-parallel skeleton libraries. Our design
therefore has great potential to improve data-parallel skeleton libraries in general.

3.6 Preliminary Experiments

We conducted preliminary experiments on our new implementation of tree skeletons. In this section, we
report these results.

3.6.1 Overhead of Our Interface

To evaluate the overhead of the use of our interface, we measured the execution time of tree skeletons
with/without our interface. We used the existing implementation [Mat07a] as tree skeletons without our
interface. Parameter operators were addition over int and the identity function, i.e., sufficiently cheap
to measure the cost of traversals.

Our new implementation differs a little from the existing one, particularly on communication. This
difference is independent of the use of our interface. To minimize the effect of communication, we ran
two processes* on a single shared-memory server: one equipped with four Opteron 6380 (16 cores, 2.50
GHz) processors and 128 GB of DDR3-1600 memory running Debian 7.5 (Linux 3.2.0-4-amd64). We
compiled source code by using g++ 4.7.2 with the O3 optimization, together with OpenMPI 1.4.5. This
setting in principle does not work beneficially to our new implementation.

Input trees were randomly generated ones whose payload values were of int, their every segment had
the same size artificially for minimizing the effect of load imbalance, and the number of segments was 65.
We measured the average time of 10 times trials for the same input. Table 3.1 summarizes the results of
this experiment.

Slight slowdowns were observed in reduce and slight speedups were observed in uAcc and dAcc at
every input size. We consider these differences to be insignificant. If the use of iterators incurred some
overhead, a uniform slowdown in all skeletons would be observed. We attribute both speedup and
slowdown to extrinsic factors. For example, to avoid using union, our new implementation adopts a
two-array representation. As a result, MPI Isend/Irecv calls in reduce and uAcc increase although the
amount of communication data does not increase. This might have incurred slowdown. In contrast, our
new implementation of trees saves the space of tags. This might have brought speedup. We consider
these extrinsic factors to be insignificant. In conclusion, we observed no significant overhead of the use
of our interface.

4Neither MPI-based implementation was able to run with a single process.
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// initializations

dist_tree<A> t = ...
dist_leaf_tree<A> 1t = ...;

// simple applications

dist_tree<B> t2 = dAcc (..., t);

dist_leaf_tree<B> 1t2
// preparations for conversion
factory_hijacker<dist_tree<A>,dist_leaf_tree_factory> wt(t);

factory_hijacker<dist_leaf_tree<A>,dist_tree_factory> wlt(1lt);
// converting applications

dist_leaf_tree<C> 1t3
dist_tree<C> t3

dAcc (..., 1t);

dAcc (..., wt);
dAcc (..., wlt);

Figure 3.7: Simplified example of simple application and converting application of skeleton.

3.6.2 Flexibility from Our Interface

We demonstrate the extensibility and flexibility of implementation based on our interface through experi-
mental implementations. Our basic implementation of trees mentioned in Section 3.4 was dist_tree<A>.
In addition, we developed two implementations of trees. One was the one of trees whose internal nodes
have no payload value, dist_leaf_tree<A>, of which we saved the space of the internal nodes (see
Section 3.5.1). The other was a wrapper of trees, factory_hijacker<T,F>. It behaves as a tree T
whose factory is overwritten by F. By using this wrapper together with factories of dist_tree<A> and of
dist_leaf_tree<A>, we can switch the implementations of the output trees of tree skeletons from the
caller side, as shown in Figure 3.7.

The example program, whose text is slightly simplified, shown in Figure 3.7 has two notable points.
The first is that dAcc had the only implementation regardless of the differences on implementation
both of input trees and output ones. This demonstrates the genericity of our implementation of tree
skeletons. Note that our implementation of skeletons is independent of the implementation of output
trees unlike conventional functions of parametric polymorphism and does not necessitate upcasting the
types of output trees unlike conventional functions of class-based polymorphism. In this sense, our
implementation is generic yet more flexible than conventional ones. This flexibility is due to template-
based implementation of our tree interface.

The second is that our implementation of skeletons enables converting applications. In simple ap-
plications, the implementations both of input trees and output ones were the same. In converting
applications, the implementations of output trees were converted from those of input trees through
factory_hijacker<T,F> in dAcc. Note that converting applications are not different from simple appli-
cations from the perspective of implementation. factory_hijacker<T,F> itself only attached factories
without modifying trees. Each factory only called a specific constructor and initialized a tree. dAcc
only wrote an output tree in the same way. Even though all these were unaware of conversion, the
implementations of trees were yet successfully converted. This exemplifies separation of concerns and
also demonstrates the extensibility and flexibility of implementation based on our interface.

3.6.3 Avoidance of Data Restructuring

To demonstrate the feasibility and benefits of multiple views, we implemented a list interface into
dist_leaf_tree<A> as described in Section 3.5.2. We experimentally implemented three kinds of reduce
for the leaf list of dist_leaf_tree<A>.

The first was a hand-coded implementation of leaf-list reduction. The computation over a local tree
utilized the implementation of dist_leaf_tree<A> in a tightly coupled manner and the computation
over a global tree was similar to that in reduce of tree skeletons but specialized for leaf-list reduction. It
was a baseline with no overhead. We name it the hand-code version.
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Table 3.2: Execution time (in seconds) of leaf-list reduction given 256 x 220 leaves.

No. of processes, P
2 3 6 9
hand-code | 0.560  0.436  0.238  0.149
list-view 0.688  0.544  0.309  0.195
raw-list 14.989 18.706 19.035 19.162

The second was a generic iterator-based implementation of reduce of list skeletons. dist_leaf_tree<A>
constructed a list view of leaves internally and exposed it to the generic implementation. This achieved
loose coupling between the implementation of dist_leaf_tree<A> and that of reduce of list skeletons.
We name it the list-view version.

The third was a reference implementation of list skeletons tightly coupled with an implementation of
distributed lists. This distributed list was constructed from a single array in the root process by scattering
its data. We implemented, into dist_leaf_tree<A>, a gather operation that aligns the payload values
of all leaves to a single array on the root process. The reduction of all leaves of dist_leaf_tree<A> is
the gather operation followed by the reference reduce. We name it the raw-list version.

We compared the execution time of these three implementations. The aim of this experiment is to
measure the overhead of data restructuring between lists and trees. Parameter operators were therefore
the same as ones used for measuring the overhead of our interface. We used as input, the tree of 512 x 220
nodes that was randomly generated before. It had about 256 x 220 leaves.

Communication much concerns the overhead of data restructuring. To measure realistic overhead on
distributed memory, we used a three-node cluster each of whose node was equipped with two Opteron
2376 (4 cores, 2.3 GHz) processors and 8 GB of DDR2-800 memory running Ubuntu 12.04.4 (Linux
3.2.0-64-generic) and was connected each other through 1000BASE-T. We compiled source code by using
g+-+ 4.6.3 with the O3 optimization, together with OpenMPI 1.4.3. Processes were evenly assigned to
each node.

Table 3.2 summarizes the result of this experiment. raw-list was much slower than both hand-code and
list-view, and showed no scalability against the number of processes P. This cause was communication.
The gather operation used in raw-list costs the amount of communication data proportional to P, while
hand-code and list-view cost no extra communication to perform reduce. The construction of a list view in
list-view incurred slight overhead but did not spoil scalability owing to no communication. Furthermore,
since this list view shares the underlying data of dist_leaf_tree<A>, we do not have to reconstruct the
list view as long as tree structures are unchanged. In practice, the overhead of view construction would
therefore be more negligible.

In summary, the use of a list view of trees brought significant performance gain owing to the avoidance
of data restructuring as well as a generic implementation of skeletons. Multiple views that our interface
design can provide are therefore very beneficial to efficient implementations of skeletons and will promote
a crossover use of skeletons over different data structures.

3.7 Related Work

In the context of functional programming, where trees are extensively used in the form of algebraic data
types, abstractions for trees were well studied. For example, active patterns [SNMO07] generally enable us
to perform pattern matching to abstract data types as algebraic ones; i.e., it provides a tree interface of
abstract data types in a general manner. Most of such studies did not deal with parallel programming.
A notable exception was an abstraction based on ternary trees [MM11b]. It formalized the algebraic
structure of parallel tree contraction as the view of an algebraic data type of ternary trees. On these
ternary trees, load balancing forms as tree balancing. Another notable work was a formalization of
path-based computations on trees [MMHTO09|. Its list-like view led to the operations of parallel tree
contraction.

In the context of parallel programming, computation on nested lists, which are a view of trees as
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mentioned in Section 3.5, is popular. Flattening [Ble90] of nested lists is a fundamental technique for
load balancing. To elude large space overhead of a thorough flattening, Bergstrom et al. [BFR113]
developed a hybrid flattening that provided a flat view and a nested one. This is an application of trees
with multiple views mentioned in Section 3.5.2.

In skeleton libraries, Triolet [RJDH14| was relevant to our work. It utilized hybrid iterators that
provide both a nested list view and a flattened list view for a better fusion strategy of a filter skeleton.
This notion is similar to the hybrid flattening above. Triolet used hybrid iterators only for list skeletons.
Our iterators are designed for tree skeletons and our interface design aims at even a crossover use of
skeletons over different data structures.

Iterators are commonly used in skeleton libraries. For example, Java 8 collections® used Spliterator
and parallel collections in Scala 1.9 [PBRO11] used IterableSplitter. These abstracted a recursive splitting
of collections but did not concern the structures of parallel collections. That is, these were not designed for
structural computation on parallel collections. STAPL Parallel Container Framework (PCF) [TBFT11],
which was inspired by C++ STL, also used iterators called pView. STAPL pView classified accesses to
parallel data structures. STAPL PCF shared an objective with our library design in the sense that it
strove after both parallel computing and loose coupling like C++ STL. Although STAPL PCF could
address a structural computation to some extent, through tree skeletons, we tackle with more general
and/or complicated structural computations. Our interface design aims at such structural computations
on various parallel data structures.

Several parallel graph libraries for distributed-memory machines such as the Parallel Boost Graph
Library® [GLO05] and the STAPL parallel graph library [HFAR13] were analogous to C++ STL. Since
our interface design is also inspired by C++ STL and the tree is of course a graph, these were relevant
to our work. While our tree interface is based on depth-first search, these provided breadth-first search
visitors. While our interface is designed for library implementors, these visitors were designed for library
users. We deal with coarse-grained parallelism in structural computation on trees in order to minimize
communication and synchronization.

3.8 Conclusion

We have presented the design and implementation of tree skeletons based upon our iterator-based inter-
face of trees. We implemented our interface appropriately on the basis of C++ templates. Our interface
provides loose coupling between the implementation of tree skeletons and that of trees. This is helpful
both for skeleton implementors and users.

A direction in future work is to extend our library for providing the multiple views of trees and other
data structures. Our extended library would be consist of three tiers. The first is implementation of
data structures that satisfy interfaces. The second is implementation of interfaces that define the views
of data structures and their cost models like C++ STL. The third is implementation of skeletons based
on interfaces. A flexible combination of instances in respective tiers will be a desirable implementation
of data-parallel skeletons.

Shttp://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
Shttp://www.osl.iu.edu/research/pbgl/documentation/



Chapter 4

Tree Skeleton Hiding

This chapter is a revised and extended version of our publication [SM13].

4.1 Introduction

Tree skeletons [Ski96, GCS94]| are indeed high-level abstractions for parallel programming. We can use
tree skeletons with no concern for low-level details of parallelism and underlying parallel machines. In
this sense, parallel programs based on tree skeletons are portable. Once we describe parallel programs
with tree skeletons, they can run in various environments on the basis of appropriate implementations of
tree skeletons. Moreover, tree skeletons guarantee their asymptotic performance regardless of the shape
of trees. In this sense, parallel programs based on tree skeletons are robust. They can run effectively
in parallel for various shapes of input. The implementations [SM14a, Mat07a, KMEOQ7, EI12, MM14]
of tree skeletons certainly provide high-level abstractions potentially equipped with these virtues. OK
then, is it easy to use tree skeletons? No, it is unfortunately not.

The API of tree skeletons is high-level yet complicated. This is the main reason why it is not easy to
use tree skeletons. In particular, additional operators that the parallel definitions of tree skeletons use
for interpreting tree contraction operations impose complicated algebraic requirements on programmers.
To predefine these operators separately is unhelpful for programmers because they have semantic depen-
dencies to operators that programmers would like to provide. For example, to use reduce, it is reasonable
for programmers to define its parameter operators kg and kj, because both are required in its sequential
definition. Then, its additional operators 7, ¢, 1;, and 1, have semantic dependencies to kg and ky,,
and cannot be separately defined. Without any assistance, programmers have to derive appropriate
definitions of the additional operators. Tree skeletons thus impose a heavy burden on programmers.

Although these additional operators are a key to guaranteeing excellent load balancing of tree skele-
tons, they are unnecessary from the perspective of sequential specifications. In this sense, they are
auxiliary operators for load balancing, while operators required in the sequential definitions are primary
operators for specification. What programmers would like to specify are primary operators. The burden
of auxiliary operators spoils the usability of tree skeletons and even outweighs their benefits from the
viewpoint of programmers.

To resolve this problem, we have implemented a parallelizer that transforms a recursive function
described in a restricted C languages into the application of a tree skeleton by generating operators on
the basis of the formalization by Matsuzaki et al. [MHTO06]. Our parallelizer enables programmers to
use tree skeletons implicitly. As a result, programmers can enjoy the benefits of tree skeletons with no
burden. In fact, that our parallelizer hides tree skeletons from programmers is more than the freedom
from operator derivation. Our parallelizer gives discretion to design the APIs of tree skeletons regardless
of the viewpoint of programmers. As a consequence, more expressive but potentially complicated APIs
can be adopted into tree skeletons, and then programmers can also enjoy this expressive power implicitly.
Moreover, our parallelizer enables programmers to test a target function simply as a sequential C program
because it deals with a restricted C language extended with compiler directives. By abstracting and
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hiding tree skeletons themselves, our parallelizer brings many benefits.
The following are our main contributions:

e We have developed a parallelizer for recursive functions described in a restricted C, on the basis of
the formalization by Matsuzaki et al. [MHTO06]. Our parallelizer hides tree skeletons and provides
useful declarations for parallelization as compiler directives (Section 4.3). It has been integrated
with a C compiler. We also report the results of a preliminary experiment (Section 4.5).

e We present an approach based on an implicit use of tree skeletons to parallel programming on trees
through our parallelizer (Section 4.6). Our approach enables programmers to use more general but
complicated tree skeletons (Section 4.4) with no burden and therefore will be generally advantageous
to programming based on tree skeletons.

4.2 Deriving Operators from Multilinear Computation

In this section, we briefly describe the formalization of systematic derivation of auxiliary operators for
tree skeletons. Refer to [MHTO06, Mat07b] for a more formal description in the case of full binary trees.

4.2.1 Multilinear Computation on Trees

We first formalize target computations on trees. Let child;(t) be the ith-child subtree of a tree ¢. For
the sake of clarity, we also use [ and r for the suffix ¢ instead of 1 and 2 if ¢ is a binary tree. Letting f
be a recursive function on trees that yields a vector, f is a multilinear function if f can be defined as

f(&) = A; f(child;(¢t)) for all i. (4.1)

Note that A; is a coefficient matrix that may contain components of the result of f(child;(t)), where
7 # 1. The leaf case in the above is unspecified because the domain of i is empty. Intuitively, our target
is a bottom-up computation that consists of linear transformations of the result for each subtree.

For example, the following poly over BinTree,, is multilinear.

poly(Leaf (x)) = (z,1),
poly(Branch(z,1,7)) = (2yi2yr2, (Y1 + Y12) (Yr1 + Yr2)),
where (y11,y12) = poly(l),
(Yr1,Yr2) = poly(r).

This is because we can transform the case of Branch(z,l,r) into

poly(Branch(z,1,r)) = 0 TYr2 by _ 0 TYi2 Yr1)
Yr1i T Yr2 Yr1 +Yr2) \Yi2 Yo+ Y2 Yt Y2/ \Yr2

The above equations satisfy the form of the equation (4.1).
The equation (4.1) seemingly does not cover the following multi-affine function:

f(t) = A;f(child;(t)) + b; for all .

The constant term vector b; may similarly contain components of the result of f(child;(t)), where j # i.
By using an augmented matrix and vector, we, however, can represent the equation above as

<f§t)> _ (f(l)i 'z) (f (C’”'idi(t))) for all 4. (4.2)

This representation enables us to regard any multi-affine function as a multilinear function. We therefore
call target computations multilinear computations on trees.
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4.2.2 Auxiliary Operators in Multilinear Computation

We can consider a multilinear computation for internal nodes to consist of two separate parts: ma-
trix construction and matrix multiplication. In fact, both correspond to the RAKE operation and the
COMPRESS operation.

Recall the reduce computation. Only with primary operators, we can reduce a one-hole context to
a root-to-hole spine. In multilinear computations, we can construct a matrix for each internal node
(except for the hole) of a root-to-hole spine. As a result, the root-to-hole spine reduces to a root-to-hole
path (i.e., a list of nodes). This corresponds to the result that we apply RAKE operations to all leaves
(except for the hole) of the root-to-hole spine. Then, we can reduce the root-to-hole path to a single
node by using matrix-matrix multiplication. Obviously, matrix-matrix multiplication corresponds to the
COMPRESS operation.

Since matrix construction and matrix multiplication respectively correspond to RAKE and COMPRESS,
by composing both, we can derive auxiliary operators corresponding to the SHUNT operation. However,
to formulate auxiliary operators of reduce, we require consideration of the payload values of hole nodes.

The payload value of a hole node is necessary to calculate the result for the subtree rooted by the
hole. If we reduce the root-to-hole path to a hole node with matrix multiplication, we lose its payload
value. We therefore have to leave payload values after matrix construction. Specifically, we consider an
extended payload value that consists of a payload value and a matrix, which is lifted by an auxiliary
operator 7. In the matrix multiplication of a parent and child, the payload value part of the extended
payload value of the child is left for a later bottom-up computation.

The matrix part of the extended payload value of an internal node summarizes the linear computations
on its ancestors. This summary is applied to the result for the internal node. The initial value of the
matrix part of each extended payload value is therefore an identity matrix I. In summary, we obtain the
auxiliary operators of reduce over SegTree,, in the following general form:

7(z) = (z,
Yi((2', M), (x, M), y,) = (2, MAIM)
Vr(y1, (2, M), (2, M')) = (2, MA, M),
oy, (z, M), y,) = Mkp(x;, z,X,),

where x, y;, and y, are implicitly used in A, and A;.
Note that this formalization itself is applicable to multilinear functions on k-ary trees. We can obtain
similar general forms of the auxiliary operators of reduce, uAcc, and dAcc over k-ary trees.

Generalization This derivation of auxiliary operators is based only on the equation (4.1) and the
associativity of matrix multiplication. The equations (4.1) and (4.2) necessitate a commutative semiring
for the domain of the components of matrices and vectors. This derivation can be therefore generalized
for any commutative semiring.

An algebra (S, +, x,0,1) is a commutative semiring if the following axioms of algebra are satisfied.

e The addition + and the multiplication x have both associativity (i.e., a * (b= c) = (a * b) = ¢ for
any a, b, and ¢) and commutativity (i.e., a *b = b« a for any a and b).

e The multiplication x is distributive over the addition +; i.e., a x (b+¢) = a X b+ a x ¢ and
(a+b)xec=axc+bxcforanya,b and ce S.

e 0 is the identity of + and 1 is that of x;ie.,0+a=a+0=acand 1 xa=ax1=aforanyacS.
e ( is the absorbing element with respect to x;i.e., 0 x a =a x 0 =0.

The ring of integers (Z,+,-,0,1), the semiring of natural numbers (N,+,-,0,1), tropical semirings
(Z, max, +,—0,0) and (Z,min, +,00,0), and the Boolean semiring ({0,1}, v, A,0,1) are popular ex-
amples found in computer programs. For multilinear computations with all these algebras, we can define
auxiliary operators uniformly in the form above.
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4.3 Proposed Parallelizer

In this section, we describe the design and implementation of our parallelizer.

4.3.1 Fundamental Design
Aims of Implementation

The fundamental aims of our parallelizer are the following two:
e Hiding tree skeletons from programmers.
e Algorithm descriptions in a conventional style of C.

The main benefit of the first is that programmers become oblivious of complicated APIs of tree
skeletons. Tree skeletons implemented in C++ work as a background service. In contrast to skeletons,
we do not hide parallel implementations of data structures. It is appropriate that programmers explicitly
select and use parallel implementations of data structures because an efficient parallel I/O at construction
of data structures often requires some additional consideration for hardware. Our parallelizer therefore
generates a function that takes a tree data structure for underlying tree skeletons from each target of
parallelization. We call it an entry function. An entry function encapsulates tree skeletons as well as
operators for them and pretends a sequential function that yields the same result as its source function
except for the implementation of argument tree data structures. Our parallelizer therefore enables
programmers to focus only on the construction of tree data structures.

The main benefits of the second are ease of programming and the interoperability with C/C++ code.
Not all non-expert programmers that desire parallel programs would like functional programming based
on grammars. Many textbooks on algorithms still adopt imperative languages for describing algorithms
and C-like pointers for representing trees. A restricted C is adequate to describe algorithms on trees and
easy for non-expert programmers.

Thee interoperability of algorithm descriptions with C/C++ is also important. We adopt C++ for
the language of generated programs because tree skeletons have been implemented in C++. This is not
only a historical reason. C++ has the best balance among the expressiveness for high-level abstractions,
the portability for parallel machines, and the performance of compiled native code. For the same reasons,
we suppose that programs calling entry functions are also described in C++. From the perspective of
C++ programming, it is of importance that existing and/or standard C/C-++ functions can be used
in algorithm descriptions. Although not all C++ functions will be callable for a syntactic reason, a
restricted C enables us to use many C/C++ functions in algorithm descriptions.

Design for Implementation

To achieve the aims mentioned above, specifically, we have adopted the following design choices:
e Qur parallelizer is a C-to-C++ compiler that generates entry functions encapsulated for #include.
e The API for parallelization is based on compiler directives (i.e., #pragma).
e Targets of parallelization are syntactically restricted recursive functions on a pointer structure.
e Partial definitions of recursive functions over general (i.e., non-full) binary trees are considered.
e Our parallelizer deals with the computation of reduce.

The first is the fundamental design of our parallelizer. For encapsulation of tree skeletons as entry
functions, we also have to generate intermediate data types and operators. It is adequate that all
generated components are aggregated into a separate include file. The second enables programmers to
test algorithm descriptions as sequential C programs by using off-the-shelf C compilers because standard
C compilers ignore extensions to compiler directives. The third is the primary design on algorithm
descriptions. As found in loop parallelization, certain syntactic restrictions on targets are reasonable
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#include <stddef.h>

#pragma commSemiring max "+" NINF O
extern int NINF;

extern int max(int a, int b);

typedef struct BNint {

int v;
struct BNint *1, *r;

} BNint;

typedef struct pair_int {
int _1, _2;

} pair_int;

pair_int mis (BNint =*t) {
pair_int ret, 1 = {NINF,0}, r = {NINF,O0};
if (t->1 !'= NULL) 1 = mis(t->1);
if (t->r '= NULL) r mis(t->r);
ret._1 = t->v + 1._2 + r._2;

ret._2 = max(l._1, 1._2) + max(r._1, r._2);

return ret;

Figure 4.1: Example of algorithm descriptions. mis calculates the maximum independent sum of a given
tree.

for automatic parallelization. The fourth is relevant to handling pointers in a conventional style of C.
Algorithm descriptions for trees represented with C-like pointers lead generally to recursive functions
over general binary trees. It is natural in C that recursive functions over full binary trees are regarded
as partial definitions. We therefore use skeletons over general binary trees (see Section 4.4) and deal
with partial definitions of recursive functions. The last is relevant to simplification of implementation.
As mentioned in Section 4.2, operator derivation for uAcc and dAcc is straightforward.

Example Use

Figures 4.1 and 4.2 show a concrete example of using our parallelizer. An input to our parallelizer
is a program that C compilers can compile separately, as shown in Figure 4.1. A generated program
(e.g., mis-tree.cpp) by our parallelizer is used through #include, as shown in Figure 4.2. A gener-
ated entry function has the same name as its source function (e.g., mis in Figure 4.1) but contained
in the parallel_dp namespace to avoid name collision. The type BNint represents trees of pointer
structures for sequential computation and the type binary_tree<int> represents trees for an underly-
ing reduce. By giving data of type binary_tree<int> instead of BNint, we can use the entry function
parallel_dp::mis as the source function mis. A declaration for helping parallelization is a compiler
directive such as #pragma commSemiring ..., whose meaning is described later.

4.3.2 Compiler Directives for Parallelization

Our parallelizer provides three kinds of declarations for helping parallelization in the form of #pragma.

Declaration of Commutative Semirings

The most important API in our parallelizer is the declaration of commutative semirings. As mentioned
in Section 4.2, the formalization of operator derivation is generalized for any commutative semiring. Our
parallelizer therefore generates the operators for reduce on the basis of commutative semirings declared.
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#include <skel/binary_tree.hpp>
#include <skel/config_main.hpp>
#include "mis-tree.cpp"

int main(int argc, char *xargv)
{

config::init (argc, argv);

binary_tree<int> *xt =
binary_tree<int>::read_from_file("data");
pair_int result = parallel_dp::mis(*t);

config::finalize ();
return O;

Figure 4.2: Example of using generated code. mis-tree.cpp is an output file that our parallelizer
generates from the program shown in Figure 4.1.

By using the syntax of #pragma commSemiring plus times zero one, we can declare a commuta-
tive semiring (5, plus, times, zero, one). The domain S is not explicitly declared because we can find
the domains (i.e., types) of operators in the context of their use. Our parallelizer thus can easily cope
with the overloading of built-in operators and the type conversion of identity symbols.

To use built-in operators for operators of commutative semirings, we have to describe it as a string
literal, as shown in Figure 4.1. The commutative semirings of #pragma commSemiring "+" "x" O 1
and #pragma commSemiring "|" "&" O 1 are implicitly predefined as built-in ones.

We do not check whether commutative semirings declared satisfy the axioms of algebra. This is
because the standard representation of numbers and arithmetic in computers do not implement the
axioms of algebra strictly. For example, arithmetic overflow and rounding errors make it difficult to
implement the axioms of algebra strictly. We therefore assume approximate axioms of algebra. The
meaning of approximate axioms is, for example, that we use sufficiently small values in calculation
process as the absorbing element —co.

Declaration of Pure Functions

Coefficient matrices in multilinear computations can contain constants. To enrich the variety of constants,
pure functions are useful because the applications of pure (i.e., side-effect-free) functions to payload values
and invariant symbols are also regarded as constants. In particular, predicates on payload values such as
all and any in Figure 4.4 are almost essential in multilinear computations with the Boolean semiring.
Our parallelizer therefore provides the API to declare pure functions. The syntax of #pragma pure f1
£2 ... declares that the symbols £1, £2, ... are pure functions.

We do not check the purity of declared functions for two reasons. The first is that we assume function
definitions to be unknown, i.e., external functions. The declaration of pure functions is provided for reuse
of existing functions. If our parallelizer requires programmers to include existing functions in a compile
unit, their reusability is spoiled. The second is that it is difficult to define side effects reasonably.
Although side effects generally mean the effects of functions except for return values, this definition is
impractical in C/C++, where we can observe bare runtime environments. For example, in this definition,
math functions such as sin have side effects because of errno. Moreover, it is controversial whether
logging independent of main calculations has to be considered as a side effect. Our parallelizer therefore
delegates the decision of pure functions to programmers.
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pair_int singleton(BNint *t) {

pair_int ret, 1 = {0,0}, r = {0,0};

if (t->1 '= NULL && t->r == NULL) {
1 = singleton(t->1);
r._2 = 1;

}

if (t->1 == NULL && t->r != NULL) {
1.1 = 1,
r = singleton(t->r);

}

if (t->1 !'= NULL && t->r != NULL) {

1 = singleton(t->1);
= singleton(t->1);

ret._1 = 1._1
ret._2 = 1._2
return ret;

Figure 4.3: singleton, which counts up the siblingless nodes in a given tree.

Suppressing Code Generation

Our parallelizer generates a C++ program file encapsulated for #include from a given C program.
Basically, it contains all symbols in the given C program. This dirties the namespaces in which generated
programs are included. For example, the type BNint would be used only for describing the function
mis. After debugging mis as a sequential C program, we would not use BNint anymore. Then, BNint
is redundant for the includers of its generated program. To clean up these redundant symbols, our
parallelizer provides the API for suppressing code generation. Through the syntax of #pragma exclude
namel name?2 ..., we can exclude the symbols namel, name2, ... from generated programs.

As a tricky application of this functionality, we can overwrite symbols with macros in the side of
includers. For example, we can redefine max and NINF as macros in the includer side of the program
generated from the program described in Figure 4.5.

4.3.3 Algorithm Descriptions

We describe the expressiveness of and restrictions on algorithm descriptions that our parallelizer accepts.

Expressiveness of Algorithm Descriptions

Recursive functions like mis in Figure 4.1 are a typical description for algorithms on binary trees. In
addition to such a typical description, our parallelizer accepts several kinds of algorithm descriptions.

For example, singleton described in Figure 4.3 calculates the number of the singleton (i.e., sibling-
less) nodes of a given binary tree. It adopts a style that tests each kind of nodes successively. Figure 4.4
shows another style of traversal on binary trees. left_lean traverses a given binary tree in a left-leaning
manner: if an internal node has no left child, its right child is not traversed. This traversal assumes the
case where every internal node has a left child.

Our parallelizer accepts the traversal on full binary trees as shown in Figure 4.5. mis_fbt returns
unspecified value in the case where internal nodes have a single child. That is, mis_fbt is partially
defined. Our parallelizer generates and uses operators that raise runtime exceptions for undefined cases.
Entry functions generated thus handle full binary trees successfully and fail to handle general binary
trees safely. We call operators for undefined cases halt operators.
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#pragma pure all any
extern int all(int);
extern int any(int);

pair_int left_lean(BNint =*t) {
pair_int ret, 1 = {1,0}, r = {1,0};

if (t->1 != NULL) {

1 = left_lean(t->1);

if (t->r '= NULL) {

r = left_lean(t->r);

}
}
ret._1 = all(t->v) & 1._2 & r._2;
ret._2 = any(t->v) | 1._1 | r._1;

return ret;

Figure 4.4: left_lean, which performs a left-leaning traversal. Pure functions all and any are used as
predicates of payload values.

Restrictions on Algorithm Descriptions

Our parallelizer has three kinds of restrictions on algorithm descriptions.

The first is derived from parallel computing. For example, impure function calls and write to global
variables are not allowed.

The second is derived from the formalization described of operator derivation. The struct types of
return values have to consists of a constant number of fields of the same type. The condition part of if
statements must not use the results of recursive calls. The descent and ascent in recursive calls must be
moves between parents and children.

The third is derived from the implementation of our parallelizer. It includes miscellaneous restrictions
for simplifying case extraction and symbolic execution described in Section 4.3.4. For example, the
struct for nodes consists only of the payload value v, the left-child link 1, and the right-child link r.
Target recursive functions must not take NULL. Testing the kinds of nodes is limited to NULL checking of
child links. Control structures are limited to if statements. Although these restrictions are rather severe,
we consider that they are overall reasonable, assuming the first kind and second kind of restrictions.

4.3.4 Implementation Overview

We implemented our parallelizer on top of COINS!. Program analysis and transformation were imple-
mented at the HIR level, where the AST of a given C program almost remains as the HIR. Figure 4.6
shows the compilation pipeline of our parallelizer. In the rest of this subsection, we describe each com-
pilation step briefly along the pipeline described in Figure 4.6 by using the program described in Figure
4.1 as a running example.

Pragma Processing

After the C frontend construct HIRs, we first find and interpret #pragma.

If any #pragma commSemiring is not given, our parallelizer uses only built-in semirings. If a user-
defined function is used in #pragma commSemiring, we generate a unique operator for the function and
then replace its function calls with binary expressions internally in HIRs. As a result, we can handle
the expressions over all commutative semirings uniformly on HIRs. Note that binary expressions with

Ihttp://coins-compiler.sourceforge.jp/
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#pragma commSemiring max "+" NINF O
#pragma exclude max NINF

extern int NINF;

extern int max(int a, int b);

pair_int mis_fbt (BNint *t) {

pair_int ret;

if (t->1 == NULL && t->r == NULL) {
ret._1 = NINF;
ret._2 = 0;

} else {
pair_int 1 = mis_fbt(t->1),

T mis_fbt (t->r);

ret._1 = t->v + 1._2 + r._2;

ret._2 = max(1l._1,1._2) + max(r.

_2);

3

return ret;

}

Figure 4.5: mis_£fbt, which calculates the maximum independent sum of a given full binary tree.

generated operators are transformed back to function calls just before code generation. For example,
after our parallelizer processes #pragma commSemiring in Figure 4.1, the max function is interpreted
as an operator. Then, our parallelizer assumes that the max function and the + operator consist of a
commutative semiring.

The symbols declared #pragma pure and #pragma exclude are registered in this step. The former
information is used in matrix extraction and the latter information is used in code generation.

Case Extraction

Our parallelizer tries to parallelize all given function definitions. It first constructs from each target
definition, program slices in four cases that correspond to the four primary operators for reduce over
general binary trees (see Section 4.4). Specifically, the slice sgg in the case of no child (i.e., Leaf), the
slice s19 in the case of only the left child (i.e., Left), the slice sg1 in the case of only the right child (i.e.,
Right), and the slice s11 in the case of both children (i.e., Branch) are constructed.

In the rest of compilation process, we focus on the mis function definition. For example, the following
is the slice s1g constructed from mis.

pair_int mis (BNint =*t) {
pair_int ret, 1 {NINF,0}, r = {NINF,O0};
1 = mis(t->1);
ret._1 = t->v + 1._2 + r._2;

ret._2 = max(l._1, 1._2) + max(r._1, r._2);

return ret;

In this step, we require consideration of short-circuit logical operators && and || in COINS. The C
frontend translates both into if statements containing goto/label statements. Because the goto/label
statements complicate control flow, we eliminate them by replicating the then/else part of if statements
containing them. As a result, the implementation of case extraction becomes simple.
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Figure 4.6: Compilation pipeline of our parallelizer.

Symbolic Execution

Program slices represent computations in the form of statements. Computations in the form of pure
expressions are appropriate to operators for skeletons. We therefore transform the program slices sq,
So1, S10, and s11 respectively into expressions eqg, €o1, €19, and ej; through symbolic execution.

Specifically, symbolic execution is to update a symbolic environment (i.e., a mapping from variables to
expressions) in a step-by-step abstract interpretation where assignments cause symbolic substitution and
if statements construct ternary conditional expressions. The resultant expression is a return expression
to which we apply symbolic substitution based on a final symbolic environment.

After we obtain a single expression corresponding to a slice, we abstract the payload value of a current
node, the result of the recursive call for a left child, and that for a right child, by using special variables v,
1, and r. These special variables correspond to the formal parameters of operators for skeletons. Finally,
constructed expressions eqg, €g1, €19, and e;; become equivalent to the body expressions of the primary
operators koo, ko1, k10, and k11 for reduce over general binary trees (see Section 4.4).

For example, the sig of mis is transformed into the following e;q:

_pair_int(v + 1._2 + 0, max(1l._1, 1._2) + max(NINF, 0)),

where the function _pair_int is a helper function that works as the constructor of pair_int. Our
parallelizer generates such helper functions for convenience.

After e, eg1, €10, and ey are obtained, we validate them. If we find local variables in expressions,
these values are unspecified. We regard such expressions as undefined cases and do not use the expressions
themselves in later steps. We, however, register undefined cases for generating halt operators.

Matrix Extraction

To obtain auxiliary operators, we have to formalize a target function as a multilinear computation. This
corresponds to transforming the primary operators used for internal nodes, i.e., eg1, €19, and ey into the
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matrix-vector product like the equation (4.1). That is, we have to extract coefficient matrices.

By assuming the linearity of expressions, we can implement the extraction of coeflicient matrices
simply as partial differentiation over a commutative semiring. If we obtain nonlinear a partial derivative,
we judge that matrix extraction fails. That is, partial differentiation also works as linearity checking.

Specifically, we extract four coefficient matrices A4;, A,, Aj, and A that are respectively used in the
auxiliary operators vy, 1, 17, and ¥ for reduce over general binary trees (see Section 4.4). A; consists
of the partial derivatives of e;; with respect to 1; A, consists of the partial derivatives of e;; with respect
to r; Ay consists of partial derivative of ey; with respect to r; Aj consists of the partial derivatives of e
with respect to 1.

More precisely, augmented coefficient matrices in the equation (4.2) are extracted. The extraction of
the part of b; is immediate. It is sufficient to substitute 1 or r with a null vector. For example, from
the e1p of mis, we can extract the following augmented matrix:

NINF v NINF
0 0 NINF
NINF NINF 0

The (1,2)-component here is the partial derivative of the first member v + 1._2 + 0 of ejg, with re-
spective to the second member 1._2 of 1.

Our parallelizer tries matrix extraction successively with respect to each commutative semiring until
all coefficient matrices are successfully obtained. In this step, our parallelizer also performs constant
folding over a target commutative semiring. Although this constant folding would improve the runtime
performance of generated operators, its main aim is to simplify the construction of abstract matrices in
matrix materialization.

Matrix Materialization

Extracted matrices often consist much of 0 and 1 over a semiring. In particular, augmented coefficient
matrices, which our parallelizer actually extracts, contain 0 and 1 by definition. Some components of
such matrices remain 0 or 1 in matrix-matrix multiplication. Then, we can eliminate such invariant
components from dynamic (i.e., runtime) data and instead embed constants into the code of auxiliary
operators. In the step of matrix materialization, we find such invariant components and define the
concrete data types of matrices.

To determine invariant components of 0 or 1, we have only to distinguish 0, 1, and dynamic values,
i.e, the values of variables. Letting V' be the abstract value of variables, we consider a three-valued
commutative semiring ({0,1,V},+, x,0,1), where V +a = V for any a € {0,1,V} and V x V = V.
We construct abstract matrices over ({0,1,V}, +, x,0,1) from extracted matrices. Then, the supremum
of all possible matrix products derived from the abstract matrices suffices for determining necessary
components as dynamic data. To calculate supremums, we define the join operator L over {0,1,V} as
Vue=Vand cud =V for any c € {0,1}. In summary, we can calculate the supremum of abstract
matrix products as the least fixed point of matrix multiplication over ({0,1,V}, +, x,0,1) and matrix
updating over ({0,1,V}, 1) with all abstract matrices.

For example, the supremum of abstract matrix products derived from augmented coefficient matrices
of mis is the following:

V vV o0
vV vV o
0 0 1

Then, the four components of V' suffices for the dynamic data of a matrix. Our parallelizer therefore
defines the data type of matrices as the following struct.

struct _mis_mat {
int _0_0, _O_1, _1_0, _1_1;
};

The member names here correspond to the zero-based numbering of component indices.
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Operator Generation and Code Generation

Since eqg, €g1, €19, and e are equivalent to their bodies, it is immediate to generate the primary
operators. After augmented coefficient matrices and matrix data types are obtained, we can generate
auxiliary operators simply by using symbolic matrix multiplication, following the general forms described
in Section 4.2. Note that the special variables v, 1, and r are captured as the formal parameters of
generated operators.

The final code generation is straightforward. Because of high compatibility between C89 and C++03,
we have been able to reuse the C code generator of COINS for code generation. The code generation of
helper functions and matrix data types is completely performed by the C code generator. We implemented
an ad hoc C++ code generator for entry functions and operator definitions as a simple extension of the
C code generator because they necessitate C++ functionality.

From the augmented coefficient matrix above of mis, generated is the following function (more pre-
cisely, a member function of C++ function objects) that corresponds to .

hir_t_void operator () (struct _mis_mat &m, const hir_t_int v) const
{

hir_s_private hir_v_auto hir_t_int _var43;

hir_s_private hir_v_auto hir_t_int _var45b;

hir_s_private hir_v_auto hir_t_int _var47;

hir_s_private hir_v_auto hir_t_int _var49;

_var43 = (hir___ADD(v,m._1_0));

_var45 = (hir ADD(v,m._1_1));

_var47 = max( m._0_O,m._1_0);
_var49 = max( m._0O_1,m._1_1);
m._0_0 = _var4d3;
m._0_1 = _varé4hb;
m._1_0 = _var4d7;
m._1_1 = _var4d9;

The matrix argument m is overwritten with a return value because passed data is unnecessary in reduce.
Right before code generation, our parallelizer excludes symbols inconvenient to C+-+ programs. For
example, wchar_t is a typedefed type in C but a keyword in C++. If wchar_t were generated as C,
resultant programs would have a syntactic error in C+4-. We therefore have to exclude wchar_t from
code generation. Similarly, we exclude symbols specified in #pragma exclude from code generation.

4.4 Underlying Binary Tree Skeleton

As mentioned in Section 4.3, recursive functions in a conventional style of C lead to recursive compu-
tations over general binary trees. We therefore use reduce over general binary trees for the underlying
skeleton of entry functions generated. In this section, we describe the definition, the specialization, and
the implementation of reduce over general binary trees.

4.4.1 Definition

We first define general (i.e., non-full) binary trees as the following grammar:

GBinTree, = Branch(xz, GBinTrees, GBinTreey),
GBinTree, = Left(x, GBinTree,,),

GBinTree, = Right(z, GBinTree,),

GBinTree, = Leaf (z).
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Left denotes a node having only the left child and Right denotes a node having only the right child. We
can define reduce over GBinTree,, as

reduce(k11, k10, ko1, koo, Branch(z,l,r)) = k11 (reduce(k11, k10, ko1, Koo, 1), x, reduce(k11, k10, ko1, Koo, 7)),
reduce(k11, k10, ko1, koo, Left(x,1)) = kio(reduce(k11, k10, ko1, k0o, 1), ),
reduce(k11, k10, ko1, koo, Right(x, 1)) = ko1 (z, reduce(k11, k10, ko1, koo, 7)),
reduce(k11, k10, ko1, koo, Leaf (x)) = koo ().

Parameters k11, k19, ko1, and kg are respectively the interpretations of Branch, Left, Right, and Leaf.

We can define the segmented version of GBinTree, as

GSegTree, = Branch(GContexty, GSegTree,,, GSegTree,,),
GSeqTree, = Left(GContext,,, GBinTree,,),

GSegTree, = Right(GContext,, GBinTree,),

GSegTree, = Leaf (GBinTree,),

GContext,, = Branchi(x, GContext,,, GBinTree,,),
GContext, = Branchs(x, GBinTreey, GContext,,),
GContext,, = Left(z, GContext,,),

GContext,, = Right(xz, GContext,,),

GContext,, = Hole(x).

We can also define reduce over GSegTree,,.

reduce: (bxaxb—b)x (bxa—b)x(axb—b)x(a—Db)
X(a—>c)x (bxexb—b)x(bxc—b)x(cxb—b)
X(exexboco)x(bxexe—c)x(ecxe—c)x(exec—c)
x GBinTree, — b

reduce(ki11, k10, ko1, koo, T, $11, G105 P01, Y1, Yr, U1, Y, t) = Ted(t),

where red(Branch(z,l,r)) = ¢11(red(l), redCtz(c), red(r))

red(Left(c,1)) = ¢10(red(l), redCtz(c))
red(Right(c,r)) = ¢o1(redCtz(c), red(r))
red(Leaf (t)) = reduce(ki1, k10, ko1, koo, t)
redCtz(Branchy(z,l,r)) = (redCtz (1), 7(x), reduce(k11, k10, ko1, koo, 7)),
redCtx(Branchs(x,1,1)) = 1, (reduce(k11, k10, ko1, koo, 1), 7(x), redCtz (1)),
redCtz(Left(x,1)) = ¢;(redCtx (1), 7(x)),
redCtz(Right(x,r)) = Ye(1(x), redCtz(r))
redCtz(Hole(z)) = 7(x),
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and algebraic conditions are as follows:

o1 (pn (9, 7"),y,r) = o (U, (Y y, ), 77),
(bll((bl()(l y/)7y77“ ¢10 l/7¢l(y/»y77“)),
¢11(¢01(y TI) y,r)= ¢01 ¢l(y/7yvr)vrl)7

d11(l,y, pun (U9, 7")
11l y, dr0(l',y")
p11(L,y, por1(y',7")

l
dro(pr (', y' 1),y
¢10(¢10(/ /)72/

) y

Auxiliary operators ¢11, ¢10, Po1, Y1, ¥r, Y7, and 1 are respectively the interpretations of Branch, Left,
and Right for GSegTree,,, and Branchy, Brancha, Left, and Right for GContext,,.

¢; and ¢ correspond to the COMPRESS operation from the perspective of tree reduction. However,
17 and 1 contain matrix construction, which corresponds to the RAKE operation. We can therefore
consider that 1¢; and v respectively correspond to SHUNT; and SHUNT,, where the RAKE operation is
applied to a missing leaf in the form of matrix construction with no value of recursive calls.

To best our knowledge, the skeleton identical to reduce over GBinTree, has not been presented.
However, we can derive its definition (including its algebraic conditions) straightforwardly from the
notion of segmented trees and that of tree contraction operations.

4.4.2 Specialization to Multilinear Computations

We can specialize reduce over GBinTree, to multilinear computations. Let Vg be the type of vectors
whose components are of type 5 and Mg be the type of matrices whose components are of type £.

First, from the definition (4.1) of multilinear functions, we can determine the types of the primary
operators as follows.

ku:VgXOtXVg—)Vﬁ
klo:VBXaﬁV[g

ko1 : oo x Vg — Vg

koo : oo = V3

Next, as mentioned in Section 4.2, we consider extended payload values of type o x Mg. On the basis
of the meaning of extended payload values, we can define the following auxiliary operators:

$11: Vg x (a x Mg) x Vg — Vg
d11(y1, (2, M), y,) = Mk11(y1, 2, yr),
P10 : Vg x (X M) = Vg

b10(y1, (2, M) = Mkio(yi, ),

o1 : (a0 x Mg) x Vg — Vg
po1((z, M), yr) = Mko1(x,yr).
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The operators above are simple instances of operators for reduce and not specialized instances because
we obtain them through type substitution.

We can specialize the definitions of vy, ., 97, and 1. An important point of specialization is that
we introduce extended payload values only for remaining the payload values of hole nodes. If we store
on its root the payload value of the hole of a one-hole context, we do not have to introduce extended
payload values. In this case, the four auxiliary operators can be simplified as follows:

P Mg x o x Vg — Mg
vi(M,z,y,) = AlM,

ﬁw :)% X a X A4B —*.A45
Ur(yi,x, M) = A M,

Y Mp x a — Mg
V(M x) = AfM,
Yriax Mg — Mg
Yr(z, M) = AzM,

where z, y;, and y, are implicitly used in A;, A,, A, and A.

Then, the auxiliary operator 7 to lift payload values becomes unnecessary because we reduce a one-
hole context in a sequential bottom-up manner. Instead, we lift every hole node to the identity matrix
I. We thus can reduce an one-hole context to a single matrix by using ¥y, ¥, 97, ¥, and the primary
operators. We construct an extended payload value for each hole node by pairing the matrix to which a
one-hole context reduces and the payload value of its hole. After that, we reduce a global tree by using
d11, P10, and ¢g1 successfully.

4.4.3 Library Implementation

We implemented reduce over GSegTree, as a C++ library with MPI?, on the basis of an array-based
implementation [Mat07a] of tree skeletons. Our implementation is a straightforward extension of the
original implementation [Mat07a] for full binary trees to that for general binary trees.

Our library implementation utilizes C++ templates extensively. C++ templates enabled us to im-
plement the specialization to multilinear computations easily. What we did for the specialization was
only to specialize the reduction of one-hole contexts. After including it in the basic implementation, the
instantiation with specialized operator types guides reduce to the specialized implementation.

Our library implementation assumes programming based upon the SPMD (single-program multiple-
data) model with MPI, as in existing data-parallel skeleton libraries [SM14a, EM14]. The functions
config::init and config: :finzalize that our library provides (see Figure 4.2) are indeed the wrappers
of MPI_init and MPI_finalize.

Our library is assumed to be used only from entry functions. Entry functions are desired to select
an appropriate implementation of skeletons from user’s input. Because entry functions, where generated
operators are used implicitly from programmers, take only a binary tree data structure, it is natural that
the implementations of binary tree data structures specify those of skeletons. If we can implement entry
functions as generic functions, the code generation of our parallelizer becomes simple and the generated
programs become convenient in C++. If there is a clear interface between entry functions and tree
skeletons, we can achieve loose coupling between our parallelizer and our library. To achieve these, we
have designed our library to enable calling reduce via tree data structures. As a result, we can implement
an entry function f as follows.

template <class BinTree>
struct vector_type f(const BinTree& t)
{

return BinTree::skeletons::reduce(/* operators omitted =/, t)

3

2http://www.mpi-forum.org/
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Figure 4.7: Execution time of reduce for mis described in Figure 4.1, where seq means reduce over
GBinTree;yn, and par means reduce over GSegTree; .. Time for tree construction is not contained.

On the basis of the genericity of templates, f is generic with respect to the parameter type BinTree.
Given BinTree determines the implementation of reduce.

4.5 Preliminary Experiments on Parallel Execution

We tested the parallel execution based on our underlying skeleton library. We measured the execution
time of the entry function generated from mis described in Figure 4.1.

We used a three-node cluster each of whose nodes was equipped with two AMD Opteron 2376
(2.3 GHz, 4 cores) processors and 8-GB memory (ECC DDR2-667) and connected to the others with
1000BASE-T. Each node was running Linux 3.2.0 (64-bit). We used g++ 4.6.3 with the O3 optimization
for native compilation and OpenMPT 1.4.3.

As an input, we used a randomly generated tree that had 22® nodes. To make it easy to expect
execution time, we made the segment sizes of its segmented version almost the same. The number of the
segments was 48. Figure 4.7 shows the measurements of the execution time of reduce over GBinTree;,
(seq for short) and that of reduce over GSegTree,,, (par for short).

The results conformed with our expectation. par with a single process was a little slower than seq.
We attribute this slowdown to auxiliary operators v, v, 97, and ¢r. These perform matrix-matrix
multiplication, while primary operators ki1, k19, and ko1 perform matrix-vector multiplication. This
means that par has unavoidable overhead. This overhead is proportional to the height of an input
tree and the size of matrices. Although the overhead that we observed experimentally was small and

acceptable, this quantity is not guaranteed in general.

4.6 Benefits of Hiding Tree Skeletons

The main aim of our parallelizer is to hide tree skeletons from programmers. In this section, we describe
the benefits and importance of hiding tree skeletons.
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Table 4.1: Relationship between degree of trees and entanglement of operators for reduce.

‘ Full binary Full k-ary Binary k-ary
No. of primary operators 2 2 4 2k
No. of auxiliary operators 4 k+2 8 (k + 2)2k-1
No. of algebraic conditions 3 k+1 15 (k2F—1 +1)(2F — 1)

4.6.1 Entanglement of Operators for Tree Skeletons

The main reason to hide tree skeletons is that operators for tree skeletons are too complicated for
programmers. The algebraic conditions of reduce, uAcc, and dAcc over SegTree, are actually difficult
as mentioned in Section 4.1. However, the difficulty is more than that. The number of both operators
and algebraic conditions on them, which we call the entanglement of operators, sharply increases in
proportion to the degree of trees. This is a serious problem.

Table 4.1 shows the entanglement of the operators for reduce straightforwardly generalized to k-ary
trees. As seen from Table 4.1 and the definition of reduce over GSegTree,,, the entanglement of operators
in the case of general k-trees is terrible and unrealistic for human use.

As seen from the definitions of reduce, each of most operators correspond to each kind of nodes. To
be as general definitions as possible, higher-order functions have to take distinct operators for all kinds
of nodes. Since any full k-ary tree has only two kinds of nodes, the case of full k-ary trees is relatively
tractable. This situation is not limited to tree skeletons. However, the transformation of a tree into
its segmented version multiplies the number of the kinds of nodes. Moreover, the number of algebraic
conditions corresponds roughly to the number of the possible parent-child pairs of kinds. The number
of the kinds of the nodes of a give tree therefore has a big impact on the entanglement of operators.

If we describe algorithms on trees as recursive functions in a conventional style like Figure 4.1, we do
not confront this problem. Although the code of a recursive function becomes long in proportion to the
degree of given trees, the same calculation for different kinds of nodes can share its code. For example,
mis in Figure 4.1 shares the calculation for the four kinds of nodes, except for defining 1 and r. The
expressiveness of recursive functions thus tames the complication of APIs.

4.6.2 Trade-off between Generality and Simplicity

As seen from Table 4.1, it is adequate for human use that existing tree skeletons were based on full
binary trees [Ski96, GCS94, Mat07b]. If we would like to use more complicated trees than full binary
trees, these are, however, troublesome. In such cases, we have to encode a desired tree into a full binary
tree and implement a desired computation by using skeletons over full binary trees. This is a problem
both on efficiency and usability.

The implementers of tree skeletons cannot determine trees that the users desire because trees are
versatile and flexible. The implementers would design tree skeletons as generally for versatile use as
possible. As a result, the API of tree skeletons becomes too general and complicated. Even though
the implementers could provide a simple and useful API for a specific tree, such ad hoc extensions do
not lead to a well-designed skeleton library. In designing APIs, there is generally a tradeoff between
generality and simplicity. It is therefore difficult to obtain both the generality for versatile use and the
simplicity for easy use.

4.6.3 Abstraction Layer between Specifications and Skeletons

The cause of this tradeoff is that the API of skeletons is the boundary between the abstraction layer
of specifications and that of (the implementation of) skeletons. A conflict of interest between the users
in the layer of specifications and the implementers in the layer of skeletons causes this tradeoff. Our
parallelizer works as an abstraction layer that defuses this conflict.

The abstraction layer by our parallelizer promotes loose coupling between specifications and skeletons.
A high degree of freedom in specifications enables programmers to describe algorithms as recursive
functions in a conventional style of C, which do not impose complicated APIs. A high degree of freedom
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in skeletons enables the adoption of general but complicated skeletons and moreover their specialization
to multilinear computations. In this sense, the abstraction layer by our parallelizer has successfully
granted both the request of the users and that of the implementers.

4.6.4 Implicitly Skeletal Programming on Trees

Skeletons are usually designed as abstractions for human use. Tree skeletons, however, are not appropriate
to human use because of the generality of computations on trees. They are, in fact, appropriate to
high-level background services for parallel computing that are used in the programs generated from
user-friendly specifications. Such an indirect use of tree skeletons is promising.

In contrast to a usual explicit approach where programmers use skeletons directly, we call such
indirect use of skeletons an implicit approach. In an implicit approach, we can also enjoy the benefits
of high-level abstraction derived from skeletons. The compilers of specification languages do no have to
take account of the low-level details of parallel machines and generated programs with skeletons have
high portability with performance guarantee.

In summary, our true aim of this work is to present this implicit approach in programming with tree
skeletons (i.e., implicitly skeletal programming on trees) and our parallelizer is a successful implementa-
tion of the presented approach.

4.7 Related Work

We use the formalization by Matsuzaki et al. [MHTO06] of systematic derivation of auxiliary operators
from primary operators. Although we slightly generalize their formalization for general k-ary trees, this
generalization is immediate. They also developed a prototype implementation of an operator generator
based on their formalization. Although it was able to generate operators for reduce automatically from
a recursive function described in an imperative language, its aim was to demonstrate the feasibility of
their formalization. It was not designed to work as an abstraction for parallel programming.

Automatic derivation of the operators for list skeletons was studied [MHT08, MMM*07, SIlla,
XKHO04]. Our work is most relevant to the work [XKHO04] by Xu et al. Their system guaranteed the
linearity of given recursive functions on lists by using type inference on the basis of given semirings, and
then generated a list homomorphism [Bir87], which is a kind of list skeletons, from typed terms. Their
type inference and type-directed program transformation is equivalent to our matrix extraction.

The automatic parallelization based on quantifier elimination [MM10] can deal theoretically with
recursions on trees. Their prototype implementation, however, dealt only with recursions on lists and
therefore the feasibility of their method for automatic parallelization of recursions on trees is still un-
known. The procedure of quantifier elimination is much more expensive than partial differentiation.
Their method is therefore heavyweight for compiler integration, while our parallelizer has been success-
fully integrated into a C compiler.

The implicit use of skeletons is not rare and can be found in existing work. MapReduce [DGO4|
is the most popular (or de facto standard) data-parallel skeleton for data processing on large-scale
clusters. The MapReduce system was implemented in C+-+ for utilizing user-defined C++ functions.
Although the main benefit of MapReduce originally claimed was simplicity, its usability left much room
for improvement. As a result, Sawzall [PDGQO5|, which was a typed scripting language for querying,
FlumeJava [CRP* 10|, which was a parallel collection library in Java, and Dremel [MGL* 10|, which was
a query language like SQL were developed for hiding use of MapReduce. The generate-test-and-aggregate
(GTA) framework [EFH12]|, which is a kind of skeletons over multisets (i.e., bags), was developed for the
same purpose. Its library implementation [LEH14| used the MapReduce API of Spark [ZCD*12| and
Hadoop?® on the inside. These studies used MapReduce as an infrastructure of data processing.

NESL [BCH*94] is the most remarkable one of parallel languages that exploit parallelism on trees®.
NESL is a typed functional language with no side effect. In NESL, the parallelism of list comprehen-
sion and recursive functions is implicitly exploited and programmers describe algorithms in a sequential

3http://hadoop.apache.org/
41t is called nested data parallelism in the context of NESL.
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manner. In NESL, trees are operated as nested lists with recursive calls. By using flattening [Ble90],
the parallelism in trees is transformed into the parallelism in arrays and finally tree computations is
implemented with vector operations. This flattening incurs the time and space overhead of array rep-
resentations themselves and operations on them. To tame this overhead, several studies dealt with the
avoidance of flattening [KCL*12, BFR*13|. However, this overhead is the result of a weak abstraction
of parallel computations on trees. The construction of and the computations on trees in NESL are re-
spectively implemented as list constructions and list computations repeated in recursive functions. This
means that NESL have to provide a list view of trees and enable arbitrary recursions. Therefore, the
encapsulation of tree data structures is difficult and there is not much room for an efficient implementa-
tion. In contrast, tree skeletons can use an encapsulated implementation of trees and therefore have much
room for an efficient implementation. Entry functions in our approach actually utilize this property.

4.8 Conclusion

We have presented our parallelizer for implicitly skeletal programming on trees. Our parallelizer builds
on the existing formalization [MHTO06] and enables programmers to enjoy the benefits of tree skeletons
with no burden derived from their complication,

The current implementation deals only with reduce over binary trees. Further development is left
for future work. An extension to the computations of uAcc and dAcc is straightforward. However,
automatic parallelization of recursive functions that consist of a mixture of reduce, uAcc, and dAcc will
be nontrivial. On the basis of the diffusion theorem [HTI99|, we can parallelize such computations in
theory. Its automation with reasonable program analysis to recursive functions is, however, unexplored.
The computations over trees of unbounded degree are also an issue. The tree contraction algorithm and
operations [MM11a] to trees of unbounded degree will be helpful.

The current implementation uses the only implementation of a tree skeleton. An implementation
specialized to a specific composition of tree skeletons is, however, more efficient. In such cases, dispatch
to an appropriate implementation of a composition of tree skeletons is desired. It is promising that
underlying skeleton libraries in C++ implement this dispatch because C++ template metaprogramming
enables such optimizations [ME10, EM14] at the library level. This approach will promote the separation
of concerns between parallelizers and underlying skeleton libraries.

Recent work [Morll, Mor12| by Morihata applied tree contraction algorithms successfully to at-
tributed tree transducers and macro tree transducers, which are restricted recursive functions that
transform given trees. These results theoretically demonstrate the possibility of parallelizing recursive
functions to tree skeletons for tree transformations. Their practical usability is, however, still unknown
and automatic parallelization based on these results is left for future work.






Chapter 5

Limitations of Tree Skeletons

In Chapters 3 and 4, we have improved the usability of tree skeletons both for skeleton implementers
and skeleton users. However, tree skeletons are still not practically useful. Applications of tree skeletons
are actually very limited. For example, the maximum marking problems [MHTO08| on trees can be solved
by using tree skeletons. Although maximum marking problems themselves can cover a class of valuable
optimization problems, their settings to which we can apply tree skeletons easily are rather artificial.
This is because we adopt an unreasonable approach to tree-based computations.

Trees in programming are more than trees. Trees in programming are abstract representations of
some data. The interpretation of trees is closely relevant to this underlying data. In the case of join lists,
the underlying data is lists to which the concatenation operation is constant-time. Typically, binary
search trees are closely relevant to the underlying data. Their tree structures represent sorted sets. We
can balance binary search trees by definition. When querying a binary search tree, we indeed traverse it
but essentially calculate the magnitude relation between a key and a subset that its subtree represents.

The interpretation of BinTree, is nothing more than an algebra over full binary trees. The interpre-
tation of SegTree, incorporates tree contraction operations but is also nothing more than an algebra over
segmented trees. To use tree skeletons, we have to define these interpretations as algebra independent
of the underlying data of trees. Intuitively, this is to implement, for example, the operations on binary
search trees only with recursion on their structures without any comparison of their payload values.
Such tree manipulations are obviously counter-intuitive and indubitably inefficient. Therefore, use of
tree skeletons is unreasonable in programming for tree-based computations.

The consideration of underlying data can simplify the implementation of load balancing. For ex-
ample, consider XML processing, which was considered as a typical application of tree skeletons [Ski97,
NEM™07]. In using tree skeletons, DOM trees of unbounded degree are transformed into full binary trees.
As a result, an input tree may be a list-like tree and be suited to load balancing based on segmented
trees. However, the height of actual XML documents is small; e.g., XML documents of hundreds of
height are unrealistic. List-like DOM trees are not worth considering. In fact, for the MapReduce-based
implementation [EI12] of reduce over XML-like bracketed structures, load balancing to tame list-like trees
was unnecessary as well as inefficient. Moreover, large-scale XML documents that constitute database
usually have lists of the same kind of elements. It would be sufficient to parallelize computations on such
lists simply as in list skeletons. The interpretation of substructures of data is thus of high importance
for load balancing and practical implementations.

Tree skeletons deal solidly with programming on trees, where only the structure of trees matters.
However, programming with trees, where trees are utilized for dealing with their underlying data, is
truly desired. In the following chapters, we therefore deal with parallel programming with trees in a
divide-and-conquer manner by considering the interpretation of trees and the underlying data primarily.
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Chapter 6

Syntax-Directed Computation and
Program Analysis

6.1 Motivation for Program Analysis

A syntax-directed computation is to calculate results from trees on the basis of the production rules
of their grammars. Attribute grammars (AGs) [Knu68] are one of the most famous styles of syntax-
directed computations. In fact, data-parallel skeletons is also a style of syntax-directed computations.
For example, we first define the grammar (i.e., syntax) of join lists to formalize lists in the divide-and-
conquer paradigm and then define reduce for each production rule on the basis of the interpretation
of its production. That is, programming with data-parallel skeletons is a syntax-directed manner of
programming, i.e., syntaz-directed programming.

As mentioned in Chapter 5, it is important to consider the interpretation and underlying data of trees.
The most typical target of syntax-directed computations is a computer program, where a syntax defines
the abstract syntax tree (AST) of an input program. In fact, compiler frontends perform syntax-directed
computations on ASTs and their implementation is the primary application of AGs [Wai90, WBGK10,
WdAMBKO02, WKSB07, EHO7]. We therefore focus on ASTs in the domain of programming languages.

Recall that data-parallel skeletons (especially, reduce) give an input tree an interpretation. In pro-
gramming languages, to give a program an interpretation is generally called program analysis. For
example, the work of compiler frontends, which are often defined by using AGs, is called semantic anal-
ysis. AST-based program analysis is very similar to data-parallel skeletons. We therefore consider that
dealing with AST-based program analysis leads to structured parallel programming with trees.

In this part, we deal with AST-based program analysis as case studies on parallel programming
with trees. We do not consider any dynamic analysis for two reasons. The first is that we usually
perform it incrementally. The second is that it usually focuses on the executed part and ignores the
non-executed part. These characteristics make the amount of work difficult to estimate. Such problems
are inappropriate to parallel programming. Meanwhile, static analysis is usually exhaustive and deals
with the whole program. Consequently, it tends to be expensive and thereby was accelerated through
parallelization in many studies [NG13, MLBP12, AKNR12, PRMH11, RL11, MLMP10]. Static analysis
is appropriate to the case studies on parallel programming. We therefore deal with static analysis.

6.2 High-Level Program Analysis

Program analyses after semantic analysis usually perform on control-flow graphs (CFGs) because they
are independent of input languages. CFGs represent control flow directly and do not represent high-level
control structures, which ASTs represent by definition. In this sense, AST-based analysis is higher-level
than CFG-based analysis.

The analysis of high-level representations close to source languages is generally more precise and more
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inexpensive than that of low-level ones close to target languages. Nevertheless, CFG-based approaches
to program analysis are more popular than AST-based ones in optimizing compilers. This is because
CFGs-based approaches deal with arbitrary control flow by definition. If source languages do not cause
arbitrary control flow, compiler optimizations could destroy control structures and then lead to arbitrary
control flow. In this sense, CFG-based approaches are easier to apply. This is why CFG-based approaches
are more popular.

ASTs are more intuitive and easier to understand than CFGs. As demonstrated in the literature on
AG-based compiler constructions [Wai90, WBGK10, WAMBK02, WKSB07, EHOT7]|, high-level approaches
based on ASTs are useful for compiler constructions. Moreover, in editors integrated with compiler
frontends such as Eclipse!, AST-based approaches are quite natural. High-level program analysis based
on ASTs is extensively desired. It is therefore worth migrating from de facto standard CFG-based
implementation to AST-based implementation.

A main obstacle to migrating from CFGs to ASTs is the control flow that does not form a control
structure, which compilers could introduce in the process of compilation. We can introduce such control
flow into ASTs by using goto/label statements. It is, however, difficult to interpret the control flow derived
from goto/label statements in a syntax-directed manner because it ignores the structures of ASTs. If we
can deal with goto/label statements in a syntax-directed manner, we can replace CFG-based analysis
with AST-based analysis. Consequently, we can enjoy the benefits from high-level program analysis as
well as high-level compiler constructions. The primary technical issue in Chapters 7 and 8 is therefore
how to tame with goto/label statements.

From the perspective of syntax-directed programming, how to tame goto/label statements corre-
sponds to how to deal with irregular computations involved in computations with trees. To deal with
such irregular part in a structured manner is a technical issue in structured parallel programming with
trees. We therefore consider that to tame goto/label statements is very appropriate to a case study on
parallel programming with trees.

Ihttps://eclipse.org/



Chapter 7

Syntax-Directed Divide-and-Conquer
Data-Flow Analysis

This chapter is self-contained and an extended version of our publication [SM14b].

7.1 Introduction

Data-flow analysis (DFA) is a classic and fundamental formalization in programming languages and
particularly forms the foundation of compiler optimization. Many optimizations consist of a pair of
analysis and transformation, and DFA often formulates the analysis part of an optimization and occupies
the computational kernel of its optimization pass.

Nowadays, an input to DFA can be very large. For example, state-of-the-art optimizing compilers
such as GCC and LLVM are equipped with link-time optimization (LTO), which is to reserve intermediate
representations beside executables at compile time and then optimize the whole program at link time by
using all reserved intermediate representations of linked executables. An input program of LTO is larger
than the one of usual separate compilations. Furthermore, LTO promotes aggressive procedure inlining,
which can incur an exponential blow up of input programs. In DFA for LTO, it is therefore desired that
large-scale input programs can be dealt with effectively.

One promising approach to dealing with large-scale inputs is parallelization. Since parallel machines
are widespread, well-parallelized DFA will benefit many users of LTO. A primary concern is the generation
and assignment of parallel tasks. Concretely, load balancing with little overhead is important. Although
load balancing is necessary to reduce parallel time, the load balancing itself could incur considerable
overhead in processing large-scale inputs. For parallel DFA of large-scale input programs, the divide and
conquer directly on input data structures without preprocessing is very much desired because this will
result in the immediate generation of parallel finer-grained tasks in recursion.

A naive approach to the divide and conquer of DFA is procedure-level decomposition. In interpro-
cedural as well as intraprocedural analysis, the analysis of each procedure is computationally almost
independent of that of the others and therefore can be performed in parallel. This procedure-wise paral-
lelization, however, can incur a poor load balancing in LTO with aggressive inlining. Aggressive inlining
expands the main procedures sharply by substituting and eliminating many other procedures; conse-
quently, it reduces the number of procedures and causes a size imbalance among procedures. To obtain
better load balancing, the divide and conquer over a procedure is necessary.

DFA usually deals with a procedure in the form of a control-flow graph (CFG). Although there
were some earlier studies on parallel DFA that developed divide-and-conquer methods on CFGs, these
methods required an auxiliary tree structure [LRF95] or duplication of CFGs [KGS94| and therefore incur
significant overhead. These drawbacks stem from the nature of CFGs. The loops and sharing of paths
in CFGs make the divide and conquer of DFA difficult because they impose unstructured dependence
on parts of the DFA. To resolve this dependence, some preprocessing is generally required. Therefore,
DFA on CFGs is essentially difficult to divide and conquer.
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In contrast to CFGs, abstract syntax trees (ASTs) are easy to divide and conquer owing to their
recursive structures. If we can perform DFA on ASTs, the divide and conquer of DFA will be straight-
forward in a recursion on ASTs (i.e., a syntax-directed manner) and enable us to perform each DFA
of independent AST subtrees in parallel. Rosen [Ros77| developed high-level data-flow analysis, a well-
formed method of DFA on ASTs, but his method cannot deal with goto/label. Since goto/label causes
control flow unrestricted to the structures of ASTs, it introduces into ASTs unstructured dependence
similar to that of CFGs. Taming goto/label is therefore essential for general DFA.

To resolve this problem, we have developed a novel parallel syntax-directed method of general DFA
that tames goto/label. The proposed method is built upon Tarjan’s algebraic formalization [Tar81la| of
DFA. First, our method summarizes the syntax-directed data flow in a bottom-up parallel sweep of a given
AST, while detaching the goto-derived data flow and constructing a compact system of linear equations
that represent it. Next, we obtain the summary of the goto-derived data flow by solving the system.
Lastly, we merge the syntax-directed data flow with the goto-derived flow. Our method is particularly
useful for programs containing few goto/label statements because the divide and conquer over a given
AST is applied to the most part of DFA. We can assume such an input thanks to the popularity of
structured programming. Furthermore, our method guarantees asymptotically linear speedup.

The following are our two major contributions:

e We have developed a novel syntax-directed divide-and-conquer parallel method of DFA based on
Tarjan’s formalization [Tar81la] (Section 7.3). The essence of our method is to detach the goto-
derived data flow and calculate it afterward. Our method guarantees asymptotically linear speedup.

e We have also developed a practical technique to enhance our DFA method on the basis of the
notion of interval analysis [AC76, Tar81b| (Section 7.4). Our technique will reduce the constant
factors of our method for usual input programs.

e We have demonstrated the feasibility of our method experimentally through prototype implementa-
tions on a C compiler (Section 7.5). Our parallel prototype achieved a significant speedup and our
sequential prototype achieved reasonable performance compared to the standard implementation.

7.2 Formalization of Data-Flow Analysis

DFA is to aggregate data-flow values over a given program [Kil73]. The domain of data-flow values is
a join-semilattice L whose join operator is L. Each program point has a transfer function over L. The
result of DFA is defined as a join-over-all-paths (JOP) solution, namely, a sum of the data-flow values
of all executable paths from the entry to the exit (or a target point) in a given program.

The proposed method is based upon Tarjan’s formalization over a closed semiring [Tar8la]. This
first formalizes an input program as the set of all executable paths represented by a regular path, which
is a regular expression whose alphabet is the set of all program points II. Then, DFA is defined as a
homomorphism hp from a closed semiring (R, |, -, &, €) to another closed semiring (F,®,®,0,1). The
former is for regular paths: R is a set of regular paths, addition is the alternation |, and multiplication is
the concatenation -. The latter is for transfer functions: F' is the set of transfer functions, the addition
f1® f2 = Mx.fi(z) U fo(x), the multiplication! f1 ® fo = foo0 f1, 0 is the zero element, f®0 =0® f = f
and f®0 = 0® f = 0, and 1 is the multiplicative identity, f®1 = 1® f = f. Note that from the definition
of a closed semiring, Kleene star fx is defined as fx = C"B;D:o fi, where fO =Tand f' = f'® f. Giving
(F,®,®,0,1) and a lift function 7 : II — F, we can characterize the homomorphism of DFA as

hr(e) =1,
hg(m) =71(m), if well,
hr(ri-r2) = hr(ri) ® he(r2),
hr(ri | r2) = hr(r) @ hr(r2),
hg(r+) = hp(r) =

1Here, we consider forward DFA. For backward DFA, f1 ® f2 = f1 o fo.
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In this paper, we assume that ¢ is not an input of any DFA. Therefore, 0 can be left undefined and
regarded as a special value that behaves as the zero element.

Example of DFA To give readers to a clearer understanding of Tarjan’s formalization, here we describe
the DFA of reaching definitions. A definition is a pair consisting of an LHS variable and an RHS
expression. In this DFA, the domain of data-flow values is a set of definitions, i.e., a binary relation from
variables to expressions. The join operation is the set union. The transfer function of an assignment
statement v < e generates a definition v — e and kills all other definitions of v that can reach the
assignment. Meanwhile, a simple expression e without assignment has no effect on data flow. That is, 7
is defined as

Tv—e)=AX. {v—>ee X |v#v}u{vm e}
7(e) = AX. X.

To define a closed semiring, a general form of transfer functions is necessary. Letting V be a set of
variables and D be a set of definitions, we can define it as

fV,D)=XX.{v—eeX |vé¢V}uD.
By using this f, we can define 7 and a closed semiring (F,®,®,0,1) as

T(ve—e) = f({v}, {v —e}),

7(e) = f(T, D),
1= f(2,9),
f(V1,D1) ® f(Va, Da) = f(Vi 0 Vo, Dy U Dy),
JVi, D) ® f(Va, D2) = f(Vi U Vo, {v—>e€ Dy [vg Va} v Dy),

f(V.D)x = 1@ f(V, D).

As seen in the hp above, Tarjan’s approach calculates a summary?, namely a transfer function for a
program fragment, rather than data-flow values. By applying the summary from an entry to an exit to
a given initial data-flow value, we obtain its JOP solution. This formalization can deal with monotone
DFA. Refer to [Tar81a, MR90| for a detailed discussion.

For optimizations, compilers often use JOP solutions from an entry to every point, i.e., all-points
JOP solutions. Although the homomorphism above does not calculate the summaries for all-points JOP
solutions, it is easy to calculate them. We can obtain a set of summaries from an entry to all points
by accumulating summaries over a regular path, similarly to calculating a prefix sum. We call this an
all-points summary. By applying each element of an all-points summary to an initial value, we obtain
all-points JOP solutions.

In Tarjan’s formalization, the primary concern on algorithms is how to construct the regular path
of an input program. Tarjan [Tar81b] developed a sophisticated algorithm for extracting a regular path
from a CFG. However, if an input program is goto-free, namely, in the while language (Fig. 7.1), we can
immediately obtain its regular path representation. This is trivial but notable. Thus, DFA for the while
language is performed in a syntax-directed manner as follows:

h(pass) =1,
h(ve—e)=T1(vee),
h(s1 s2) = h(s1) ® h(s2),

h(if (e) {s1} else {s2}) = 7(e) @ (h(s1) ® h(s2)),

h(while (e) {s}) = 7(e) ® (h(s) ®7(e)) *.

Here, h calculates the summary of a given program fragment. Throughout this paper, we identify a
program fragment given to 7 with its program point; thus, 7 takes a program fragment and yields a
transfer function.

2A procedure summary, which is the transfer function of the whole of a procedure, is used extensively for interprocedural
analysis [SP81].
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P = s (Program)

s = pass|v—e]| sy sy |if (e) {s1} else {s2} | while (e) {s} (Statement)

Figure 7.1: Syntax of the while language. v and e are respectively the metavariables over variables and
expressions; pass denotes an empty statement.

Example We explain the syntax-directed DFA based on Tarjan’s formalization by using the following
example program:

x<—aif (r <0) {x—0}
else {while (z < 10) {z —x + a}}.

By applying h, we calculate the summary of the above program as

T(re—a)®7(r <0)® (1(x < 0)
@ (1(x <10) ® (1(x —z + a) ® T(x < 10))*)).

By using the closed semiring of reaching definitions, we can reduce it to
fa}l,{x— 0, x— x + a}).
Because the initial data-flow value of reaching definitions is ¢J, the JOP solution at the exit is
{ -0, z— x+a}.

We can also construct all-points summaries in a syntax-directed manner. An example of such construction
is described in Section 7.3.3.

7.3 Syntax-Directed Parallel DFA Algorithm

For goto-free programs, the divide and conquer of DFA is immediate from a syntax-directed computation,
and its parallelization is therefore straightforward. Syntax-directed jumps (i.e., jumps to ancestors on
ASTS) such as break/continue can be dealt with by using Rosen’s method [Ros77] in a syntax-directed
manner. Non-syntax-directed (i.e., nonstructural) jumps caused by goto/label, however, require a special
attention. In the following, our target language is the while language with goto/label. Letting I be a
metavariable over labels, we introduce a goto statement goto [ and a label statement [:.

The main idea of the proposed method is to discriminate between syntax-directed (i.e., structural)
data flow and goto-derived (i.e., nonstructural) data flow. Our method consists of two phases: first, it
constructs a summary of structural data flow while detaching nonstructural data flow from an input AST
in a syntax-directed manner, and second, it calculates only nonstructural data flow from the obtained
summary. After that, we obtain JOP solutions.

In terms of parallelization, the first phase is straightforward from a syntax-directed computation.
This is the main benefit of our method. We do not have to parallelize the second phase. The size of a
summary obtained in the first phase is quadratic to the number of labels. Because of the popularity of
structured programming, we can suppose that labels are few; that is, we assume nonstructural flow to be
an exceptional irregularity in an input. The second phase would be cheap and not worth parallelizing. In
the rest of this section, we describe the algorithms of both phases and the extension to interprocedural
analysis.

7.3.1 Syntax-Directed Construction of Summaries

It is nontrivial to represent a program that contains goto/label by a single regular path. For example,
consider the following program:

while (2 < 10,) {l: z <2 + 1,} if (z > 20,) {goto [} else {pass },
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Figure 7.2: Regular paths in a program containing labels I; and l5. 7 is the regular path from the entry
to the exit, rg; is the regular path from I;: to the exit, ;9 is the regular path from the entry to goto [,
and r;; is the regular path from [;: to goto [;.

where a suffix to an underlined part denotes its program point. We cannot construct a Kleene closure
only from the while statement above unlike the goto-free case because regular paths containing jumps to
l: are unknown. We, however, can decompose by interpreting I: as another entry and goto [ as another
exit, the above program into four goto-free regular paths: 1-(2-1)%-3-4 (from the entry to the exit),
1-(2-1)%-3 (from the entry to goto 1), 2-1-(2-1)*-3-4 (from I: to the exit), and 2-1-(2-1)=-3
(from I: to goto l). These are immediately obtained from the AST. In the case of two labels I3 and
l2, we can generally consider nine regular paths as illustrated in Fig. 7.2, where all goto-derived jumps
to l; are encapsulated in the box labeled by I;. This decomposition enables us to postpone interpreting
goto-derived flow. This is the key idea of our method.

On the basis of this idea, we define a structured summary by a set of transfer functions. Let {l1,...,l;}
be the set of labels and a;; = hr(ri;), where r;; is the goto-free regular path from [;: (or the entry, if
j = 0) to goto I; (or the exit, if ¢« = 0); then, a structured summary is the following system of linear
equations:

out = ago ® (i ®ao1) ®--- ® (I ® aok),
Lh=a0®(L®an)® - @ (lk ®ax),

lk=a,0® (1L ®ar1) D @ (I ® akr),

where out denotes the data flow that goes out from the exit and I; denotes nonstructural data flow via
the label I;; specifically, I; denotes an outflow in the LHS and an inflow in the RHS. In the rest of this
paper, we omit any equation whose RHS is 0. We can represent the system above by a coefficient matrix,

Iy agp -+ Aok

out \"
( )—() AT wherex = | : |, A=
T x :

Ik aRo +c Qkk

The matrix multiplication here is defined by using @ and ® respectively as the scalar addition and the
scalar multiplication. Unless otherwise noted, matrix operations are generalized over a semiring. For a
structured summary, we intentionally confuse the system of linear equations with its coefficient matrix
A.

We define each of the addition, multiplication, and Kleene star over structured summaries as a matrix
operation.

The addition is used to merge two independent summaries, such as those of two branches of a
conditional statement. It is easy to see that the conventional matrix addition suffices for this purpose;
consider the edge-wise union on Fig. 7.2. In the rest of this paper, we overload @ for the matrix addition.

The multiplication is used to connect the summaries of two consecutive statements. This necessitates
a little consideration. For example, consider the concatenation of two copies of the regular paths in
Fig. 7.2, as illustrated in the left side of Fig. 7.3. Although two boxes labeled by I; exist there, both
encapsulate the same kind of control flow. We can therefore contract regular paths by merging both
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Figure 7.3: Concatenation of two copies of the regular paths in Fig. 7.2, where the left side is the
connected view and the right side is the contracted view.

boxes, as illustrated in the right side of Fig. 7.3. This contraction of regular paths leads to the following
definition of the multiplication ®:

ago ® boo (i=37=0),
ot ey = (ao; ® boo) @ by, (i=0nAj+#0),

(ago ® bio) @ aio (i#0Aj=0),

(a0j ®@bio) Daj; ®bi; (i #0 A7 #0).

Note that @ is associative and its identity is {out = 1}.
By using the addition @ and the multiplication ®, we can define the Kleene star in the standard way.
However, owing to the idempotence of @, we can provide the following equivalent but simpler definition:

(aij)osz‘,jgk* = (agj)ogi,jsk

apo* (i=7=0),
st oa — ap; ® ago* (i=0nAj7+#0),
Y apo* & a;o (i#0nj=0),
(aoj @ ago* ® a;0) Da;; (i #0 A j#0).

Now we are ready to define h¢, which calculates a structured summary from a given AST.

where s denotes a metavariable over statements containing no goto/label statement and s’ denotes one
over statements containing any goto/label statement.
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Example We here consider, as an example input, the following program:

if (i > n) {l1: z < 1} else {while (i <n) {i —2} lo: x —i}
if (x = n) {i —x} else {goto I, }.

By applying h¢, we calculate a structured summary of the above program as

A1 O ({out =1@ L} O A2) @ (A3 O {out = 1@ 12} © Ay)) © A5 © (As @ {l1 = 1}),

where Ay = {out = 7(i > n)},
As = {out = 7(x < 1)},
Az ={out =7(1 <n)® (7(1 < 2) @ 7(i < n))*},
Ay = {out = 7(x —1i)},
As = {out = 7(xz = n)},
Ag = {out = 7(i —x)}

By reducing matrix operations, we obtain

{out = a1 ® (L ®a5) ® (o ®a3), lh = a} ® (b ®aj), }
where a] = a1 ® (a2 ® (a3 ® a4)) ® a5 @ ag,

ay = az ® as ® ag,

ay = as ® as,

ay = a1 ® (a2 ® (a3 ®ayq)) Qas, a5 = az R as
7(i > n),

ag = 1(x 1),
)@ (T(i2)@7(i <n))x,
) x

asg =T1(i<n
=7( =n), ag = 7(i < x).

ay x—1i), a5 =7(
This result exemplifies the notion of a structured summary: a} denotes the data flow from the entry to
the exit, af denotes that from the I/;: to the exit, af denotes that from ls: to the exit, a} denotes that
from the entry to the goto l1, and aj denotes that from /1: to the goto I;. None of these take any
nonstructural data flow into account, but the whole system contains the nonstructural data flow of the
program. For example, Iy = a) ® (I; ® af) denotes that the nonstructural data flow via l; is a) ® af=.
We can therefore calculate the nonstructural data flow from this structured summary. Finally, we obtain
the value of out.

Parallel Complexity We can parallelize he immediately in a divide-and-conquer manner because h¢
can fork for each child at any internal node of an input AST. For the parallel time complexity of h¢, the
associativity of ® is important. We can flatten the nesting of statement sequencing, i.e., convert a nesting
((s1 s2) s3) into a sequence (s1 s2 S3), because it guarantees both results to be equivalent. Moreover, it
enables us to perform parallel reduction for a sequence of statements. The number of parallel recursive
steps of he therefore is bounded by the maximum if/while nesting d in an input AST. Let k be the
number of labels, N be the number of the nodes in an input AST, P be the number of processors, and b
be the maximum length of a sequence of statements. The parallel time complexity of h¢ is the following:

O(k*(N /P + dlgmin(b, P))),

where we assume closed-semiring operations to be constant-time. This lg min(b, P) factor is derived from
the parallel reduction of a sequence of statements and is practically negligible. The k2 factor represents
the cost of matrix operations. Note that for an AST containing no label statement, this factor will be
k, and for one containing no goto/label statement, it will be a constant. If N/P > dlgmin(b, P), hc
guarantees asymptotically linear speedup.
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7.3.2 Calculating Join-Over-All-Paths Solutions

To obtain a JOP solution, we have to solve the nonstructural data flow whose calculation has been
postponed, i.e., to determine the value of x in a structured summary. As seen in Fig. 7.2, a structured
summary can be regarded as a collapsed CFG. We can therefore apply existing methods on CFGs to
solve that. The simplest one is Gaussian elimination [RP86]. Although it is cubic-time, it is sufficient
to solve the nonstructural data flow. Assuming closed-semiring operations to be constant-time, it costs
only O(k?) because of the size of a structured summary as a CFG. This cost is asymptotically negligible
compared to the parallel cost of h¢ if N/P+dlgmin(b, P) > k. Therefore, the part to solve nonstructural
data flow is not worth sophisticating and/or parallelizing.

Once the value of  in a structured summary is obtained, we can determine the value of out in O(k)
time. By applying a initial value to out, we obtain the JOP solution of a given program. It is usually
constant-time.

7.3.3 Construction of All-Points Summaries

We can compute all-points JOP solutions from an all-points summary in embarrassingly parallel because
each application of its elements to an initial value is independent. We can construct all-points summaries
by using tree accumulation.

The tree accumulation to construct an all-points summary consists of two phases. The first is the
same as h¢ except for leaving intermediate results at each node in a given AST. The second is a top-down
sweep of the AST decorated with intermediate results. In this top-down sweep, we perform the parallel
prefix-sum operation with © on every sequence of statements and update summaries that decorate each
node of the AST. The resultant AST decorated with structured summaries is an all-point summary.
Note that ® used in the second phase has only to calculate the uppermost row vector and the leftmost
column vector in a resultant matrix because only the equation of out in every element of an all-points
summary is used for yielding all-points JOP solutions. The second phase is cheaper than the first one.
Therefore, the time complexity of constructing an all-points summary is the same as that of h¢.

Example The above algorithm for constructing all-points summaries is, in fact, applicable to both h
and hc. The difference between them is only on primitive operations: scalar ones (e.g., ®) used for h
and matrix ones (e.g., @) used for he. For simplicity, we describe here the construction of an all-points
summary regarding h. We consider the following goto-free program:

if (61) {51 S92 53} else {Whlle (62) {54 85} 86}.

We reserve part of the above program as metavariables to concentrate a recursive step. After the first
phase of bottom-up tree accumulation, we obtain

if (f1) {f2 f3 fa} else {fs f},
where f1 = h(el), fg = h(Sl), f3 = h($2)7 f4 = h(83),
f5 = h(eg), fﬁ = h(while (62) {84 55}), f7 = h(S@).

Tree accumulation also brings us the summaries of all next-level statements; e.g., we have already had

while (f{) {f5 f5}.
where f{ = hles), f5 = h(ss), f} = h(ss).

In the second phase, we calculate a top-down prefix sum at each nesting level. The following is the result
for the outermost if statement:

if (f){(i®f) (1i® @) ([1®f2®f3& fi)}
else {(f1® fo) (/1 ® f6 ® f7)}.
We then recurse on next-level statements: s1, so, s3, while (e3) {s4 s5}, and sg. Since we have already

had all these summaries in the first phase, we are ready to recurse on them. After recursions on statements
at all levels, the resultant AST becomes an all-points summary.
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7.3.4 Interprocedural Analysis

Tarjan’s formalization deals essentially with intraprocedural DFA. However, it can be extended to cal-
culate procedure summaries and is therefore useful even for interprocedural DFA. In fact, our method
can deal effectively with context-insensitive interprocedural DFA.

We now consider a program P to be a set of top-level procedures. Let p be a metavariable over
procedure names. The syntax of a procedure with a body statement s is p(){s}. The procedure call p()
and return are introduced to s. For simplicity, we assume that none of the procedures take arguments
or return values. Argument passing and value returning may be implemented by using global variables.
For convenience, p. refers to the current procedure at a point.

Since the information of call sites is neglected in context-insensitive DFA, we can interpret call /return
simply as goto/label. We extend h¢ as follows:

he(P) = @ he(pO{s}),

peP

he(p({s}) = {} © he(pean: s goto pret) O {},
hC (p()) = hC (gOtO Pecall prct:);
he(return) = he(goto pret), where p = pe.

Note that the null system {} denotes no control flow. The same call-site label p,o; may be attached
to many program points. In such cases, we interpret goto as a nondeterministic jump to one of the
corresponding label statements, where we require no change in h¢. The rest of the DFA process, including
the constructions of all-points summaries, is the same as the intraprocedural case.

In contrast, our method is less effective for context-sensitive interprocedural DFA because context
sensitivity prevents us from factoring out the data flow of calls as a compact linear system. When using
our method, the first choice to obtain context sensitivity is procedure inlining. Intraprocedural DFA
with inlining is generally more precise than context-sensitive DFA. Furthermore, we usually require code
replication similar to inlining for generating context-sensitively optimized code, and in this sense, inlining
is essential for utilizing context sensitivity in compiler optimization. Although the drawback of inlining is
the expansion of procedure sizes, it is tractable in our method by using divide-and-conquer parallelization.
Our method is synergistic with inlining, and aggressive inlining followed by context-insensitive DFA is
therefore both appropriate and sufficient.

7.4 Elimination of Labels

Our method assumes that a source program does not contain a lot of labels because structured program-
ming has been already widespread. This assumption is crucial for our method in the time and space
complexities. Unfortunately, aggressive inlining at a high optimization level multiplies the occurrences
of goto/label. In this section, we describe techniques to eliminate labels.

The goto/label statements introduced in inlining has a locality in an AST since their jumps is origi-
nally closed in a procedure. We can eliminate the equations of nonstructural data flow via closed labels
in a structured summary in collapsing, i.e., in an on-the-fly manner.

A label [ is closed in a structured summary A iff the fragment that A summarizes contains [: and
all occurrences of goto [. An equation of nonstructural data flow via a closed label in a structured
summary is eliminable. On-the-fly elimination is to apply an elimination method to an eliminable part
of a structured summary in collapsing. To eliminate a part of a system of data-flow equations is very
common in elimination methods [RP86]. On-the-fly elimination is only its instance.

We can check the closedness of labels in a simple way: reference counting. We first count the
occurrences of each label on a syntactic summary and store the maximum count of each label. Then, in
collapsing, we count the occurrences of each label while computing summaries. If the current count of a
label reaches its stored maximum, we can apply on-the-fly elimination to it. This reference counting is
lightweight and incurs only negligible overhead. As a side effect of this reference counting, it enables us
to neglect the labels to which no goto statement jumps.
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Another elegant way to check the closedness of labels is to introduce block scope into labels. If a
label go out of scope, we can eliminate it. This approach is simple but very effective for labels that
aggressive inlining multiplies. It is also effective for labels that compiler frontends often generate such as
in the translation of control constructs such as break/continue and logical operators with short-circuit
evaluation.

7.5 Experiments

We conducted experiments to demonstrate the feasibility and scalability of our algorithm. Note that our
aim is not to evaluate our analyzer implementation.

7.5.1 Prototype Implementations

We implemented our method for the DFA of reaching definitions, which is the most standard and
lightweight example of DFA. Because a lightweight computation to a large-scale input is sensitive to
the overhead of load balancing, the DFA of reaching definitions is appropriate for demonstrating the
scalability of our method. For simplicity, we did not implement on-the-fly elimination. Our implementa-
tions built upon COINS?, a C compiler in Java. We implemented h¢ as a simple visitor on an AST. We
used a dense matrix for Gaussian elimination to solve nonstructural data flow. We made extensive use
of java.util.HashMap for the implementation of the closed semiring of reaching definitions. We call our
sequential prototype seq and the parallel one par. This parallelization was very simple; we simply used
Java 7 Fork/Join framework for the visitor of he. We forked a visitor for each compound statement in
a sequence of statements while summarizing segments of atom statements. At the end of a sequence of
statements, we waited for all forked visitors one by one and then calculated the summary of the sequence.

As the reference implementation of DFA, we implemented wordwise analysis [KD94|, which is an
efficient iterative method for solving the most common DFA, a.k.a. the bit-vector framework. We call
this implementation bvf. Since this method uses a wordwise worklist, we implemented a sparse wordwise
bit-vector. We used a LIFO queue as the worklist. We constructed a CFG of basic blocks, and then
numbered definitions on the AST through the CFG. After that, we initialized gen/kill sets of each node
and performed the iterative method.

Note that bvf by definition calculated all-points JOP solutions, while our prototypes seq and par
calculated a procedure summary. The comparison of their absolute performance is therefore unfair. Be-
cause this difference on results stems from the difference on style between our method and the iterative
method, a truly fair comparison is difficult. However, since the asymptotic time complexity of construct-
ing an all-points summary is the same as he (see Section 7.3.3), in terms of asymptotic performance, seq
and par are comparable to bvf.

7.5.2 Experimental Setup

We generated a large-scale input program normalized in the while language with goto/label statements
by using a biased random generation. We set the maximum depth to about 128, the length of block
statements to a random number between 1 and 8. An about half of if statements had empty else
branches. Each goto statement was guarded by a simple if statement to avoid dead code. An about half
of assignments defined new variables. The generated AST had about 1,000,000 statements where the
number of goto and label statements were 96 and 20. We used this unrealistically large-scale program
for a benchmark to observe asymptotic behaviors of our method. We call it rand.

To obtain a realistic large program, we used procedure inlining of recursive programs. As an example
recursive program, we selected the Lua 5.2.3 parser*, which is known to be written in clean C. After
normalization, we applied inlining iteratively to the entry function. We stopped the recursion of inlining
at the seventh level. The resultant entry function consisted of about 12,000 statements, where 51 pairs
of goto/label statements existed. We call it inl.

Shttp://coins-compiler.sourceforge. jp/
4http://www.lua.org/ftp/lua-5.2.3.tar.gz
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Figure 7.4: Relative speedup of par given rand.

Table 7.1: Breakdown of execution time of seq. “Elim” means Gaussian elimination on a structured
summary.

Phase ‘ he Elim  Total
. rand 810 1 811
Time (ms) - 13 1 14

We used a server equipped with four Opteron 6380 (16 cores, 2.50 GHz) processors and 128 GB of
DDR3-1600 memory running OpenJDK (64-bit Server VM) version 1.7.0 _55. We executed each analyzer
20 times for the same AST in memory. To minimize the effect of GC and VM issues, we discarded outliers
and considered the median of the remainder as the result.

7.5.3 Experimental Results

The relative speedup of par given rand, shown in Fig. 7.4, had a significant scalability up to 15 threads.
The relative speedup with 15 threads was 5.82x (while the speedup compared to bvf was 5.00x). A careful
control of task granularity was not required. We also tested a granularity-controlled prototype but did
not observe any performance gain. Only the divide and conquer of our method was sufficient to obtain a
significant speedup. Our method was ready to parallelize and demonstrated that the divide and conquer
on input data structures is crucial. The speedup curve in Fig. 7.4 demonstrates the asymptotically linear
speedup of our method and exemplifies Amdahl’s law.

Tables 7.1 and 7.2 respectively show the breakdowns of the execution time of seq and bvf given rand
and inl. For inl, both seq and bvf were sufficiently fast. For rand, seq was significantly faster than
bvf, but the direct comparison of both is inappropriate as mentioned earlier. What we can justify from
these results is that our method is not algorithmically slower than the iterative method. It is notable
that the Elim phase in our method incurred no overhead as expected. Therefore, our method is both
feasible and useful if label statements in a given program are few, specifically less than about 50.

Table 7.2: Breakdown of execution time of bvf. “Cons” means CFG construction, “Ndef” means num-
bering definitions, “Init” means initializing gen/kill sets, and “Iter” means the iterative method.

Phase ‘ Cons Ndef Init Iter Total
rand 431 565 971 334 2301
inl 6 3 6 3 18

Time (ms)
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7.6 Related Work

Rosen [Ros77, Ros80] proposed the concept and method of high-level DFA. His method performs DFA
on a high-level CFG that captures syntactic nesting, by calculating bit-vector equations for each level of
statements similarly to interval analysis [AC76] but in a much finer-grained manner. Although Rosen
dealt with break/continue, he did not with goto/label. The equations constructed in his method corre-
spond to structured summaries containing only the leftmost column vector. His method can potentially
deal with goto statements (i.e., jump-out) but not with label statements (i.e., jump-in). Mintz et al.
[MFS79] implemented Rosen’s method integrated with a CFG-based method to deal with goto/label.
Their method processes ASTs containing no jump-in similarly to Rosen’s. For ASTs containing a jump-
in from the outside, it abandons the idea of calculating equations and instead constructs a CFG. For
ASTs containing no jump-in from the outside but with a jump(s) between its components, by apply-
ing a CFG-based method to the CFG derived from the AST, the CFG is reduced to equations. The
primary difference between our method and theirs is how the jump-in is handled. In our method, we
detach the data flow of every jump-in completely from an input AST and summarize it into a structured
summary. As a result, our method performs syntax-directed computation more thoroughly (e.g., even
for context-insensitive interprocedural DFA) than theirs. This trait is quite advantageous in terms of
divide-and-conquer parallelization.

In previous studies on parallelizing DFA [LRF95, KGS94], load balancing was the primary concern.
Lee et al. [LRF95] improved the parallelization of interval analysis [AC76], where CFGs are recursively
decomposed into substructures called intervals. In interval analysis, exclusive intervals can be processed
in parallel, but the size of each interval, i.e., the granularity of parallel tasks is diverse. Lee et al. divided
a CFG into controlled-size regions instead of intervals for load balancing and used an auxiliary tree
structure to manage the parallelism among regions. Region decomposition itself is a sequential task.
Kramer et al. [KGS94] utilized the parallel prefix-sum operation with ® for each path of a CFG. Their
method unwinds loops to convert a CFG into a directed acyclic graph. This degrades the generality of
DFA. To make matters worse, their method expands the sharing of paths in a given CFG. This causes
the asymptotic cost of DFA to blow up exponentially®. Our method is a simpler and cheaper way of
divide-and-conquer parallelization, and furthermore guarantees asymptotically linear speedup.

Many studies on accelerating static analysis [NG13, MLBP12, AKNR12, PRMHI11, RL11, MLMP10]
parallelized fixed-point iterations. Multithreading with worklists [NG13, AKNR12, RL11]| worked well
for expected inputs in practical usage, but this imposes concurrency issues such as mutual exclusion for
worklists, termination detection, deadlock/livelock, and the fairness of underlying schedulers. Parallel
implementations specialized for GPUs [MLBP12, PRMH11] achieved high performance experimentally,
but these techniques are very hardware-specific. Speculative parallelization [MLMP10] was feasible, but
it complicates runtime behaviors. None of these approaches guarantee asymptotic speedup.

7.7 Conclusion

We have presented a novel syntax-directed parallel method of DFA that tames goto/label, and also
experimentally demonstrated its feasibility and scalability.

There are two directions for future work. One is to implement our method more seriously by tying it
to compiler optimizations and then to evaluate it practically. We expect that our method will simplify
the construction of optimizing compilers. The other is to apply our method to other domains, e.g., XML
processing. We expect that our approach to taming goto/label will be useful for computation over a
mostly hierarchical structure.

5Their worst-case analysis is wrong on the size of a graph that they called a combining DAG. It can be exponential to
the number of nodes in a given CFG, e.g., a sequence of if-then-else statements, whose regular path is (r1 | r2)-(r3 | ra)---.



Chapter 8

Syntax-Directed Construction of Value
Graphs

This chapter is self-contained and is an extended version of our unpublished paper [Sat14b].

8.1 Introduction

Compiler optimizations are classified roughly into two kinds. One is high-level optimization, which
consists of analysis and transformation on abstract syntax trees (ASTs). Although compilers may desugar
source languages into simpler ones, ASTs to which compilers apply high-level optimizations contain many
language features of source languages, i.e., high-level information. High-level optimizations utilize these
features. The other is low-level optimization, which consists of analysis and transformation on control-
flow graphs (CFGs) of low-level languages such as three-address code. Low-level languages are much
simpler than source languages and designed to be independent both of source languages and machine
architectures.

Modern optimizing compilers such as GCC and LLVM! are equipped with various low-level op-
timizations. Especially, optimizations on static single assignment (SSA) form [RWZ88| are de facto
standard. Meanwhile, parallelizing compilers [AKO1] and recent just-in-time (JIT) compilers [WWS*12,
WWW*13, ZLBF14]| are equipped with high-level optimizations. Compilers perform high-level opti-
mizations followed by low-level optimizations and do not mix up them. For example, the Truffle JIT
framework performs type specialization by rewriting ASTs and then constructs SSA form for underlying
Java JIT compilers.

High-level information is useful even in low-level optimizations. For example, high-level control flow
on SSA form enables more precise equality detection [AWZ88]. Low-level optimization techniques are
also useful in high-level optimizations. Array SSA [KS98|, which is an SSA form integrating arrays and
the do loops in Fortran is known to be useful for parallelization. Value graphs, which are representa-
tions of expressions derived from SSA form, are useful for relatively high-level algebraic transformations
[TSTL09]. A mixture of high-level optimizations and low-level optimization techniques is promising.

There are two approaches to this mixture. One is to extract high-level information from low-level
representations. For example, we can use control-flow analysis [Sha80, Bak77| for extracting high-level
control structures from CFGs. Grosser et al. [GGL12| addressed extracting parallelizable clean loops from
low-level SSA form. This approach, however, does not always capture satisfactory high-level information
because it would break in low-level representations.

The other is to construct SSA form particularly for high-level optimizations. This is expensive and
complicated. SSA form contains ¢-functions, which are nonexecutable imaginary operators to represent
control flow. At the end of optimizations, we have to eliminate ¢-functions adequately in SSA destruction.
Moreover in SSA form, ¢-functions become an obstacle to code motion. SSA form is not designed

lhttp://1lvm.org/
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for high-level optimizations and the adaptation of SSA form for high-level optimizations is not always
straightforward.

To obtain a good mixture of high-level optimizations and low-level optimization techniques, we study
the construction of value graphs [AWZ88], which are useful for high-level optimizations. As mentioned
above, although value graphs are usually derived from SSA form, we do not have to construct SSA
form to obtain value graphs. Because SSA form is not very useful for high-level optimizations, a direct
construction of value graphs from ASTs in normal form is advantageous to high-level optimizations.

In this chapter, we present a syntax-directed method for constructing value graphs from ASTs in
high-level source languages. We have applied Rosen’s syntax-directed approach [Ros77] and function-
based approaches [Ros80, Tar81a] in the context of data-flow analysis (DFA) to construction of value
graphs. Our method constructs value graphs while placing ¢-functions on the basis of high-level control
structures, as in the method by Brandis and Méssenbock [BM94] for constructing SSA construction from
structured programs. Then, placed ¢-functions represent high-level control structures in value graphs.
Our method deals with break/continue (or equivalent goto/label) statements in a simple yet efficient
manner. Our method can construct value graphs from the while language with break/continue in a
single-pass bottom-up manner on a given AST. If we assume arbitrary use of goto/label statements, we
face malignant ones that make it difficult to construct value graphs in a syntax-directed manner. We deal
with malignant goto/label statements by using reduced ASTs, where benignant parts of ASTs are reduced
and malignant parts are exposed. On the basis of reduced ASTs, our method tames malignant goto/label
statements with respect to precision or cost. Specifically, our method provides two choices: to perform
in a syntax-directed manner incurring imprecision or to perform a little computation in a CFG-based
manner. Anyhow, because our method processes much part of a given AST efficiently, our method is
more efficient than SSA construction on CFGs. By combining our method for constructing value graphs
and syntax-directed methods [Ros77, MFS79, SM14b| for DFA, we can perform value numbering to the
whole program as a high-level optimization.

The following are our main contributions:

e We present a syntax-directed method for constructing value graphs from goto-free programs in the
while language (Section 8.3). This method constructs value graphs with a composition operator
over value graphs in a single-pass bottom-up manner on a given AST while placing ¢-functions in
value graphs as in the method by Brandis and Mdssenbock [BM94] for SSA construction.

e We present an extension for dealing with typical use of goto/label statements such as break /continue
ones, in a single-pass bottom-up manner on a given AST (Section 8.4.2). We have extended value
graphs for single-entry multiple-exit fragments of ASTs and then applied Rosen’s syntax-directed
approach in the context of DFA, to construction of value graphs.

e We present two extensions for taming arbitrary, especially malignant use of goto/label statements
by using reduced ASTs, where benignant parts of ASTs are reduced (Section 8.4.3). One extension
performs in a syntax-directed manner but incurs redundant ¢-functions, which degrade the quality
of value graphs. The other extension performs a little computation on the basis of the standard al-
gorithm [CFR191] for placing ¢-functions on CFGs. Use of reduced ASTs suppresses both negative
effects on value graphs and additional computational costs.

8.2 Value Numbering and Value Graphs

8.2.1 Value Numbering

We first assume a straight-line (i.e., branchless) language as shown in Figure 8.1 for simplicity and
introduce value numbering dealt with in this chapter.

To eliminate redundant expressions, we first have to discover equivalent expressions. Textual repre-
sentations are inappropriate to the comparison of expression values for two reasons. The first is that
the same textual representation may denote different values in different program points. The second is
that different textual representations may denote the same value in a program point. A value graph is a
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P = s (Program)
s u= vee | sis (Statement)
e u= v|c|ea®e (Expression)

Figure 8.1: Syntax of straight-line language, where v, ¢, and ® denote metavariables over variables,
constants, and binary operators, respectively.
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Figure 8.2: Example of value graphs, where the value graph on the right is derived from the branchless
program on the left. In the value graph, a labeled solid edge denotes an argument reference of an
operator where a label number denotes the position in its argument list, and a break edge denotes a
variable reference at the end of the program.

representation of the value structures of expressions. Figure 8.2 shows an example branchless program
and the value graph derived from it. The value of y in the example program is = + 1 at the second
line and that of z is  + 1 at the forth line. Both expressions are symbolically the same x + 1 but have
different values. Meanwhile, each expression corresponds to a node in the value graph. The value graph
shows that y and z at the end denote a + 1 and b + 1 respectively. Value graphs are independent of
textual representations and represent expression values directly.

We can detect equivalent expressions on the basis of congruence on graph values. For example,
consider the subgraph rooted by the + node to which y refers and that to which z refers, shown in
Figure 8.3. Both subgraphs have the identical structure, i.e., are congruent. In other words, every trace
from both roots is identical. Therefore, y and z refer to different expressions in the program but refer to
the same value. By using congruence on graph values, we thus can construct the equivalence classes of
expressions occurred in a given program.

Value numbering [CS70] is to eliminate redundant expressions by using the equivalence on value
graphs. Thanks to value graphs, it has an effect similar to the effect of iterations of copy propagation,
constant propagation, and common subexpression elimination (CSE) based on textual representations.

In this chapter, we deal with the construction of value graphs. Although the detection of congruence

a 1
A\
T<—a V) 2
y—a-+1 ¥ \ ¥
z—x+1 A \ A
| \ I
| |
| ‘ |
Y T z

Figure 8.3: Example of congruence of value graphs. The subgraph referred by y and that by z are
congruent; thereby the values of y and z are identical.
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s u= ... | s1 5y | pass | if (¢) {s1} else {sp} | while (e) {s} (Statement)

Figure 8.4: Syntax of the while language, which is an extension to the syntax defined in Figure 8.1 and
pass denotes an empty statement.

is essential for value numbering, we do not deal it. We assume use of existing methods [DST80, AWZ88|
for detecting congruence on value graphs. The detection and elimination of redundancy are also neces-
sary for value numbering as an optimization. In fact, these are not essential issues on value numbering.
Once the equivalence classes of expressions occurred in a given program are obtained, we can use clas-
sic optimization methods based on data-flow analysis (DFA) for detecting and eliminating redundancy
[BCS97|. We therefore do not consider the detection and elimination of redundancy.

Constant folding is important for value numbering because it improves the precision of equivalence
classes based on congruence. We can implement constant folding straightforwardly in the form of a reduc-
tion of value graphs. We assume that constant folding is applied to value graphs after their construction
before the detection of congruence.

Note that a mapping 7 from each expression to a node in value graphs is necessary to represent
equivalence classes of expressions. After detecting congruence on value graphs, we obtain equivalence
classes in the nodes of value graphs. 7 maps an expression to a node contained in an equivalence class.
The comparison of the equivalence classes through 7 suffices for checking the equivalence of expressions.
We consider T to be a data structure for implementation and do not include it in value graphs.

8.2.2 ¢-Function

We here consider the while language, whose syntax is defined in Figure 8.4. Value numbering for
branchless program fragments (generally called basic blocks) are directly applicable to program fragments
that contain forks of control flow but contain no join (generally called extended basic blocks). This is
because the value graph of a program fragment prior to a fork can be shared among the destinations of
the fork. The primary issue on value numbering is the join of control flow. To deal with the joins of
control flow, we have to represent control-dependent values, i.e., values that depend on execution paths.
A ¢-function [RWZ8S] is a pseudo-operator to represent a control-dependent value.

Definition

The ¢-function, which is also called a pseudo-assignment [SS69]|, semantically forms the assignment of
a control-dependent value to a variable, e.g., x < ¢(v1,...). All ¢-functions are conceptually placed at
the join points of control flow such as the exit of an if statement and the entry of a while statement. A
¢-function z < ¢(vy, . ..) denotes that possibly different values from its predecessors become confluent via
2. We therefore call the variable x of z < ¢(v1, . ..) the confluent variable. The arguments of a ¢-function
are the values of its confluent variable at all its predecessors, where each argument corresponds to each
predecessor. For example, consider the following if statement:

if (e) {x < a} else {pass}.

Then, a ¢-function x < ¢(a,xg), where oy denotes the value of = at the entry, is imaginary at the exit
above. The essential information that characterizes a ¢-function is its program point (i.e., join point)
and confluent variable. We therefore equate a ¢-function with this pair.

At a ¢-function, the different values may become confluent. Unnecessary ¢-functions are allowed
by definition. In placing ¢-functions, their minimality becomes an important issue. The standard
minimality of ¢-functions is based on dominance frontiers [CFR191]. We call a ¢-function a redundant
one if it breaks the minimality based on dominance frontiers. Note that we distinguish redundant ones
from unnecessary ones for ¢-functions.
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¢-Function in Value Graphs

In constructing value graphs of programs that contain joins of control flow, we can interpret a ¢-function
x<—¢(vy,...) as an assignment whose right-hand side is an expression constructed by using ¢ as an
ordinary operator such as +. In detecting congruence on value graphs, we, however, have to interpret
¢ in a manner different from ordinary operators. Although we can ignore the confluent variables of
¢-functions, we have to take account of the program points of ¢-functions.

For example, consider the following sequence of if statements:

if (i < n) {x —a} else {x —b}

if (i <m) {y < a} else {y < b}.

Then, z < ¢(a,b) is placed at the exit of the first if statement, and y <« ¢(a, b) is placed at the exit of the
second if statement. If we regarded ¢ as an ordinary operator,  and y would refer to the expressions of
the same value. This is obviously wrong. Since the values of n and m used in the condition parts of the
if statements may be different, the values of x and y cannot be guaranteed to be identical.

To avoid this wrong situation, in detecting congruence on value graphs, we distinguish ¢ operators
by their program points. To clarify the program point 7 of a ¢ operator, we write ¢,. In the example
above,  «— ¢, (a,b) and y <« ¢, (a,b) are placed at the end m; of the first line and at that 7o of the
second, respectively. Since these operator are different, both subgraphs are not congruent. By giving this
consideration to ¢, we can still construct equivalence classes of expressions on the basis of congruence
on value graphs.

High-Level ¢-Function

The cause of this wrong situation that we induce by regarding ¢ as an ordinary operator is that ¢-
functions do not take account of branch conditions of joined control flow. If a ¢-function takes the
branch condition of joined control flow, its value graph capture the whole control-dependent value from
the fork to the join in its structure. The congruence on such value graphs guarantees the equivalence of
assigned values as well as branch conditions and thereby guarantees the equivalence of the ¢ expressions
without their program points.

Since branch conditions and forks of control flow are coupled in control constructs, ¢-functions that
take branch conditions represent high-level control structures of input languages. To distinguish such ¢-
functions from normal ¢-functions, we call them high-level ¢-functions?. By following the while language
defined in Figure 8.4, we introduce the high-level ¢-function ¢i for if statements and ¢wnie for while
statements, as in Alpern et al.’s work [AWZ88]. We assume that ¢i and ¢yhile contain their source
if/while statements as their program points for convenience.

¢ie(c, t, e) denotes the so-called ternary (conditional) operator (e.g., ¢ ? t : e in the C language) and
conceptually exists at the exit of the source if statement. Since these are pure expressions, it is obvious
that its congruence leads to its equivalence. In the example above, the first is @ < ¢i(i < n,a,b) and
the second is y <« ¢it(i < m,a,b). If the value graphs of n and m are congruent, both expressions are
identical. Then, the second if statement would be eliminated in value numbering. This elimination is
impossible when we use the congruence only on normal ¢-functions.

dwhile has to take account of the circularity of value graphs but is essentially not different from ¢;s.
Owhile(C, $,b) conceptually exists at the entry of its source while statement, where ¢, s, and b denote the
condition part, the initial value, and the recurring body value, respectively. Typically, the subgraphs
starting from ¢ and b have circular references to ¢dwhile(¢, s, b).

Note that ¢wnile conceptually exists outside of the while loop but it is not a loop-invariant. The value
of Pwhile(c, s,b) on the inside of its loop is different from that on the outside. However, if we use only
Dwhile; We cannot distinguish both expressions by structure of value graphs and thereby both expressions
become wrongly equivalent on the basis of congruence. To avoid this wrong situation, we append a
sentinel @eng t0 dwhile at the exit of its while statement, as shown in Figure 8.5.

2Alpern et al. [AWZ88] introduced the same notion but did not used the same term. In later studies on SSA, it was
called a gating function [BMO90]. We here use the term for emphasizing the high-level part as in the original study.



74 CHAPTER 8. SYNTAX-DIRECTED CONSTRUCTION OF VALUE GRAPHS
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Figure 8.5: Example of circular value graph with ¢ywhile and @enq, where ¢ on the right refers to its value
at the exit of the while statements on the left.

Another important point in detecting congruence is that we have to distinguish ¢ypjle of an outer
loop in a nested loop from @ypjle of an inner loop. It is sufficient to check containment relation between
two while statements in the comparison of ¢ypjle. These considerations do not affect the construction of
value graphs. Refer to the discussion on ¢yhile and genq in Section 8.5.

8.2.3 Definition and Formalization of Value Graphs
Definition

Here we formally define the data structure of value graphs in this chapter. A value graph is a triple
(G,V,F). G is a directed graph (N, E) whose N is a set of tagged nodes and F is a set of ranked edges.
V' is a mapping from an alphabet ¥ to N. F' is an injective binary relation from ¥ to N.

These denotations in programs are as follows. ¥ is a set of variable symbols. G is a set of expression
values, which is a solid-line part of value graphs shown in Figures 8.2, 8.3, and 8.5. V is a variable
binding, which is a break-line part of value graphs. F', which we introduce for convenience of algorithm
description, captures the occurrences of free variables (i.e., variables of unknown values) in N. The rank
in E denotes the position in an argument list. The set of tags in N consists of variables, constants
operators, and ¢-functions. Each node has the only tag but tags are mutable. Multiple nodes can have
the same tag. n' denote a node n tagged by ¢, but we omit ¢ in the case where ¢ is unused. We call a
node tagged by a variable a variable node and call a node tagged by a ¢-function a ¢-node. For every
value graph (G,V, F), it is an invariant that v — n* € F for any variable node n’ € G.

For algorithm descriptions, we introduce a special variable $ and a special map w. $ is a variable that
refers to the value of an expression and does not appear in a given program. w denotes no control flow
and pretends a variable binding as (G,w, F'). w is used for dealing with goto statements in Section 8.4.

Formalization by Circuits

We also formalize a value graph (G,V, F) as a circuit. We regard G as a black-box circuit where we
can observe only input/output points. img(V), i.e., the image of V' corresponds to the output points of
G, and img(F) corresponds to the input points of G. Wires are connected to the input/output points
of G from the outside. Variables symbols in dom(V) and dom(F') correspond to the colors of wires
to distinguish them. Nodes tagged by constants or variables are terminals in G and nodes tagged by
operators or ¢-functions are gates in G. This formalization (or a view of value graphs) enables us to
focus on the concerned part of G on constructing value graphs.

8.3 Construction Algorithm to the While Language
We describe our one-pass syntax-directed algorithm for constructing value graphs with high-level ¢-

functions from programs in the while language. C denotes a function constructing a value graph from an
AST of the while language.
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8.3.1 Syntax-Directed Formulation

We define C for each case in this subsection. Let freshNode(t) be a primitive function that generates a
fresh node® tagged by t. A fresh node is distinct from every other node.

First, from the definition of value graphs, the definitions in the cases of expressions and assignments
are immediately obtained.

C(v) = (({n}, D), {8 = n}, {v —n}),
where n = freshNode(v),
e(e) = (({n}. 2). (S > n}. @),
where n = freshNode(c),
Cler ®es) = (Gs3,{$ — n3}, F1 U Fy),
where G3 = G1 U G2 U ({ns}, {ng — n1,ng — na}),
(G1,{$ = i}, F1) = Cler),
(G2, {$ = na}, F>) = C(ea),
ng = freshNode(®),
Clv—e) =(G,{v—n},F),
where (G, {$ — n}, F) = C(e).

For simplicity, the algorithm description above takes no account of the order of the operands of . It is
immediate to take account of operand order. Similarly, in the remainder of this chapter, we use algorithm
descriptions taking no account of operand order.

The case of statement sequencing s; sy is defined as

C(81 82) = C(Sl) ®C($2),

where ® is a serial composition operator over value graphs. The meaning of &® is easy to understand
as the construction of series circuits on the basis of the formalization by circuits. Specifically, it is to
construct correct wire connections between the output points of C(s1) and the input points of C(s2).
The outgoing wire in a color of C(s1) connects to all the incoming wire in the same color C(s2). Then,
we remove terminals in C(s2) connected to C(s1) and short-circuit incoming wires in C(s2). We can
formulate ® over the data structures of value graphs as follows:

(N1, E1), Vi, F1) @ (N2, E2), Va2, F2) = (Gs, Vs, F3),
where G5 = (N7 U update,(N2), E1 U Ey U Ep),

Vs={v—neV;|vé¢dom(Va)}u Vs,
=R u{voneF|vé¢Stu{v —ny|v— ng€ Fyas, anl =Vi(v)},
Fulias = {v—>nae Fy |ve S, n¥' = Vi(v)},
En={n"—Vi(v)|n = neFEy voneFy— Fyas, ve S},
Ei=Fy—{n"—neFEy|v—necFy— Faas, veS}
o={v—v|v— ns€ Fyjas, nf/ =Wi(v)},
S = dom (V1) n dom(Fy).

update  (N') is a primitive operation to update the tags of variable nodes in a set N according a mapping o
over X. For example, updatey,, ,, ({nF,n3}) = {n,ny }. Note that the identity of ny here is unchanged
and the edges of ny remain connected after updating. update,(N2) corresponds to copy propagation on
the nodes of a resultant value graph. Fj)i.s is the subset of Fy sensitive to this copy propagation. The
third term in the RHS of the definition of F3 makes the invariant v — n € F3 hold.

3Node tagged by constants do not have to be fresh regarding the same constant.
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When we regard a circuit as a function, the serial composition ® corresponds to function composition.
® is therefore associative and its identity is (&, &, ). Since this identity corresponds to the identity
function, this meaning is to do nothing. The case of empty statements is therefore defined as

C(pass) = (I, J, D).

To define the cases of if statements and while statements, we have to place high-level ¢-functions
conceptually. This is straightforward by using the single-entry single-exit control flow of these high-level
control structures [BM94].

Specifically, the single-entry single-exit control flow in if statements is observed as follows. To reach
the then/else part of an if statement, it is necessary to pass through the entry of the if statement; it
means single-entry. To reach the exit of an if statement, it is necessary to pass through the exit of the
then/else part; it means single-exit. These lead to two observations. ¢-functions at the exit of an if
statement are unnecessary for variables defined neither in the then part nor the else part. If a variable
v is defined either in the then part or the else part, the value of v at the entry reaches the exit and may
become confluent via v. Without redundant (high-level) ¢-functions, we can therefore define the case of
if statements as follows:

C(if (e) {s1} else {s2}) = (G,V, F),
where G = G. U Gy U G, U (Img(V) U img(Fa), Ea),
V = {v — freshNode(¢is) | v € Xy},
F=F.uUF, uUF,uUFa,
Fa = {v — freshNode(v) | v € ¥y — (dom(V;) n dom(Ve))},
Er={V(w)—n.|veZytu{V(v)—n|v—neFa},
u{Vw)—n|lve—neVu{V(w)—n|v—nelL.},

Yy = dom(V;) u dom(V,),
(Ge, {3 = nc}, Fe) = C(e),
(Gr, Vi, Fy) = C(s1),
(Ge, Ve, Fe) = C(s2).

Here, freshNode(v) denotes the value of v at the entry of a given if statement.

The generation of @ywhile is almost the same as that of ¢ynile as an if statement whose else part is an
empty statement. The main difference is that the join point of ¢wnie is the entry of its while statement.
We therefore have to consider the sequencing of ¢ynile derived from a while statement followed by the
while statement. We apply serial composition ® to the sequencing, and thereby we introduce circularity
into a resultant value graph. Finally, we append a ¢enq node to ¢ynile node. The case of while statements
is defined as follows:

C(while (e) {s}) = (G U (img(Vend), Pend), Vena, F),

where Eong = {Venda(v) — V(v) | v € dom(V)},
Vend = {v — freshNode(¢ena) | v € dom(V)},
(G, V, F) = ((img(Va) uimg(Fa), EA), VA, FA) ® (G. v Gy, I, F. U Fy),
Va = {v — freshNode(odwhile) | v € dom(V})},
Fa = {v — freshNode(v) | v € dom(V})},
En={n"—mne n'— Fa(w), ' > n|v—neVy, n =Valv)l},
(Ge, {8 = ne}, Fo) = Cle),
(Gb, Vo, Fy) = C(5).

Here, freshNode(v) denotes the value of v at the entry of a given while statement.
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8.3.2 Implementation Issues
Use of Union-Find Trees

Although C achieves the construction of value graphs from ASTs in a syntax-directed manner, a naive
implementation of C can cause a problem on efficiency. update,(N2) in the definition of ® corresponds
to a naive copy propagation. The time complexity of this naive copy propagation depends on the order
of processing assignments. For example, consider the following sequence of assignments:

I < a

To < T

Tm < Tm—1-

A naive copy propagation is to rewrite a RHS variable with a LHS variable in nearest prior assignments. It
costs O(m) time if we perform it from x5 < x1, but it costs O(m?) time if we perform it from x,,, < x,,_1.
C, which performs in the simplest syntax-directed manner, does not guarantee that its processing order
is the program order. If we complicated C, we could guarantee it but shall spoil the simplicity of its
syntax-directed manner. This inefficiency of C is, however, unacceptable.

The cause of this inefficiency is to perform copy propagation eagerly. If we perform it lazily, we
can avoid the worst case. We can consider variable rewriting as construction of equivalence classes and
therefore we can implement this lazy copy propagation by using union-find trees?*.

Specifically, we construct an equivalence class of the nodes in tagged by the same variable by using
a union-find tree. As a result, since the invariant v — n" € F holds, F' becomes an injective function.
We require two simple modifications on C. First, when we construct Fy u Fj, letting v € dom(Fy) U
dom(Fy), we unify two nodes F(v) and Fy(v). Second, when we refer to variable nodes, we find their
representatives. To update the tags of only representatives suffices for copy propagation. We therefore
use the only field of each variable node both for a tag and a link to representative.

If we use union-find trees equipped with path compression and union by rank, the copy propagation
for m assignments costs O(ma(m,m)), where a(m, m) denotes the inverse Ackermann function. From a
realistic size of m, we can assume «(m,m) to be a small constant. C thus becomes almost as efficient as
ordinary program-order algorithms.

Use of union-find trees also simplifies the implementation of C. In particular, it simplifies the con-
struction of Ea in the definition of ®. A naive way of implementing it is that all variable nodes mange
reverse edges. This requires mutation of the fields of operator nodes and more fields in a variable node.
Meanwhile, if we change the representative of a variable node to operator nodes in applying ®, we achieve
the equivalent result of Ea in later find operations.

Reference from ASTs to Value Graphs

As mentioned in Section 8.2.1, for value numbering, we require a mapping 7 from expressions in ASTs
to nodes in value graphs. Since C constructs a distinct node for each expression, 7 becomes an injective
function. We can share 7 globally and implicitly in C. A simple and efficient way of constructing 7 is to
register a fresh node corresponding to a given expression with globally visible 7, in the case of expressions
regarding C. We here assume T to be a separate table because it is easy to construct and dispose of.
We also can make each node in ASTs hold a reference to value graphs. An actual representation of T
depends on implementation.

That 7 holds references to nodes of value graphs simplifies the implementation of a value graph
(G, F,V). If we construct G as a pointer structure, we can reach nodes of G through 7, and thereby we
do not have to construct G explicitly as a set. An important observation is that optimizations concern
the part of G reachable from 7. In particular, ¢-functions for dead variables are unnecessary. Actually,
existing algorithms [BCHS98, CCF91] for placing ¢-functions prune unnecessary ¢-functions on the basis

4The original paper [GF64] of union-find trees also aimed at managing equivalent variables in compilers.
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s u= ...| 11| gotol (Statement)

Figure 8.6: Syntax of the while language with goto/label statements, which is an extension to the syntax
defined in Figure 8.4, where [ denotes a metavariable over labels. Label statements that are not targeted
by any goto statement are regarded as empty statements.

of live variable analysis. We, however, can prune ¢-functions easily on the basis of the reachability from
T. When we trace links through 7 from all essential expressions (e.g., returned expressions), unreachable
¢-functions from 7 are simply unnecessary. If implementation languages have garbage collection (GC),
unnecessary ¢-functions can be implicitly removed by using weak references.

8.4 Taming Goto/Label Statements

Goto statements are not considered to be favorable, are not adopted in many languages because struc-
tured programming is now widespread. An appropriate use of goto statements is useful even in structured
programming [Knu74]. Although use of goto statements decreases, they actually have been used in source
code yet [SW12]. Moreover, it is not rare that compiler frontends introduce goto/label statements. Goto
statements are still not negligible for compilers. In this section, we describe the difficulty of goto/label
statements and deal with the construction of value graphs from programs in the while language with
goto/label defined in Figure 8.6.

8.4.1 Difficulty of Goto/Label Statements
Analogy and Difference between DFA and Value-Graph Construction

In Section 8.3, we define serial composition operator ® by formalizing a value graph as a circuit. As
mentioned earlier, a circuit is a kind of functions. To construct functions like value graphs from programs
is called a function-based approach in the context of DFA, and known to be synergistic with syntax-
directed approaches [Ros77, Ros80, SM14b]. We have already developed a syntax-directed method for
taming goto/label statements in DFA [SM14b|. It is inadequate for the construction of value graphs
despite the analogy between both formalizations. A matter is the ¢-function placement.

In monotone DFA, we can define an addition @ over data-flow functions, where function composition
o is left-distributive® over @, i.e., f3 0 (fo @ f1) = (f3 o f2) ® (f3 o f1). This means that the data-flow
function of the following program

if (e) {r<—a} else {z—b} y—ax+1
is the same as that of the following program
if (e) {x<—a y—z+1} else {x—b y—uz+1}.

However, the value graphs of both programs are not the same with respect to ¢-functions. As seen
from this difference, it is essentially difficult to define an addition over value graphs as in the algebra of
DFA. Our method [SM14b] relies heavily on the left-distributive law and therefore inadequate for the
construction of value graphs.

Troubles of the ¢-Functions Placement for Goto/Label Statements

This trait on ¢-functions make it very difficult to construct value graphs without settling the ¢-function
placement for label statements. For example, consider the following program fragment:

goto [ 5.

5Strictly, the distribution of o will improve the precision of DFA and the left-distributive law should be an inequality.
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A simplest syntax-directed manner like C is to define a useful value graph of the fragment above without
any additional information. This is, of course, almost impossible because we do not have any knowledge
of the ¢-function placement. Then, we assume the information of this context to be given; e.g., what
variables are defined before the fragment and used after the fragment. However, it is still very difficult
to place reasonable ¢-functions because the control flow outgoing from goto [; and incoming to lo: is
independent of this context. For example, consider that a given program contains the only goto ls. Any
¢-function at l5: becomes redundant but the variable binding incoming to l3: may necessitate ¢-functions
after the fragment. It is unclear what information is adequate to place ¢-functions.

The essence of syntax-directed manners is to define calculation to a subtree of a given AST. The
¢-function placement for goto/label statements is inherently difficult to perform in a syntax-directed
manner. A reasonable syntax-directed method for constructing value graphs from the while language
with goto/label is therefore nontrivial.

8.4.2 Syntax-Directed Approach to Single-Entry Multiple-Exit ASTs

Classifying control flow on syntactic structures is known to be useful for taming goto/label statements
[MFS79]. We consider three classifications: single-entry single-exit (SESE) ASTs, single-entry multiple-
exit (SEME) ASTs, and multiple-entry ASTs. An AST is SESE if any control transfer into/from the
AST must pass through its AST. The while language always produces SESE ASTs. An AST is SEME
if any control transfer into the AST must pass through its root. An AST is multiple-entry if there is
a control transfer into the AST without passing through its root. It is inherently difficult to deal with
ME ASTs. We describe how to deal with multiple-entry ASTs later. We here deal with single-entry
multiple-exit ASTs.

Typical SEME ASTs are produced from the while language extended with break /continue statements
such as the ones in C. In the while language with goto/label, SEME ASTs formally mean that any goto [
is contained in s either of I: s or s I:. The case of I: s and that of s I: correspond to continue statements
and break statements, respectively. Many of useful usages of goto statements in structured programming
claimed by Knuth [Knu74] form this kind of usage. Rosen’s method [Ros77] for DFA deals with SEME
ASTs in a clear syntax-directed manner. In the rest of this subsection, we extend C to C’ for SEME
ASTs on the basis of Rosen’s syntax-directed approach.

From the perspective of syntax-directed computations, Rosen’s method sets aside data flow outgoing
from goto statements in descendants and merges the reserved data flow with the data flow ignoring goto
statements at the current node. This method is applicable to placing ¢-functions because ¢-functions
are unnecessary for a variable v if v is not defined in the reachable part of the current AST. The main
difference is that we have to distinguish all goto statements because the value of a variable incoming
from each goto statement becomes a distinct argument of a ¢-function.

The information that we have to set aside is a variable binding V' in a value graph (G, V, F'). We extend
(G,V, F) by adding set-aside variable bindings. An extended value graph is a quadruple (G,V,V F),
where V is a mapping from a goto statement to the variable binding at the goto statement and (G, V, F)
is an original value graph, which ignores the effect of goto statements. While an original value graph is
formalized as a circuit having a single bundle of outgoing wires, an extended value graph is formalized
a circuit having multiple bundles of outgoing wires, where each bundle contains at most one wire in
each color. We internally confuse (G,V, &, F') with (G,V, F'). I™ denotes a goto statement goto [ at the
program point .

We define C’, which takes an AST in the while language with goto/label yields an extended value
graph, as follows. We can define the case of goto statements as

Cl(gOtO l) = (@awa {lﬂ— = @}a @)7

where 7 denotes the program point of a given goto statement. As mentioned in Section 8.2.3, w denotes
no control flow. If C’'(s) = (G,w, V, F), there is no reachable path from the entry of s to the exit of s.
For statement sequencing s; s, where neither s; nor s, is a label statement, we have three obser-
vations. The first is that, if there is no control flow outgoing form s;, sy has no effect. The second is
that, if there is no control flow outgoing form ss, there is no control flow outgoing form s; so except for
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goto-derived control flow. The third is that the variable binding at the exit of s; has also effect on the
variable bindings at the goto statements in so. From these observations, we can define serial composition
operator ® over extended value graphs as follows:

(lewvthl) ®l (GQa‘/Q;V27F2) = (Gl,W,Vl,Fl),

(Gg,(,d,Vg,Fg) (V2 :w)7

G1,V1, V1, F1) ® (G2, V2, V2, Fy) =
(G1,V1, V1, F1) ® (G2, V2, V2, F3) {(G&‘/&Vg,pg) (otherwise),

(G1, V1, F1) ® (G2, F, Fa) (Va2 = w),
(G1,V1, F1) ® (Ga, Va, F»)  (otherwise),
V3 = V1 U {lﬂ — append(Vl, V) | m"—Ve \/'2}7
append(V1,V) =V u{v—ne Vi |v¢dom(V)}.

where (G3, Vs, F3) = {

®' is associative and its identity is (&, &, &, &), which is also the identity of ®. Since neither s; nor
so is a label statement, we do no have to place ¢-functions for s; s3. We therefore can define the case of
$1 8o simply with ® as

C/(Sl 82) = C/(Sl) ®/ C’(SQ).

The ¢-function placements for s [: and [: s are analogous to that for if statements and while statements,
respectively. We place normal ¢-functions at label statements because goto statements have no branch
condition. Let ¢; be a normal ¢-function at the label statement [:.

Specifically, we can consider s [: as a multiway nondeterministic branching statement where the
control flow outgoing from s and the control flow outgoing from all goto [ statements are joined at I:.
We therefore can define the case of s [: as follows:

C'(sl:)= (G, V',V—=V,F U Fp),
where G’ = G U (img(Va) U img(Fa), Ea),
V' ={v— Vy(v) | vedom(Vy) — Xy} U Va,
Va = {v — freshNode(¢;) | v e X4},

k
veZ¢—ﬂdom(1/i)},
i=0
k
EA:{VA(’U)HFA(U)"UEE¢}UU{TL*—>W/|UI—>TL€VA7 v n' € Vil
i=0

Fa = {v — freshNode(v)

=0

k k
Xy = U dom(V;) — {v € ﬂ dom(V;)
i=0

Vo) =Vi(v) =--- = Vk(v)},

k
U{lm - VVZ} =V
im1

V ={I"—-VeV]|l=I,
(G, Vo, V, F) =C'(s).
The definition above adds a multiway extension to the case of if statements in C except for the second
term of the RHS in the definition of X4. The term has effect that excludes the ¢-functions for variables
that are defined with the identical value. For example, consider the following if statement:
T—a
if (i <m) {goto [} else {pass}
l:.
The different values of v are never confluent at [:. If we placed the ¢-function for v at I:, it would be
redundant. The additional term takes account of this redundant placement.
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We can consider s [: as a multiway nondeterministic do-while statements where [: is the loop header
and each goto [ constitutes a one-way loop. We therefore can define the case of s I: as follows:

C'(l: s) = (Ga, VA, T, FA) @ (G, V',V = V| F),
where G = (img(Va) U img(Fa), Ea),
={v—oneV|vé Sy},
Va = {v — freshNode(¢;) | v e Xy},
Fa = {v — freshNode(v) | v € 34},

k
EA={VA(U)>—>FA(U)|ve2¢}uU{n»—>n’!aneVA, v n' eV}

i=1

k
2y = | dom(Vi),
i=1
k
U{Zm = V;} =V,
i=1
Vi ={I"—-VeV]|l=I,
(G, Vo, V,F) =C(s).

The case of I: s does not necessitate a special attention to the values of variables defined in s because
the values of defined variables become confluent with unknown values at the entry of I: s.

We consider the cases of if statements and while statements. The primary concern is w because set-
aside variable bindings have no effect on the confluence of values on if statements and while statements.
Specifically, if there is no control flow from the then part of an if statement or the else part, we do not
have to place ¢-functions at the exit of the if statement. if there is no control flow from the loop body
of a while statement, we do not have to place ¢-functions at the exit of the while statement. Anyhow,
the term V of a result (G,V,V, F) is constructed by unifying every term V of the results of subtrees.
We therefore can define the case of if statements and while statements as follows:

C'(if (e) {s1} else {s2}) = (G,V,V; UV, F),

G.uGLuG, (Vi=wvV,=uw),
where G = < | )
identical to C (otherw1se)
w (V:‘, w)v
v V., (V;g—(,U/\Ve?éw),
v Vi £w AV, =w),
identical to C  (otherwise),
P VR UF, (Vi=wvV.=w),
identical to C  (otherwise),
(G, {$ = nef, Fe) = (e)

(Gt7 mavta Ft) = C (81)3

(Gev‘/€7VE7F€) = CI(SQ)a
. N (Gev Gy D, Vy, Feu Fy) ((Gyyw, Vi, Fy) = C'(s)),
C(Whlle (6) {5}) - {(G,MV{;,F) ((Gb,‘/bavban) _ C/(S)),

where (G, {$ — n.}, F.) = C(e),
G, V, and F are identical to ones in C.

The ASTs of expressions, assignments, and empty statements never contain any goto statement.
These cases in C’ are identical to C.
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P = s (Program)
s u= G | s1sy | if (G) {s1} else {sp} | while (G) {s} | I: (Statement)

Figure 8.7: Syntax of reduced ASTs derived from the while language with goto/label, where G denotes
a metavariable over value graphs and G’ denotes a metavariable over extended value graphs.

8.4.3 Tolerating Multiple-Entry ASTs by Reduction
Reduced ASTs

The source of the difficulty is malignant goto/label statements that cause multiple-entry ASTs. Al-
though compilers can introduce goto/label statements, transformations seldom introduce malignant
ones®. Especially, high-level transformations such as inlining hardly do it. Since structured programming
is widespread, we can assume malignant goto/label statements in a given AST to be rare. We call this
assumption sparse malignancy.

To utilize sparse malignancy, we introduce a reduced AST, which is the result of applying C’ to as
large portion of a given AST in the while language with goto/label as possible. Figure 8.7 shows the
syntax of reduced ASTs. We can construct reduced ASTs simply by applying C’ to ASTs and by checking
whether label statements can reduce to value graphs.

The number of (extended) value graphs in a reduced AST, which we call it the size of the reduced
AST, is in proportion to the number malignant label statements in its original AST. Letting k& be the
number of malignant label statements in a given AST and d be the maximum depth of them, The number
of (extended) value graphs in its reduced AST is O(kd). Owing to the associativity of ®’, we can flatten
statement sequencing, and thereby d is the number of if/while nesting. From the structure of realistic
programs, we can assume d to be a constant. From the assumption of sparse malignancy, we can assume
k to be small. The sizes of reduced ASTs are therefore small.

The remainder of this subsection, we use (reasonably small) reduced ASTs for placing ¢-functions.

Approximate Placement of ¢-Functions

Although we explain the difficulty of the ¢-function placement in Section 8.4.1, strictly, it is difficult to
avoid placing redundant ¢-functions. As mentioned in Section 8.2.2, placing redundant ¢-functions is
safe. However, they will be obstacle of detecting congruence on value graphs and thereby degrade the
precision of equivalence based on congruence. We present a simple method for approximate placement
of ¢-functions containing reasonably few redundant ones.

The standard approximate approach is a brute-force placement on CFGs. It places ¢-functions for
all variables at the entry of every basic block. Our approximate approach to ¢-function placement on
reduced ASTs is more precise and efficient.

First, the reduced AST of a given program is much smaller that the CFG. because an SEME AST
that reduces to an extended value graph is more general than a basic block and contain a larger portion of
a given program. The reduced AST displays their join points in its control constructs. Even a brute-force
approach on reduced ASTSs is therefore more efficient and precise.

Next, we consider pruning ¢-functions on the basis of live variables because ¢-functions for dead
variables are unnecessary. Although we can calculate live variables by using our syntax-directed method
[SM14b] for DFA, we can obtain approximate live variables in a simpler manner. We construct merely
the union of free variables dom(F') for all (extended) value graphs. We can use it for a safe approximation
of live variables. This approximation is analogous to the construction of live variable in semi-pruned SSA
[BCHS98|. This approximation is known to provide a reasonable precision with a cheap computation.
While the approximation in semi-pruned SSA is based on CFGs, our approximation is based on reduced
ASTs. Since reduced ASTs are always smaller than CFGs of basic blocks, our approximation is more

6For example, the elimination of jumps by code replication [MW92, MW95] can change natural loops to unstructured
loops. These are applied to programs in the low-level phase.
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efficient. While the approximation in semi-pruned SSA calculates live variables precisely in each basic
block, our approximation calculates them precisely in the fragment reduced to each extended value graph.
Since this fragment covers a larger portion than a basic block, our approximation is more precise.

We obtain a set Xy of approximate live variables by using the method above. Then, we place ¢-
functions for all variables in X4 at every label statement. If we calculate live variables through DFA,
we obtain a distinct set of live variables for each label statement, and thereby place ¢-functions for the
variables in each distinct set.

Construction of Value Graphs Here we define Ca, where denotes a function that construct a value
graph from a reduced AST. We assume X, to be obtained. Let ®;(v) be a ¢-node placed for a variable
v at a label statement I:. The case of G’ is defined as follows:

CA(G, V.V, F) = (G", V', F'),
where G’ = G U (dom(EA) U img(Ea), Ea),
Vi={v—neV|veXls},
F' = F U {v > freshNode(v) | v € By, v ¢ dom(F)},
En ={®;(v) = F'(v) | v e Ty, " € dom(V)},
u{®(v) > n|l"—>V,eV, v—>neV;}.

Here, freshNode(v) denotes the value of v at the entry of the fragment reduced to a given extended value
graph. The case of label statements is defined as follows:

Ca(l:) = ((img(V) v img(F), E), V, F),
where V = {v — ®;(v) | ve Xy},
F = {v — freshNode(v) | v e L4},
E ={®/(v) — F(v) | ve X4}

Here, freshNode(v) denotes the value of v at the entry of a given label statement fragment, where a goto
statement is regarded as a control transfer into a label statement without passing through its entry.

The cases of if statements and while statements are identical to those of C except for placing normal
¢-functions instead of high-level ones. This is because an execution path via label statements do not
constitute high-level control structures. For example, consider the following if statement containing a
label statement:

if (i <n) {x<—a l:} else {z < b}.

At the exit of the if statement above, we cannot distinguish an execution path via goto [ from an
execution path of the if statement. Because of such cases, we have to place normal ¢-functions. The
case of statement sequencing is identical to that of C.

¢-Function Elimination To improve the precision of equivalence detection based on congruence, we
can do no better than to eliminate redundant ¢-functions. We can use existing methods [AH00, BBH*13]
for eliminating redundant ¢-functions from programs in SSA form. The method by Aycock and Horspool
[AHOO] iterates elimination of trivial ¢-functions and global rewriting of variables until it converges. The
method by Braun et al. [BBH"13] first find strongly connected components in the data dependency
among ¢-functions and then eliminate them. We can eliminate redundant ¢-functions on value graphs
by constructing equivalence classes of ¢-nodes. Then, ¢-nodes constitute union-find trees as in variable
nodes. The find operation corresponds to the elimination of ¢-functions and rewriting of variables in
both methods. The elimination of ¢-functions on value graphs is more efficient than that on CFGs in
SSA form because we can ignore high-level ¢-functions in elimination. Note that both methods eliminate
all redundant ¢-functions if a given CFG is reducible.
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Marrying with CFG-based Approach

The standard algorithm [CFR*91] for placing ¢-functions is based on dominance frontiers. Dominance
frontiers formalize necessary ¢-functions and are the most standard criterion of the minimality of ¢-
functions. Here we calculate dominance frontiers from reduced ASTs, place ¢-functions, and construct
value graphs from reduce ASTs.

Construction of Reduced CFGs A dominator tree is a tree representation of control dependence
on CFGs. Dominator trees are essential for calculating dominance frontiers. Since a dominator tree
is defined on a CFG, we require CFG-like structures as input. We therefore construct a reduced CFG,
which represents the control flow of a reduced AST in the form of CFGs.

To begin with, we have to consider what point in a reduced AST becomes a node. We assign a
number to a point in a reduced AST and regard the number as a node of its resultant reduced CFG.
We assign numbers to join points such as the exit of an if statement, the entry of a while statement,
and a label statement. Since an extended value graph represent a fork of control flow, we assign a
number to each of the entry and exits of an extended value graph. We consider that each exit of an
extended value graph contains the corresponding variable binding and the enter has the occurrences of
free variables. Although a value graph with the empty variable binding is unnecessary for calculating
dominance frontiers, dominator trees that contain value graphs as nodes are useful for constructing value
graphs. We therefore assign numbers to the condition parts of an if statement and an while statement.

Next, we construct the edges of a reduced CFG. We can calculate edges, i.e., pairs of node numbers
simply in a two-pass accumulative syntax-directed manner. The first pass is a bottom-up accumulation
that calculate the exit node number of each subtree of a reduced AST. The first pass is a bottom-up
accumulation that calculate the exit node number of each subtree of a reduced AST. The second pass is
a top-down accumulation that propagate predecessor numbers. The pairs of an assigned number and a
accumulated predecessor number are the edges of a reduced CFG.

Letting n be the size of a reduced AST and n; be the number of goto statements, the size (i.e., the
number of nodes) of its reduced CFG is O(n+ny). From the assumption of spare malignancy, this size is
small. The costs of both calculating a dominator tree and calculating dominance frontiers depend only
on the size of a given CFG. Both calculations on a reduced CFG are much cheaper than the standard
approach based on CFGs. Both costs are negligible in the whole cost of constructing a value graph.

Construction of Value Graphs If a reduced CFG, its dominator tree, and its dominance frontiers
are obtained, we can place ¢-functions in a reduced CFG by using existing CFG-based algorithms. Then,
we fill the arguments of a ¢-functions for variable v with free occurrences of v (i.e., variable nodes tagged
by v). Lastly, we connect separate (extended) value graphs by determining the values of free variables.
This is a straightforward computation on the dominator tree. we start from a node of the reduced
CFG in which a free occurrence of v, and climb up the dominator tree until v — n € V are found in a
reached node. We define the value of v as n, by unifying both nodes in value graphs. After determining
the values of free variables, we obtain a resultant value graph in a form scattered over the reduced
CFG. However, this scattered form does not matter because we have already constructed 7. We have
successfully obtained a value graph with no redundant ¢-function.

8.5 Related Work and Discussion

The original value numbering presented by Cocke and Schwartz [CS70] was a local optimization for basic
blocks. This method performs redundancy elimination on the fly while constructing value graph. A value
graph limited in a basic block is a directed acyclic graph (DAG). Reif et al. [RL77, RL86, Rei78, RT82|
extended value numbering to a global optimization. They used a global value graph, which is the
expression DAG derived from each basic block connected with use-def chain in a given CFG. They used
a birthpoint, which is a notion equivalent to ¢-functions but it does not form a function or an assignment.
They also called a global representation of expressions a cover. Reif and Lewis [RL77, RL86] developed a
method for calculating the least fixed point of covers, which is the result of copy propagation and constant
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propagation/folding. Reif and Tarjan [Rei78, RT82] developed a more efficient method for calculating
a simple cover, which is not optimal in the sense of the prior work [RL77, RL86] but reasonably small.
The birthpoint for calculating simple covers is identical to ¢-functions based on dominance frontiers
[CFR*91]. After the formalization of dominance frontiers had become de facto standard, the calculation
of simple covers is considered as one of algorithms for placing minimal ¢-functions [BP03|. The method
by Reif and Tarjan calculates a simple cover equivalent to SSA and applies copy propagation and constant
propagation/folding to it. Lastly, by using a method by Downey et al. [DST80] for calculating congruence
closures of directed graphs, it constructs the minimal simple cover, where common subexpressions are
unified. Meanwhile, our method constructs value graphs through on-the-fly copy propagation. In Downey
et al.’s algorithms, union-find trees were used for unify congruent subgraphs. Our choice of using union-
find trees for value graphs is therefore reasonable.

Alpern et al. [AWZS88] revisited Reif et al.’s work from the perspective of SSA. They adopted ¢-
functions for embedding control flow into value graphs. Their paper hardly described how to construct
value graphs except for applying copy propagation. This is because SSA construction is equivalent to
embedding value graphs into program texts. In fact, variable names are used for value numbers, i.e.,
the addresses of the nodes in value graphs in value numbering on SSA form [BCS97]. The technical
contribution by Alpern et al. was to show the benefits of embedding high-level control structures in the
form of operators into value graphs. Specifically, they introduced three operators: ¢;s for an if statement
and a pair of @enter and Gexit for the entry/exit of a repeat-until statement. In later studies on SSA,
these were called gating functions [BMO90].

Dwhile used in this chapter was not an operator introduced by Alpern et al. @enter holds the depth
of loop nesting to make congruence detection safe. However, as mentioned in Section 8.2, to check the
containment of loops is essential. In fact, if we compare loops by their depth, only loops of the same
level can become congruent. The comparison of the depth of nesting is merely an approximation. This
approximation is required from the perspective of efficiency because we can implement constant-time
checking of loop containment by encoding the nesting of loops into integer intervals. Although ¢enq
is also a little different from ¢y, both roles are the same. Use of ¢ypnile and ¢eng is not an essential
difference between Alpern et al.’s work and our work.

Tate et al. [TSTL11] presented an optimization method based on equivalent transformations of pro-
gram expression graphs (PEGs). Their PEGs were the same as value graphs presented by Alpern et
al. except that dexiy was replaced with a pair of eval/pass operators. They implemented optimizations
based on algebraic transformations such as operator strength reduction by constructing augmented value
graphs that contain the history of transformations. To prove the correctness of translation, They showed
the pseudocode of a syntax-directed translation from the while language to a PEG. This is almost equiv-
alent to our algorithm presented in Section 8.3. In fact, they implemented translation from a reducible
CFG to a PEG [TSTL10].

It had been a folklore that the SSA construction of structured programs that have only SESE control
flow such as the while language is easy. The work by Brandis and Mdssenbock [BM94] was the first to
clarify this folklore. They presented a one-pass syntax-directed algorithm for the SSA construction of
structured programs. The idea to place ¢-functions described in Section 8.3 is identical to their work.

Braun et al. [BBH'13] developed a method for SSA construction from ASTs to CFGs in SSA form.
Their method is seemingly similar to our work, but is actually different from ours. First of all, their
method is not in a syntax-directed manner but is to perform query propagation over intermediate incom-
plete CFGs. Their method is a CFG-based algorithm for placing ¢-functions in a demand-driven manner.
It implicitly prune ¢-functions on the basis of live variables because a query of placing ¢-functions propa-
gates from use of variables backward. Their method is roughly a demand-driven version of the brute-force
approach and therefore can place redundant ¢-functions. They also developed a method for eliminating
these redundant ¢-functions. As mentioned in Section 8.4.3, their method for eliminating ¢-function is
useful even for value graphs.

Our algorithms described in Sections 8.3 and 8.4.2 follow a manner of Rosen’s high-level data-flow
analysis [Ros77, Ros80]. Use of reduced ASTs is also a straightforward extension to Rosen’s approach.
Actually, extended methods [MFS79, SM14b] for taming goto/label statements utilize a notion identical
to reduced ASTs explicitly or implicitly. An extension by Mintz et al. [MFS79] is to apply a CFG-based
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algorithm on the fly to a smallest intermediate reduced AST. Their extension is directly applicable to our
method described in Section 8.4.3. It will bring smaller reduced CFGs and thereby make it inexpensive to
place ¢-functions on reduced CFGs. Our extension [SM14b] is inadequate for constructing value graphs
because it exploits the algebraic properties of DFA as described in Section 8.4.1. Our extension utilizes
reduced ASTs implicitly because it reduces the goto-free part on the fly by using Rosen’s method.

8.6 Conclusion

In this chapter, we have presented a syntax-directed method for constructing a value graph from a
given AST. Our method performs in a simple yet precise single-pass manner to the while language with
break/continue (or equivalent goto/label) statements. Our method utilizes reduced ASTs for tolerating
malignant goto/label statements with respect to precision or cost. The technical novelty of our method
is very limited because it is based only upon existing notions and techniques. Our work, however, gives
a concrete guideline for implementation. Our approach will be a basis for implementation of high-level
compiler optimizations.

We have developed the prototype implementation of C and Ca on top of COINS?. We also have
confirmed that these are actually feasible in a realistic cost. We plan to implement value numbering
by using our method and evaluate it practically. Incorporating our approach with high-level compiler
optimizations is left for future work.

"http://coins-compiler.sourceforge. jp/



Chapter 9

Lessons from Syntax-Directed Program
Analysis

We have developed syntax-directed methods for program analysis in Chapters 7 and 8. In this chapter,
we examine this practice from the perspective of syntax-directed programming.

Data-flow analysis (DFA) in Chapter 7 and value-graph construction (VGC) in Chapter 8 are similar.
Both formalize program fragments as functions and calculate results by composing them. This function
composition is an interpretation of statement sequencing.

The production rule of statement sequencing is identical to that of Join in JList, and both interpre-
tations are similar. The interpretation of Join is the concatenation of two lists and that of statement
sequencing is the sequential conjunction of two computations. It is therefore natural to interpret state-
ment sequencing as function composition in syntax-directed program analysis. The formalization of
programs with statement sequencing brings associativity useful for load balancing. This justifies our
observation that formalization with trees should be first.

Our syntax-directed method for DFA can be parallelized on the basis of the independence of siblings
and the associativity of function composition. We do not use segmented trees for parallelizing it because
the balancing of statement sequencing suffices for the balancing of a given whole AST. In this case,
a extremely deep nesting of if/while statements causes poor load balancing. Because such a nesting
in computer programs is highly improbable, segmented trees are not worth using. This justifies our
observation that it is important to consider the underlying data of trees.

We thus have justified our observations mentioned in Chapter 5 in this practice. Furthermore, the
difference between DFA and VGC mentioned in Chapter 8 has brought an unsurprising yet important
observation: true concerns in problems would not be the structures of given trees.

Recall that the difference of methods for taming goto/label statements. Its root cause is the difference
of the concerns with a given program. DFA inherently requires the regular paths of a given program
and does not use the control flow per se. Meanwhile, VGC inherently requires the control flow of a given
program and its dominance relation for ¢-placement. We cannot determine the dominance relation of
a program fragment in the presence of unknown control flow, while we can determine the regular paths
around unknown control flow. In the presence of goto/label statements, we therefore can construct
more compact intermediate results of DFA than ones of VGC. This difference between DFA and VGC is
irrelevant to given trees and relevant to their problem specifications.

Our syntax-directed methods merely utilize the structure of a given tree for discovering easy parts of
the whole computation. Tree computations per se are not essential. Use of trees is merely an issue on
algorithmic engineering. This observation is not limited to our methods. For example, the purpose of use
of search trees in various applications is acceleration, which is an issue on algorithmic engineering. From
this practice, we conjecture that most of tree-based algorithms use trees for algorithmic engineering and
not for problem specification.
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Part 111

Programming With Neighborhood
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Chapter 10

Neighborhood Computations

The observations described in Chapter 5 suggest that it is unreasonable to consider from patterns of tree
computations first. We should consider application domains first. In Part II, we have selected program
analysis for an application domain because its computational structure is similar to list/tree skeletons.
In this part, we attach importance to practical applicability and select spatial computation based on
neighborhood, i.e., neighborhood computation, for an application domain.

A typical neighborhood computation is stencil computation [KBB*07, RMCKB97, BHMS91|, which
is extensively used in scientific computing. In the standard stencil computation, the space of a domain
is divided into a uniform grid, and each cell of the grid is updated by using its neighbor cells. By
mapping the grid into multidimensional arrays, the stencil computation is implemented as a regular array-
based computation. This stencil computation is embarrassingly parallel because the updating of each
cell. A naive parallelization is, however, insufficient in practice because this stencil computation often
repeats over time steps in scientific computing. If we perform the stencil computation of each time step
sequentially, it incurs a lot of cache misses because of poor locality, and results in poor performance. The
existing work [KBB*07, DMV 08, TCK*11] on stencil computation therefore combined parallelization
and locality enhancement.

Another typical neighborhood computation is the querying of space-partitioning trees, where a query
prunes far subspaces and finds neighbors. It contains range queries to databases and nearest-neighbor
queries to statistical datasets. Practical algorithms with reasonable approximation such as the Barnes-
Hut algorithm for N-body problems and the photon mapping for global illumination utilize this querying.
Because a sufficient number of independent queries are given in practice, this computation is also em-
barrassingly parallel. However, a naive parallel querying also has poor locality and incurs a lot of cache
misses in iterative traversal of space-partitioning trees. There was also the work [JK11, JK12, JGK13]
to combine parallelization and locality enhancement.

Programming for neighborhood computations thus raises the issue of locality enhancement, which
is different form load balancing. Nevertheless, programming in a divide-and-conquer manner is highly
appropriate because the divide-and-conquer paradigm is known to be highly advantageous both to load
balancing and locality enhancement [FLPR99, FS06, BGS10]. We therefore deal with cache-efficient
divide-and-conquer approaches to neighborhood computations in this part.

We first deal with stencil computation (Chapter 11). Although it is not an irregular algorithm based
on trees, we investigate locality enhancement that promotes a simple divide-and-conquer computation.
We secondly deal with iterative traversal of space-partitioning trees (Chapter 12). We investigate locality
enhancement for both general space-partitioning trees and a skeleton that abstracts an iterative querying.
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Chapter 11

Time Contraction for Optimizing
Stencil Computation

This chapter is self-contained and is a revised and extended version of our unpublished paper [SI11Db].

11.1 Introduction

Stencil computation appears extensively in practical applications. It appears particularly in solvers
for partial differential equations (PDEs) discretized through a finite difference method (FDM). In such
cases, stencil computation means to update each spatial grid point by using its temporal and spatial
neighborhood. For example, the following is a typical one-dimensional three-point stencil: xEtH) =
clxl(t_)l + czxgt) + 03xz(-i)1, where x; denotes the i-th cell of discretized space, xgt) denotes a value of z; at
the t-th step of discretized time, and every c; is a constant that is defined by physical conditions.

Owing to the practical importance of stencil computation, its optimization is a long-term research
topic. Locality optimization [Won00, MW99, KBB*07, 0G09, FS05, FS07, FS06], vectorization [HSP*11],
and auto-tuning [DMV™08| for it have been investigated. Even domain-specific compilers for it have
been developed [BHMS91, RMCKB97, TCK*11]. Because memory bandwidth very often becomes a
major bottleneck in stencil computation, locality optimization is the most important. Time skewing
[Won00, MW99|, which is a specialized combination of tiling [WL91] and skewing, is the standard ap-
proach to optimizing the locality of stencil loops. Intuitively, time skewing is a reordering of computations
such that a small part of the spatial grid progresses by several time-steps.

In this paper, we present a novel approach to optimizing stencil loops. First of all, notice that a stencil
loop can often be represented by a recurrence equation with a linear transformation: x(t*+1) = Az,
where z(* denotes a vector of spatial grid points at the ¢-th time-step, and A is a sparse matrix whose
non-zero elements regularly occur. For example, the following represents the above three-point stencil:

t+1 t
(t+1) ca c3 T (t)
€2 i1 C2 C3 €2
= b)
ITN-1 ¢ C2 C3 TN-1
TN 1 C2 TN

where the boundary condition is assumed to be zero-constant; i.e., xg = zy41 = 0. Then, from this
recurrence equation, we obtain **t%) = AF2() Our key observation is that by computing A*, we can
obtain a wider stencil that computes k time-steps at once. That is, k& time-step iterations are contracted
into one. However, if we compute A* and store this result naively, this contracted loop is too costly.
To solve it, on the basis of the regularity of A, we have developed a cheap way to compute A* and a
compact representation of this result. As a result, this contracted loop becomes efficient, and then it
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causes fewer cache misses than the original loop since fewer time-step iterations are performed. This
contraction of time-steps thus functions to eliminate redundant memory write and arithmetic, as well as
to improve locality of stencil loops.

This paper makes the following contributions:

e We describe loop contraction, a technique to optimize a loop that recurrently applies a linear trans-
formation, by contracting multiple iterations into one (Section 11.2). It is easy and mathematically
trivial; similar formulations are found in [IKF05, LAAKO06, LTA03]. However, we have not found
exactly the same one in the context of loop transformations. We therefore believe that, even though
not novel, it is a distinct perspective in loop optimizations.

e We have developed time contraction, a novel approach to optimizing stencil loops. It is a special-
ization of loop contraction. We describe its concept, techniques to implement it, and its effects on
complexity, as well as its pros and cons (Section 11.3). Time contraction is quite different from
time skewing [Won00, MW99] and is effective for reducing the cache complexity of stencil loops.
This is the most significant contribution of our work.

e We have experimentally demonstrated the effectiveness of time contraction by using several imple-
mentations of a one-dimensional three-point stencil derived from the heat equation (Section 11.5).
In all cases, the time contraction outperformed time skewing (i.e., the standard approach) in per-
formance improvement: in the best settings, the time-contracted version achieved 72.4 % better
performance then the time-skewed one.

e We describe tuning techniques for stencil loops on the basis of time contraction (Section 11.4).
Time contraction facilities tuning of stencil loops. We have been implementing an experimental
FDM library that generates tuned stencil loops by means of these techniques. In a preliminary
experiment, a generated loop achieved up to 60 % better performance than a manually vectorized
and time-contracted one (Section 11.5).

11.2 Loop Contraction: Reduction of Iterations
11.2.1 Explanation by Example
Consider the following loop that computes a Fibonacci number:

561(—1
132%1

for i=1ton {
X T2
«—
X9 xr1 + X9

After this loop, x; and x5 denote the (n + 1)-th and (n + 2)-th Fibonacci numbers, respectively. This
loop can be transformed into

}.

for i=1ton {

@)~ 0 )
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By using loop unwinding, we obtain

for i =1 to n/k {

()63 ()

For simplicity, n is assumed to be a multiple of k. Since this matrix exponentiation is a loop-invariant
expression, we can hoist it. As a result, this loop body becomes a matrix-vector multiplication. It means
that iterations of the loop are contracted into one. We therefore call it loop contraction.

The effect of loop contraction differs from that of simply conventional optimizations for an unrolled
loop. The difference is in the cost of a loop body. Consider the above example again. Since conventional
optimizations (e.g., copy propagation and common subexpression elimination) do not capture the matrix
exponentiation, its k-times-unwound conventionally optimized body necessitates k + 1 additions. In
contrast, its k-times-contracted body necessitates only 4 multiplications and 2 additions of the 2-by-2
matrix-vector multiplication. The cost of a contracted body is independent of k; it is the core advantage
of loop contraction.

If £ and every element of a coefficient matrix are compile-time constants like computing a Fibonacci
number above, the loop-invariant matrix exponentiation can be completely computed in compile-time.
In such an ideal case, loop contraction reduces the time complexity by a factor of 1/k.

11.2.2 Target of Application

Stencil computation is another example to which loop contraction can be applied; it is the main target
in this paper. Recall the matrix representation of the three-point stencil described in Section 11.1:

) = Az® | where A =

This is similar to the above loop that computes a Fibonacci number. Throughout this paper, we call a
coefficient matrix that appears in stencil computation (like the above) a stencil matriz and call a vector
that is iteratively updated by multiplying a stencil matrix a grid vector. Unless otherwise noted, A
and x are a stencil matrix and a grid vector, respectively. We call a contiguous non-zero part of a row
of a stencil matrix a stencil coefficient; e.g., for the above stencil, [c1,ca,c3], [c1,c2], and [ca, c3] are
stencil coefficients. In a stencil matrix, at least one stencil coefficient appears regularly and recurrently
(e.g., [c1, 2, c3] in the above). We call such stencil coefficients regular ones, and call the others irregular
ones; irregular ones represent boundary conditions for solving a governing PDE, e.g., the heat equation.
Note that whereas the only regular coefficient exists near the diagonal elements of a stencil matrix in
the unidimensional case, several regular coefficients are scattered in a row of a stencil matrix in the
multidimensional case.

Loop contraction to a stencil loop widens its stencil; i.e., the number of non-zero elements of a stencil
matrix gradually increases with loop contraction. For example, after once contraction, the three-point
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stencil above is transformed into the following five-point stencil:
(2 = Az® where
s 4 Cis
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This is physically natural. The (k — 1)-time contraction means the derivation of a recurrence equation

that at once computes k time-steps. To capture the propagation of changes in k time-steps, we require

the spatially wider-area neighborhood for each grid point. In other words, loop contraction to a stencil
loop is, by contracting time-steps, to transform it into an equivalent wider-time-step one.

11.2.3 Problem Statement

Unfortunately, the application of loop contraction to a stencil loop is useless. Recall the computation of
a Fibonacci number. Let k& be the number of contracted iterations. The significance of loop contraction
is that the cost of a contracted loop body is independent of k. This property is limited to the case of a
dense coefficient matrix. Every stencil matrix, however, is sparse. As described above, non-zero elements
in a stencil matrix increase with k. The cost of a contracted body hence also increases with k. Even
though some redundancy is eliminated through contraction, in this case, loop contraction is insignificant.
The above is a problem in the aspect of time complexity. Another grave problem is in the aspect of
space complexity. In the above loop computing a Fibonacci number, the size of its updated vector is 2, a
quite small number. The space of a 2-by-2 matrix does not become overhead at all. In a stencil loop, in
contrast, the size of a grid vector, N, is not a small number. The space of an N-by-N matrix, i.e., O(N?)
space becomes infeasible overhead. To obtain a significant effect of loop contraction, increasing k until
a stencil matrix becomes a dense matrix is clearly utterly futile. Even if k is small, a contracted loop
necessitates more space than the original one. Consider the one-dimensional three-point stencil above.
We can roughly estimate the space of the non-zero elements of a contracted stencil matrix as O(kN).
The cost of contraction to obtain it is enormous. In contrast, the original stencil matrix necessitates only
the space of ¢1, ca, and c3. Loop contraction therefore worsens the space complexity of stencil loops.

11.3 Time Contraction: Optimization for Stencil Loops

11.3.1 Our Key Observations and Solution

We resolve the problem stated in Section 11.2.3 and present a novel approach to optimizing stencil loops
on the basis of loop contraction. The following are key observations:

e Even after modest loop contraction, a contracted stencil matrix is still a stencil one; that is, in the
middle of a contracted stencil matrix, a regular pattern occurs.

e We can compute part of a grid vector by using the corresponding part of a contracted matrix.

On the basis of these observations, we have developed a specialization of loop contraction. First, we
contract only the regular coefficient(s) of a stencil loop and obtain a coefficient table for its widened
stencil. Then, we divide a grid vector into two parts: contracted and non-contracted. The contracted
part is not influenced by boundary conditions during a contracted time-step; the non-contracted part, in
contrast, is influenced. We compute the contracted part with a widened stencil. In contrast, we compute
the non-contracted part in a standard manner. We repeat it at each contracted time-step. Figure 11.1
illustrates computations for the contracted and non-contracted parts in the case of a one-dimensional
stencil. We call this technique time contraction.
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(a) Computation for contracted part. Bold black line denotes result of computation. Gray-meshed part would
be computed in standard approach but is skipped owing to time contraction.

TN

(b) Computation for non-contracted part of time contraction, where k time-step iterations are contracted into
one. Bold black lines denote result of computation. Overall two-color gray part is computed in a standard
way. Dark gray part is the intersection with gray-meshed (i.e., skipped) part in Figure a. If skipped part were
computed, dark gray part would be unnecessary for computation.

Figure 11.1: Illustrations of time contraction for one-dimensional stencil, where k time-step iterations
are contracted into one.

Ping-Pong Buffering As the standard implementation of a stencil loop, two buffers for grid vectors
are interleaved, as shown in Figure 11.2a. In time-contracted loops, however, interference between
computations for the contracted and non-contracted parts occurs if we interleave the two buffers naively.
We can avoid it easily by using an extra buffer for the neighborhood of boundaries. After computing
the contracted part, we have only to interleave the extra buffer and the input one in computing the
contracted part and finally store the result into the output buffer, as shown in Figure 11.2b. Then, since
the non-contracted part is much smaller than the contracted part, we can use the finished part of the
input buffer as the extra one. We do not have to allocate any space for ping-pong buffering. Note that
if we prefer computing the non-contracted part in advance, we have only to interleave the extra buffer
and the output one; then the immutate part of the output one is available for the extra one.

11.3.2 Precomputing Stencil Coefficients

To compute a widened stencil in a time-contracted loop, we have to prepare a coefficient table containing
contracted regular coefficients. We describe our method to precompute coefficients through an example
where the three-point stencil matrix described in Section 11.1 is contracted twice, i.e., the case of A3.
First, we estimate the size of the time-contracted (i.e., widened) stencil. Since the original stencil is
a three-point one, the size of a two-times-contracted stencil is seven. Hence, we can define A% as follows:

* *
* * *
* * * * * *

T Tr2 T3 T4 Ts Te T7
A3 =

T Tre T3 T4 Ts Te T7

where # denotes a part of irregular coefficients. From the regularity of the occurrences of [rq,...,r7], we
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for (int t = 0; t < T; ++t) {
y[0]l = x[0] + x[1];
for (int i = 1; i < N-1; ++i) {
y[i]l] = x[i-1] + x[i] + x[i+1];
}
y[N-1] = x[N-2] + x[N-1];
std::swap(x,y);

(a) Naive version

for (int t = 0; t < T; t += k) {

// contracted part

for (int i = k; i < N-k; ++i) {
y[i]l = 0;
for (int j = -k; j <= k; ++j) {

y[i] += c[jl*x[i+j];

}

}

// non-contracted part near x[0]

for (int j = 1; j <= k; ++j) {
z[0] = x[0] + x[1];
for (int i = 1; i < 2xk-j; ++1i) {

z[i] = x[i-1] + x[i] + x[i+1];
}
std::swap(x,z);
}
for (int i = 0; i < k; ++i) {
yl[il = x[il;
}

// non-contracted part near x[N-1]
// is omitted, similar to the above
std::swap(x,y);

(b) Time-contracted version, where k time-steps are contracted into one, ¢ denotes coefficient table for its widened
stencil, and z denotes extra buffer. For simplicity, k % 2 == 0 is assumed.

(t+1) _ ()

( ORI JNC)

Figure 11.2: Implementations of = i+, with ping-pong buffering, described in C++.

can see that the size of A can be shrunk into a 7-by-7 matrix. Let Ag be the shrunken A. We obtain
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We therefore compute [rq,...,r7] as follows:
T1 r 0 r T1 0
T9 0 T9 0
3 C1 3 C1
T4 =] | AAy, <— ry | = AZAST Co
Ts C3 Ts5 C3
Te 0 Te 0
7 0 7 0

Since AT is a stencil matrix, this is also stencil computation.

This algorithm is also applicable to multidimensional stencils. However, since only the occurrence
of coeflicients in a row of a stencil matrix is different, we have to consider shrinking stencil matrices.
Consider afresh why we can shrink a stencil matrix, from a multidimensional viewpoint. That is because,
to compute contracted coefficients, we require only a spatial domain into which one widened stencil fits.
In other words, we shrink the spatial domain of a stencil loop to this extent and thereby its stencil matrix
is also shrunk. Concretely, in the multidimensional case, we consider the bounding box of a widened
stencil as the shrunk spatial domain and then obtain the corresponding shrunk stencil matrix. Note that
the padding in the bounding box is convenient for computing coefficients but, of course, unnecessary to
compute a stencil. Therefore, a coefficient table that holds contracted coeflicients necessitates the same
space as a widened stencil.

Let S and B be the size of the original stencil and that of the bounding box of the widened stencil,
respectively. The time and space complexities of precomputing the k-times-contracted regular coefficients
are O(kBS) and O(B), respectively. Since S and B are small in practice, this precomputation is very
cheap. Therefore, even if we implement it as not a compile-time computation but runtime initialization,
its overhead is negligible.

11.3.3 Advantages of Time Contraction

Time contraction is much more space-efficient than naive loop contraction, but what does it improve?
To answer this question, we describe two observations:

e Loop contraction reduces memory write linearly.

e Even if a stencil is widened, we can moderate the degradation of the locality of its computation
well.

The first is obviously derived from the property of loop contraction. It means a kind of bandwidth
optimization because the traffic of memory bandwidth decreases. However, because memory read is
dominant in a stencil loop, this effect per se might not improve the bandwidth efficiency much.

The second is much more important. It is derived from a property of stencil loops: as long as sufficient
data for computing a grid point is in cache, data for computing its contiguous grid points is also in
cache. Owing to this property, widening a stencil does not much increase the cache miss in computing
the whole grid vector in a time-step (see also Section 11.3.4). Meanwhile, for the contracted part, time
contraction reduces the number of time-steps linearly with small additional space. Computation for
the non-contracted part seldom causes cache miss since it accesses a small segment of a grid vector
iteratively. Time contraction thus reduces the cache miss of a stencil loop. Intuitively, time contraction
transforms poor-locality computations over the time dimension into rich-locality ones over the space
dimension(s). It means that time contraction is a kind of locality optimization. Because stencil loops
are memory-intensive, this effect will be very significant.

It is worth noting that in a contracted time-step, each element of the output buffer is written only
once. This is why we can avoid caching written data by utilizing stream writing.

Not always but usually, time contraction reduces the constant coefficient of the time complexity, i.e.,
arithmetic, of a stencil loop. For example, consider time contraction to the three-point stencil described
in Section 11.1 where 32 iterations are contracted into one. Let N be the number of grid points and 7" be
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that of time-steps. The original stencil necessitates 3 multiplications and 2 additions for a grid point; the
total flop count is 5NT. The time-contracted stencil is a 65-point one; it necessitates 65 multiplications
and 64 additions for a grid point. If we ignore the non-contracted part for simplicity, the 65-point stencil
is applied to NT'/32 grid points; the total flop count is (129/32) NT'. In this case, time contraction thus
reduces about 20 % of arithmetic. This effect would be insignificant for memory-intensive computation
but be significant for CPU-intensive computation. Since the improvement of the locality of a stencil loop
relaxes its memory-intensiveness and makes it CPU-intensive, this effect becomes significant.

From the perspective of tuning, time contraction has two advantages. One is that time-contracted
loops by nature are parametrized by k. It is helpful for auto-tuning. The other is that time-contracted
loops have good affinities for existing techniques We describe the details in Section 11.4.

11.3.4 Complexity Analysis

We analyze here the effect of time contraction on the work and cache complexities of a stencil loop in
the ideal cache model [FLPR99|, where the work one is time complexity in the standard sense and the
cache one is the number of cache misses. Note that Z and L denote the cache size and cache line size
in the model, respectively. N and T' denote the number of grid points and time-steps, respectively. We
assume Z « N from the motivation of locality optimization!.

Unidimensional Case

We consider here a one-dimensional contiguous stencil whose size is w.

Naive Loop We consider a naive loop, which simply computes the stencil of every grid point and the
whole grid vector in the same natural order. The work of a grid point is obviously O(w); the work of the
whole grid vector is O(wN); the total work complexity is therefore O(wNT). For the cache complexity
of naive loops, we assume ([w/L] + 1)L < Z. One cache miss asymptotically occurs in sequentially
computing L grid points. O(N/L) cache misses occur in sequentially computing the whole grid vector
in a time-step; the total cache complexity is therefore O(NT/L).

Time-Contracted Loop We consider a time-contracted loop, where k time-steps are contracted into
one and k « T. w’ denotes the size of the widened stencil by time contraction. Since the stencil is one-
dimensional, we obtain (w — 1)k + 1 < w’ < wk. We decompose the contracted part and non-contracted
part in a contracted time-step.

The work complexity of a widened stencil is cw’, where ¢ is its constant coefficient. Since the
contracted part is simply a naive wider-stencil loop, from the case of a naive loop, the work complexity
of the contracted part is cw’(N — w’). For the non-contracted part, consider both trapezoids on the
ends, in Figure 11.1b. The sum of both tops and that of both bottoms are less than or equal to w’
and 2w’, respectively. Since the sum of both trapezoids is (3/2)kw’, the work complexity of the non-
contracted part is less than or equal to (3/2)cwkw’. The sum of these is cw'{N + (3/2)wk — w'}. Since
(w—1)k + 1 < w’, the work complexity in a contracted time-step of the whole vector is O(w'N + w'?).
If w « N, O(w'N + w) = O(w'N). In this case, the total work complexity is therefore O(w'NT/k) =
O(wNT).

For the cache complexity, we consider only the case of ([w'/L] + 1)L < Z since the cache complexity
obviously increases in the case of its negation. The cache miss in a contracted time-step of the contracted
part is asymptotically O(N/L). That of the non-contracted part is asymptotically O(w’/L) if 2w’ < Z. In
this case, since w’ « N, the sum of these is O(N/L). The total cache complexity is therefore O(NT/Lk)
if 2w’ < Z.

Summary In the unidimensional case, time contraction does not change the work complexity asymp-
totically but does improve the cache complexity by a factor of k. Through the analysis above, we obtain

n the case of Z X N, the cache miss is asymptotically negligible.
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two observations: one is that the complexity of the non-contracted part is asymptotically negligible; the
other is that time contraction roughly changes complexity by replacing w with kw and T with T/k.

Multidimensional Case

We now sketch the analysis of the d-dimensional case. Contiguous data over the leading dimension has
contiguous memory addresses. For convenience, we assume that the spatial domain is a hypercube whose
side is N/, consider a d-cube stencil whose side is w, and consider only the case of wé=!([w/L]+1)L < Z.

The work complexity does not matter; similarly, time contraction does not worsen it asymptotically.
Meanwhile, the cache complexity matters. On the basis of the two observations obtained in the unidi-
mensional case, we analyze only the cache complexity of the contracted part and roughly estimate the
effect of time contraction by replacing w with kw and T with T'/k in complexity.
Naive Loop The computation of contiguous L grid points causes w?~! cache misses. One computation
from end to end on the leading dimension causes O(w? *N/4/L) cache misses. The computation in a
time-step of the whole grid vector causes O(w? 'N/L) cache misses. The total cache complexity is
O(w?INT/L).

Time contraction roughly changes w into kw and T into T'/k. The application of time contraction to
a naive stencil loop changes the cache complexity into O(k4"2w?=!NT/L) if w1 (kw + L) < Z. Hence,
in the multidimensional case (i.e., d = 2), time contraction to a naive stencil loop does not improve its
cache complexity.

Hypercube Blocking Consider d-dimensional blocking, where the block is a d-cube whose side is
B. The computation of a block necessitates (3 + w)? space. If (8 + w)? < Z, the computation of
a block asymptotically causes O((8 + w)?~!3/L) cache misses, in space-filling-curve traversal among
blocks. A grid vector consists of N3~ blocks. The cache complexity of the computation in a time-step
is O(NB~4(B+w)418/L) = O((1+w/B)4"1N/L). The total cache complexity is O((1+w/B)* 1 NT/L).

For the blocked stencil loop, time contraction roughly changes the cache complexity into O((1 +
kw/B)"INT/Lk) if (B + kw)? < Z. Hence, as long as selecting k and 3 such that kw « 8 < ZV/4 — 3,
time contraction to a blocked stencil loop reduces cache complexity by a factor of 1/k.

Summary In the multidimensional case, time contraction also improves the cache complexity by a
factor of k under appropriate parameter settings. However, constraints on k& and Z are qualitatively
severe with the increase of d, and unlike the unidimensional case, we require to perform blocking over
the space dimensions carefully on the basis of Z and N together. Although spatial blocking has priority
over time contraction, time contraction is orthogonally effective.

11.3.5 Extension and Applicability

We have dealt with stencil loops in the form x(*+1) = Az® . However, this is not very practical. As an
example of PDEs, consider the heat equation. If we can use only the form (1) = Azx®) we can give
only initial and boundary conditions; we cannot give external input, e.g., heat sources. To deal with
external input, we need to use the form z(**1 = Az(") 4+ b, where b represents heat sources that emit
constant quantities of heat at each time-step. For the form x(**1) = Az® + b, in fact, time contraction
is also applicable. By expanding the induction, we obtain the following equation:

k—1
xR — AFx® 4 Ab, where A = Z Al
i=0

Here, A is also a stencil matrix. Like A*, we require only the regular part of A. We can compute A at the
same cost as A* by accumulating the intermediate results of A¥. After we obtain A, we can compute Ab
in almost the same cost as that of only one time-step iteration of a time-contracted loop. Even though
Ab is usually more expensive than A¥ and A, compared to the overall cost, this precomputation is still
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negligible overhead. Once we compute A* and Ab, the contracted form above becomes the same as the
original form; loop contraction thus succeeds.

The fact that time contraction is applicable to the form x(t*1) = Az® + b implies that it is also
applicable to solving Az = b through the Jacobi method. In the relaxation of the Jacobi method, x is
iteratively updated; (**1) = D=1 — D=1 Rx(®), where D is the diagonal component of A and R is the
remainder. If A is a stencil matrix, D' R is also a stencil matrix. Here, t does not physically mean time,
but we can regard the relaxation process as the progression of time. In fact, solving Az = b corresponds
directly to solving Poisson’s equation through an FDM. In addition, solving Az = b produces another
application. The standard form z(**1) = Az® is actually derived from an explicit FDM, which is one
of the simplest FDMs. In contrast, the forms Azt*1) = () and Az*tD) = A'z® are derived from
an implicit FDM and the Crank-Nicolson method respectively, which are more precise and numerically
stable than an explicit FDM. These methods necessitate solving Ax = b at every time-step. We thus
can apply time contraction to it.

Worth noting is that time contraction is applicable to the finite domain time difference (FDTD)
method, which is the standard FDM for Maxwell’s equations in electromagnetism, and the lattice Boltz-
mann’s method (LBM), which is the standard discretization scheme for computational fluid dynamics
and whose implementation is a part of SPEC 2006. Both are the stencil computation in the form
D) — Az® . For example, by pairing the electric field E and magnetic field H at the same point,
the one-dimensional FDTD is known to be converted into a three-point stencil [OG09]. The standard
two-dimensional and three-dimensional LBMs are implemented as a 9-point stencil and 19-point one.

Although we can apply time contraction to the stencil computation derived from various discretization
schemes as described above, we cannot apply it to every stencil computation. There are three essential
limitations. The first is that it cannot be applied to the Gauss-Seidel method for solving Ax = b.
This is because the product of a stencil matrix and a vector cannot be extracted. The second is that
time contraction is almost useless for dynamic programming such as seam curving [AS07]. To contract
iterations is to avoid computing intermediate results. If we have to store all intermediate results into a
memo table, time contraction as well as loop contraction is useless. However, if we can compute a solution
from skipped intermediate values efficiently, time contraction can be effective. The third is that time
contraction is not effective for problems with boundaries in the middle of the spatial domain, e.g., the
case in the heat equation where insulation objects exist in the middle. The efficiency of time-contracted
loops and its precomputation owes much to the regular occurrences of stencil coefficients. The existence
of boundaries in the middle disrupts this regularity. We can deal with boundaries in the middle by well
segmenting the non-contracted part, but its implementation becomes non-trivial.

11.3.6 Drawback: Lowering Precision

Since time contraction performs algebraic transformation on finite-precision floating-point numbers, it
changes floating-point errors. Unfortunately, in practical situations, time contraction has a negative
effect on loss of significance.

Consider, for example, the one-dimensional heat equation discretized through an explicit FDM. We
obtain the following symmetric three-point stencil: xz(»tH) = Txgt_)l +(1—2r)xz(»t) "‘7'%('21’ where r < 1/2 for
numerical stability. Hence, each element of the regular stencil coefficient is always less than 1. Because
the heat equation is a diffusion equation, it is natural that the sum of all elements of the regular stencil
coefficient is 1. Note that this property of regular coefficients is common in other PDEs. As a result,
the variance of the elements of A* sharply increases with k. Figure 11.3 illustrates the values of the
regular stencil coefficient of the three-point stencil above in the case of r = 1/3 and their changes with
increasing k. Qualitatively, loss of significance by a factor of the vertical distance between two adjacent
points on the same line in Figure 11.3 is caused. Quantitative loss of significance depends on the values
of grid points. Even if we compute a stencil inward from both ends, the order of each intermediate result
little changes. Therefore, this loss of significance is, unfortunately, almost unavoidable. Time contraction
essentially has such a performance-precision trade-off.
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Figure 11.3: Change of regular coeflicients with contraction, where stencils are ; ek Ci T

11.4 Tuning Based on Time Contraction

11.4.1 Parametricity on k

A parameter k, the number of iterations contracted into one is the primary parameter of time contraction.
Time contraction improves locality over the time dimension by a factor of k. Coefficient tables, however,
increase by a factor of k, and the benefits of time contraction premises modest k. Tuning k to an
appropriate scale is thus necessary in time contraction.

As can be seen from Figure 11.2b, time-contracted loop by nature are parametrized by k. In other
words, even though k is a dynamic value, the form of every time-contracted loop does not change at
all. Owing to this parametricity, we can tune k dynamically and adaptively. Although the code of
time-contracted loops is parametric, the data of their coefficient tables is dependent on k. When we
change k, we also have to update a coefficient table. As described in Section 11.3.2, the construction of
coeflicient tables can be implemented as recurrent computation over k. Consequently, when we increment
k monotonically, we can construct coefficient tables incrementally. Of course, when the upper bound of
k is given, we can prepare all coefficient tables in advance. Time contraction is therefore well-suited to
auto-tuning.

11.4.2 Affinity for Unroll-and-Jam

The main computational kernel of a time-contracted loop is, of course, the computation for its contracted
part. As can be seen from Figure 11.2b, the structure of this kernel is simple and compact. It leads to an
advantage of time contraction. This computational kernel has a good affinity for unroll-and-jam [AKO1].

Unroll-and-jam is an optimization for a nested loop; it is to perform unrolling of an outer loop
followed by fusion of duplicated successive inner loops. For example, by applying it to the loop for the
contracted part in Figure 11.2b, we obtain a loop shown in Figure 11.4. By using unroll-and-jam, we can
vectorized the innermost loop for the contracted part easily. Then, usage of the next grid vector (i.e.,
y) becomes efficient by employing scalar replacement. Unroll-and-jam promotes usage of registers but
complicates the body of the innermost loop. An excessively complicated body causes spilling and can
degrade performance. Meanwhile, time contraction increases the number of iterations of the innermost
loop but does not complicate its body. Time contraction thus does not worsen its disadvantage and
promotes its advantage. While time contraction improves cache-level locality, unroll-and-jam improves
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for (int i = k; i < N-k; i += 2) {
y[i+1] = y[i] = O0;
for (int j = -k; j <= k; ++j) {

y[i] += cl[jl*x[i+j];
y[i+1] += c[jI*x[(i+1)+j];
}
}

Figure 11.4: Example of unroll-and-jam; original loop is the loop for the contracted part in Figure 11.2b.

float #**x, *xy; // N-by-N spatial grid
int h; // maximum depth of recursion
const int L = N-2xk;
for (long bv = 0; bv < 4<<h; ++bv) {
// calculate position of a base block
int si = 0, sj = 0;
for (int i = 0; i < h; ++i) {
si += (bv & 0x1<<2%i) * (L>>h<<i);
sj += (bv & 0x2<<2*i) * (L>>h<<i);

}
// compute a base block
for (int i = si; i < si+(L>>h); ++1i)

for (int j = sj; j < sj+(L>>h); ++j)
y[il[j] = compute_stencil(x,i,j);

Figure 11.5: h-level divide-and-conquer blocking for contracted part of 9-point square (two-dimensional)
stencil.

register-level locality. Tuning of both leads to near-ideal performance.

11.4.3 Affinity for Divide-and-Conquer

It is known that the divide-and-conquer approach is useful for locality optimization of stencil computa-
tion. Cache-oblivious algorithms for stencil computation [FS05, FS07, FS06] suppresses cache misses on
the basis of the divide and conquer of iteration space. Such a divide-and-conquer technique, however,
complicates the structure of stencil computation. Time contraction simplifies this complication.

In an cache-oblivious algorithm for a one-dimensional stencil, for example, a computational trape-
zoid (corresponding to the meshed trapezoid in Figure 11.1a) is divided into two parts and recursively
computed in an appropriate order. Then, the two divided parts in the same recursive call are different
in shape and size; moreover, there is dependence between them. These are obvious disadvantages in
parallelizing stencil computation into a load-balanced form. The cause of these is the slope of the trape-
zoid. Recall that in Figure 11.1a, only the top of the trapezoid is computed. The computation for the
contracted part does not have any slope. Consequently, by applying the divide and conquer over only
the space dimension to the contracted part, we obtain a regular recursion easier to parallelize and to
load-balance.

The divide-and-conquer approach is effective especially for multidimensional stencils. As mentioned
in Section 11.3.4, in optimizing locality of multidimensional stencils, blocking over the space dimensions
is necessary in practice. The divide-and-conquer approach is well-suited to this. Then, the depth of
recursion is a good parameter on task granularity. The maximum depth of recursion, h, is easier to tune
than the block size itself in simple blocking. Furthermore, we can generate simple loops parametric on
h with bitwise operations, as shown in Figure 11.5.
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11.5 Experiments

11.5.1 Experimental Library

We have been implementing an experimental FDM library that generates tuned stencil loops on the
basis of the approaches described in Section 11.4. Our library takes the specification of a stencil and
tuning parameters, constructs a coeflicient table, and generates a tuned stencil loop in C++. Generated
loops are vectorized and tuned on usage of registers. In addition, by employing OpenMP directives, they
support multithreading.

Our library is under development. Since the current version is very restrictive, its implementation
itself is too weak to be a contribution of this paper. It is a testbed of tuning techniques.

11.5.2 Experimental Settings

Problem We conducted experiments on the one-dimensional three-point stencil derived from the dis-
cretization of the heat equation by means of the standard explicit FDM described in Section 11.3.6.
We performed a simulation of thermal diffusion in an object whose initial temperatures in one half and
the other were 800 and 300 respectively; both of whose ends were insulated. From properties of the
simulation object, we defined r = 0.1526.

This stencil is a relatively simple one but is appropriate to the comparison between time contraction
and time skewing. It is because in unidimensional stencils, locality on the space dimension does not
matter. Time contraction alone improves only locality on the time dimension. To improve locality
on the space dimensions in multidimensional stencils, we have to employ other techniques, such as
divide-and-conquer blocking described in Section 11.4. In addition, as described in Section 11.4, time
contraction does not disturb blocking. To evaluate effects of time contraction itself, unidimensional
stencils are therefore sufficient.

Programs We implemented by hand four versions: ref is a reference implementation with no manual
optimization, vec is a vectorized one, tiled is a vectorized and time-skewed one, and contrd is a vec-
torized and time-contracted one. We implemented every vectorized version by using intrinsic functions.
We employed the standard vectorization scheme with the palingr instruction of SSSE3, described in
[HSP*11]. To every vectorized version, we had added OpenMP directives; it thus was able to perform
multithreading optionally. tiled was implemented with split tiling [KBB*07|, and its parallelization
scheme was the same as described in [KBB*07]: computing all tiles in parallel and then computing all
the residual parts in parallel. In addition to these manual versions, we used gen, a version generated by
our library. Every floating-point number used in these programs was float.

Environments We used two different environments. For single-threaded programs, we used a machine
equipped with Core 2 Duo E8500 (2 cores; 3.16 GHz) and 4 GB (DDR2-800) running Linux 2.6.31 (32-
bit). Its ideal performance per core is 12.64 GFLOPS?. For multithreaded programs, we used a machine
equipped with Xeon X5550 (4 cores x 2; 3.06 GHz) and 12 GB (DDR3-1333) running Linux 2.6.38 (64-
bit). Its ideal performance is 98 GFLOPS?. For both processors, Hyper-Threading was disabled. Each
single-threaded program was compiled by g+ 4.4.1; each multithreaded one was compiled by g++ 4.5.2.
The default optimization level of g+-+ was 03.

11.5.3 Experimental Results

In this section, N and T are the same as described in Section 11.3.4; B, denotes the number of grid
points updated per tile; k£ denotes, in time skewing, the block size of time-steps, and in time contraction,
the number of time-steps contracted into one. In addition, v denotes the count of unroll-and-jam for
gen. Note that gen where u = 1 corresponds approximately to contrd. The FLOPS of contrd and gen

2http:/ /www.intel.com /support /processors/sb/CS-020870.htm
3http://download.intel.com /support/processors/xeon/sb/xeon_5500.pdf
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is based on the flop count of ref. Since time contraction reduces arithmetic (see also Section 11.3.3),
these performance can outstrip the ideal performance of the environments.

General Performance Figure 11.6 illustrates the performance of each version in our best sequential
settings. contrd outperformed tiled: contrd achieved 479 % better performance than vec and 72.4 %
better performance than tiled. Since contrd and tiled are sufficiently locality-optimized, we consider
that the difference between contrd and tiled originated at the reduction of memory write and arithmetic
by contraction. Meanwhile, the difference between contrd and gen was caused by the improvement of
usage of registers: gen achieved 34.2 % better performance than contrd.

Effects of £ Both time contraction and time skewing improve locality by a factor of k. Figure 11.7
illustrates the effects from scaling k. contrd always outperformed tiled for the same k. Moreover,
whereas for tiled we have to tune k& and B, for contrd we have only to tune k. From these results,
we consider that time-contracted loops are easier to tune than time-skewed ones. Note that in the case
of k > 32, we observed no improvement in performance for every version. We consider that for every
version, the locality improvement reached a limit in 12 < k < 16 and the performance improvement in
16 < k < 32 was caused by constant factors.

Effects of Unroll-and-Jam Our library performs code generation by means of miscellaneous tech-
niques. The most effective technique for improving usage of registers was unroll-and-jam. Figure 11.8
illustrates the effects of unroll-and-jam. In all of these cases, unroll-and-jam provided significant speedup.
Overall, unroll-and-jam was more effective for the case of large k. It has demonstrated a good affinity
between time contraction and unroll-and-jam.

Multithreading As locality improves, the effect of parallelization generally becomes significant. Figure
11.9 illustrates the effects of multithreading of the stencil loops. Note that the environment of this
experiment is different from that of the others. Whereas vec gained no improvement from multithreading,
tiled and contrd achieved near-linear scalability. As can be seen from this result, memory-intensiveness
in contrd as well as tiled was sufficiently relaxed. Furthermore, the scalability of contrd was always
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closer to the linear than that of tiled. The unroll-and-jam in multithreading was more effective than
that in single-threading: gen achieved up to 61.1 % better performance than contrd.

Errors As described in Section 11.3.6, time contraction causes more loss of significance as k increases.
Figure 11.10 illustrates the geometric mean of relative errors of contrd in the case where the analytic
solution is exp(—m?t) sinmz. The result that contrd was more precise than ref in all the cases contra-
dicted our prediction. We consider that this contradiction originated at precomputing stencil coefficients
in double. At least, compared to the default errors, loss of significance caused by time contraction was
negligible.

Summary In all the experimental results, contrd outperformed tiled in the corresponding settings.
We, however, do not absolutize this superiority of time contraction in performance for every stencil loop.
As mentioned above, the performance improvement in unidimensional stencils is the genuine effect of
time contraction. Since blocking over the space dimensions is important for multidimensional stencils (as
described in Section 11.3.4), the time contraction to multidimensional stencils would be less effective than
that to unidimensional stencils. As a result, the superiority of time contraction to time skewing would
be a little. However, it means that locality on the time dimension becomes relatively less important; it
is not a disadvantage of time contraction per se. What we allege is that time contraction is sufficiently
comparable to time skewing and outstrips time skewing in the genuine effect on performance. The
experimental results have supported our allegation.

11.6 Discussion

We have presented time contraction, a novel approach to optimizing stencil loops, and demonstrated its
effectiveness. In this section, as concluding remarks, we discuss the connections and differences between
our work and existing work, and finally discuss future work.

11.6.1 Related Work

Optimization for Stencil Computation Since stencil computation is practically important, there
are many studies focusing on its optimization. In earlier studies, domain-specific compilers for stencil
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computation were developed, e.g., one for the connection machine CM-2 [BHMS91] and HPF’s one
[RMCKB97]. In the most recent study, Henretty et al. [HSP* 11| have presented a vectorization technique
specialized for stencil computation.

Tiling [WL91] is the standard technique to improve the locality of general nested loops. McCalpin
and Wonnacott [MW99, Won00] presented time skewing, a combination of tiling and skewing specialized
for stencil loops. Today, time skewing (or similar skewed tiling techniques) has become the standard
approach to optimizing stencil loops [KBB*07, DMV*08, OG09, BHT*10|. Krishnamoorthy et al.
[KBB*07| presented overlapped and split tilings for well load-balanced parallelization. Orozco and
Gao [OG09] improved split tiling as diamond-shape tiling for FDTD on the Cyclops-64 many-core chip
architecture. Datta et al. [DMV™08|, by using tiling as well as hardware-aware optimizations such as
prefetching, developed an auto-tuning environment for stencil computation. Baskaran et al. [BHT*10]
developed parallel parametric tiling for auto-tuning; note that their work is well-suited for but not limited
to stencil loops.

Frigo et al. [FLPR99| presented the cache-oblivious algorithm, whose algorithmic parameters are
independent of hardware parameters in contrast to hardware-aware techniques such as Datta et al.’s
ones. They developed cache-oblivious algorithms for stencil computation [FS05, FS07, FS06], which are
based on a divide-and-conquer approach over iteration space. In the most recent study, on the basis of
these algorithms, the Pochoir stencil compiler [TCK*11| has been developed.

As far as we know, all of the existing work on the optimization for stencil computation is based only
on the reordering of computations for grid points. The concept and techniques of time contraction are
quite different from that; it is based on the derivation of a wider stencil. Nevertheless, in hindsight, time
contraction can be seen as simplified overlapped tiling. When we narrow an overlapped trapezoidal tile,
each tile becomes a triangle (as illustrated in Figure 11.11); then, by contracting each triangle in the time
direction, we obtain computation of the contracted part. Therefore, it is natural that time contraction
reduces memory write and arithmetic as well as improving locality.

Work Related to Loop Contraction We can find formulations similar to loop contraction in the
context of recursion removal, such as in work by Ichikawa et al. [IKF05] and Luca et al. [LAAKO6].
While both have differences in the target and approach, both extract from a recursion the form of A™w,
where each size of A and v is a constant and A denotes a matrix of closed-form expressions. Then,
A™ is computed in O(logn) time. Loop contraction deals with almost the same form, but there are
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two differences: 1) a given program is iterative and 2) A™ is partially computed in advance, especially
in compile-time. In essence, whereas their work is oriented to algorithmic change, loop contraction is
oriented to partial evaluation. The difference is only in the focus.

In the context of loop optimization, Lamb et al.’s work [LTA03] resembles loop contraction. The
target of their optimization is a stream program that applies a linear transformation to input streams.
Their optimization operates the pipeline and join of streams as operations on transformation matrices.
In other words, it performs loop fusion on transformation matrices. Unlike loop contraction, it does not
reduce the number of iterations,

Of course, loop contraction is only a combination of unroll-and-jam and loop-invariant code motion
(as well as constant folding), specialized for linear transformations. We therefore claim neither its novelty
nor difficulty. The novelty of our work is time contraction, a specialized application of loop contraction
to stencil loops. Since time contraction owes much to the property of a stencil matrix, it is difficult to
implement only with a simple combination of existing techniques.

Nevertheless, the improvement of time contraction over loop contraction is not difficult; its idea and
technique themselves seem even trivial. We therefore consider that the novelty and significance of time
contraction is on its perspective rather than its technique.

11.6.2 Future Work

Implementation We have implemented time contraction only into an experimental FDM library. We
believe that this approach is cost-effective. Meanwhile, we consider that there is no technical difficulty
in implementing time contraction to simple stencils in a compiler because the analysis for tiling is also
sufficient for time contraction. However, implementation of time contraction to complicated stencil
loops—especially dealing efficiently with boundaries in the middle—is nontrivial. We guess that rather
than a precise dependence analysis, a symbolic execution is well-suited to it. We leave it for future work.

Evaluation The drawbacks of time contraction can be summarized as two points: the limitations in
applicability (Section 11.3.5) and the increase of loss of significance (Section 11.3.6). Evaluation on
these points as well as speedup through practical benchmarks is important. In particular, whether the
limitation on boundaries matters in practical situations is quite important. The practicality of time
contraction strongly depends on this.
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Chapter 12

Locality Enhancement based on
Segmentation of Trees

This chapter is self-contained and is a revised and extended version of our unpublished paper [Sat14a].

12.1 Introduction

A common way of searching fast for points in space is to use a space-partitioning tree such as octree, k-d
tree, and vantage-point tree. In addition, common algorithms in important applications such as N-body
simulation, ray tracing, and machine learning iterate a traversal of a space-partitioning tree for a given
set of querying points. Although there are several variations in traversal pattern, each iteration of tree
traversal is independent among query points. Such iterative tree traversal is therefore easy to parallelize.

Although such parallelization enables us to utilize multiple processors, it cannot avoid a lot of cache
misses because of noncontinuous memory access in tree traversal. Parallel processing is necessary for
higher performance but not sufficient. Even though multiple processors are available, they share one
memory bus. A lot of cache misses occupy memory bandwidth and make all processors stall. To obtain
higher performance of iterative tree traversal, we require improving its locality and reducing cache misses
as well as parallelizing it.

One way of reducing cache misses in tree traversal is to use existing cache-efficient /-oblivious tree data
structures [AADHMO03, BDFC05, BFCF+07, BKTW11]. By using them, we can reduce cache misses in
each traversal. However, because iterative tree traversal is a common computational pattern, to apply
both locality enhancement and parallelization simultaneously to the whole computation is reasonable
and promising for efficient implementation. An abstraction of iterative tree traversal incorporated with
both locality enhancement and parallelization is therefore desirable.

As an abstraction of tree computation incorporated with parallelization, tree skeletons [Ski96, GCS94|
were studied. In the implementation of tree skeletons, the m-bridging technique [Rei93|, which is to
decompose a tree into tree segments, was used for distributed-memory computation [Mat07a]. Although
m-bridging was originally a technique to reduce parallel time, in the sense that m-bridging reduces
communication on distributed-memory machines, it is also a technique to improve spatial locality. We
have focused particular attention on m-bridging as a package of locality enhancement and parallelization,
and then applied it to iterative tree traversal.

In this chapter, we present an application of m-bridging to locality-aware parallelization of iterative
tree traversal. The main idea of our approach is recursive application of m-bridging and recursive storing
of querying points. Owing to the genericity of m-bridging, our approach does not necessitate balancing of
space-partitioning trees or even require any application-specific knowledge, yet provides cache efficiency
and load balancing. This virtue of our approach is advantageous to a generic implementation of iterative
tree traversal.

The following are our contributions:

113
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Figure 12.1: A selection of hole nodes, where a double-circle node denotes a hole node.

Figure 12.2: The coarser tree derived from the selection of hole nodes in Figure 12.1.

o We formulate iterative tree traversal as a parallel pattern iter (Section 12.3).

e We have designed data structures for iterative tree traversal on the basis of m-bridging [Rei93],
analyzing cache complexity (Section 12.4).

e We describe the applications of iter and our data structures in several problems (Section 12.5).

12.2 Preliminaries

We introduce several notions on trees. The tree in this section means a full binary tree.

12.2.1 Segmentation of Trees

In the implementation of tree skeletons [Mat07a, SM14a] as explained in Chapters 2, segmented trees are
used as input trees, For any selection of hole nodes, we can define a segmentation, i.e., a transformation
from a simple tree to a segmented tree. This segmentation therefore can be seen as an operation of
coalescing nodes of a given tree. For example, from a selection of hole nodes as illustrated in Figure
12.1, we obtain a coarser tree, whose nodes are segments, as illustrated in Figure 12.2. In this chapter,
we consider the construction of segmented trees as a node-coalescing operation.

12.2.2 m-Bridge

Given a tree, how to select hole nodes is an issue on segmentation. As a graph-theoretic result, the
me-critical criterion is known to be convenient.
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Definition 1 (m-critical node [Rei93]). Let m be an integer such that 1 < m < N and N is the
number of nodes in a tree. A node v in the tree is called m-critical if v is an internal node and
[weight(v)/m] > [weight(v.)/m] for each child v, of v, where weight(u) denotes the number of the nodes
of the subtree rooted by a node u.

Each segment divided by m-critical nodes is called an m-bridge. We call it m-bridging to coalesce
nodes on the basis of m-critical nodes. For example, the hole nodes illustrated in Figure 12.1 are 4-critical
nodes and the coarser tree illustrated in Figure 12.1 is the result of 4-bridging.

For m-bridges of trees, the following two important properties are known.
Lemma 1 ([Rei93]). The number' of the nodes of an m-bridge is at most m.

Lemma 2 ([Rei93]). Let N be the number of the nodes of a tree. The number of m-critical nodes of the
tree is at most 2N /m — 1.

Since the number of the segments of a segmented tree that contains n hole nodes is 2n + 1, we can
rephrase Lemma 2 as follows.

Lemma 3 (Rephrasing of Lemma 2). Let N be the number of the nodes of a tree. The number of
m-bridges of the tree is at most 4N/m — 1.

These properties mean that m-bridging is a decomposition from a tree to sufficiently balanced seg-
ments. This contributes significantly to asymptotic linear speedup of operations on segmented trees.

Another important point of m-bridging is its cheapness. By using the upward accumulation skeleton
(i.e., uAcc [Ski96, GCS94|), we can mark m-critical nodes. Although constructing and restructuring data
structures will take some cost in practice, m-bridging itself is a cheap computation and will not be a
sequential bottleneck.

12.3 Iterative Tree Traversal

In this section, we formulate iterative tree traversal as a parallel pattern (i.e., skeleton [RG02]). We first
define a space-partitioning tree as

SPTree, g = Branch(z, SPTreeq 3, SPTreeq g),
SPTreeq g = Leaf (y),

where z of type a denotes a subspace, which may contain its splitting criteria, and y of type 8 denotes
a point (or a minimum unit of space).

The iterative tree traversal that we suppose takes a space-partitioning tree 7 of type SPTree, g and
a set @ of querying points (or units of querying), and yields a set that has one-to-one correspondence to
Q. Although the order in @ is unnecessary, a list is convenient to discriminate the elements of @) and to
formulate operations between ) and a resultant set. We therefore use a list of type List for both @ and
a resultant set, where List, denotes a list whose elements are type of a. Letting @ be type of List,, we
generally suppose that v may differ from 8 of SPTree, g. For example, in range queries, v will denote a
range and § may denote a point.

Tt is at most m + 1 in [Rei93] because every segment there except for root segments is rooted by a replicated hole node
of its parent segment.
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We define iterative tree traversal as the following higher-order function iter:

iter: (v x a — bool) x (y x a — §) x (y x B —4)
X (0 x § = 9) x SPTreeq, 3 x List, — List;
iter(c7 kb? kl’ ®’ T? Q) = map(f’ Q)?
where f(z) = h(z,T),
h(q, Branch(z,tr,,tr)) = if ¢(q,x) then ky(q,x) else h(q,tr) ® h(q,tr),
h(qa Lea’f(y)) = kl(Qa y)v
{Algebraic condition}
@ is associative and commutative.
Here map is the standard one of list functions; it takes a unary function and a list, and then yields a
list by applying the function to each element of the list. Note that map has embarrassing parallelism.
The function h traversing T consists of the top-down pruning with a criterion ¢ and the bottom-up
reduction with operators ky, k;, and @. The associativity and commutativity of @ bring a high degree
of parallelism. Note that both stem semantically from a degree of freedom in space partitioning rather
than artificial conditions.

The iter above does not capture all kinds of tree traversals but does hit a sweet spot as a parallel
pattern. The discussions on its applicability shall be described in Section 12.5. iter is an example model
of iterative tree. Although iter may has a high degree of parallelism regarding map, each tree traversal
is sequential. To obtain a high degree of parallelism from a tree traversal, we have to define the tree

traversal of iter for segmented trees. Actually, we can define it naturally without any additional operator.
We first formulate segmented trees of SPTree, g as the following SegTree,, 5:

SegTree,, 5 = Branch(z, ., Ctza, p, SegTree,, 5, SegTree, 5),
SegTree,, 5 = Suba, g,
Ctzo g = Branch(z, Ctza,g, Ctra,g),
Ctro g = Hole,
Ctl‘a’g = Suba’g,
Suba. g = Sub(SPTreeq g),
where Ctz, g denotes a one-hole context, Sub, s denotes a subtree, and x, denotes the subspace of a
hole node. Since hole nodes are internal nodes, x, is type of a. Hole is nullary because z, is placed at

the next of the root of a one-hole context. The grammar above per se does not guarantee that Ctz, g
contains one Hole. From the definition of segmented trees, the following is an invariant:

x1 = o for Branch(xy,x., Branch(xa, s1, 82),t1,t2).

We then define a traversal function hs for SegTree, 5 that corresponds to h in the where clause of
iter as follows:
{e, kp, ki, and @ are given as h of iter}
hs: 7 x SegTree, 5 — 6
hs(q, Branch(zx, xe, s,tr,tr)) = if ¢(q, ) then ky(x)
else if ¢(q, z.) then h.(q, ks(xs), 3)
else h.(q,t@,s) ®hs(q,tL) @ hs(q, tr),
ho(a, Sub()) = h(a, 1),
he(q,de, Branch(x,tr,tr)) = if ¢(q,z) then ky(q, )
else h.(q,ds,t1) ® he(q,da,tr),
he(q, de, Hole) = d.,
he(q, do, Sub(t)) = h(g, 1),
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where 1g denotes the identity of &®.

12.4 Proposed Data Structures

In this section, we describe our cache-efficient data structures for iterative tree traversal.

We adopt the cache-oblivious model [FLPR99] for analyzing cache complexity. A cache consists of
Z words and a cache line (i.e., a unit of cache replacement) consists of L words, where L? < Z (i.e.,
tall cache) and ideal replacement are assumed. We assume input size N to be much larger than Z, i.e.,
Z « N. We assume that each node containing some values and querying points consists of constant-size
continuous words.

12.4.1 Simply Blocked Tree

We first describe a simple approach to reducing the cache complexity of tree traversal as a counterpart
of proposed data structures.

Overview

To reduce the cache misses, we generally have to use arrays for obtaining continuous memory access. We
here consider blocking of a given full binary tree of N nodes. Let B; be an integer such that 1 < B; < N.
A block in a given tree T is a tree which is rooted by the root of 7 or a child of a hole node, and whose
leaves are leaves of 7 or hole nodes. Similar to m-bridging, we can mark nodes as holes by calculating
their weights in a bottom-up manner. An internal node v is a hole if [weight(v)/B;]| > [weight(v.)/Bt]
holds for v and each child v, of v, where weight(v) denotes the number of the nodes in a block rooted by
v. We call a tree whose nodes in the same block are successively arranged in an array a simply blocked
tree and call this blocking of trees B;-blocking.

Analysis

We first consider the usual behavior of a single query of iter. The worst-case behavior is immediate;
the whole tree is traversed if a pruning function ¢ always returns false. This behavior, however, does
not take account of the usage of space-partitioning trees. Given a querying point, we usually use space-
partitioning trees for finding its neighbors and pruning faraway ones. In this case, the trace of a query
tends to form a kind of spine: a root-to-leaf path like a stem with short branching arms. We consider
such spine-like traces as usual behaviors. If we assume that the branching arms of a spine-like trace is
constant-length, it can approximate to the root-to-leaf path of its stem. It is therefore reasonable to
analyze the traversal of a root-to-leaf path as an approximation.

The By-blocking of full binary trees has an effect similar to m-bridging. Each block has at most B,
nodes. Let N be the number of the nodes of a tree to which blocking is applied. The number of the hole
nodes is at most [N/B;] — 1 since the total number of the nodes in the two blocks whose parent is a hole
node is at least B;. The number of the blocks is at most 2 [N/B;| — 1 since each hole node generate two
blocks except for the root block.

On the basis of the properties above of simply blocked trees, we analyze the cache complexity of the
traversal of a root-to-leaf path. Letting Np be the number of blocks, a root-to-leaf path overlaps at most
Np/2 + 1 blocks. The cache misses caused by the traversal of each block is bounded by O([B;/L]). The
cache complexity of the traversal of a root-to-leaf path is therefore O([B;/L][N/B:|), which reduces to
O(|N/L)) if B; = L.

Theorem 1. Let T be a simply blocked tree derived from By-blocking of a given full binary tree of N
nodes. If By = L, the cache complexity of the traversal of a root-to-leaf path on T is O([N/L]).

If we use a naive linked-structure tree, the cache complexity of the traversal of a root-to-leaf path is
O(N) because the given tree might have O(N) height, i.e., be a list-like tree. In the case of a balanced
binary tree, naive linked-structure trees cost O(lg N) cache misses. Meanwhile, simply blocked trees cost
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O([B;/L]logp, N) cache misses since a root-to-leaf path overlaps at most logz, N blocks. If By = O(L),
it reduces to O(log; N) cache misses.

Pros and Cons

As a general technique to improve cache complexity, B;-blocking has two major advantages. First, By-
blocking does not sacrifice applications of space-partitioning trees. For example, it does not necessitate
any change in iter and enables us to use a simple definition of iter for SPTree,, g unlike segmented trees.
This is not limited to SP7ree, s and iter. Second, B:-blocking is as cheap as m-bridging. We do not
need a careful treatment of its overhead.

B;-blocking has a drawback related to the height of resultant trees. Although space-partitioning trees
do not become extremely imbalanced (i.e., list-like) in practice, the effect of B;-blocking becomes limited,
relying on the shape of a given tree. In addition, the height of the tree of blocks corresponds directly to
the depth of parallel complexity. A larger height leads to a worse depth.

12.4.2 Recursively Segmented Tree

The main difference between B;-blocking and m-bridging is that a block may have multiple hole nodes,
while a bridge has at most one hole node. On the basis of this property, we can improve the cost of tree
traversal in some cases. We next describe the usage of m-bridging for improving the cache complexity
of space-partitioning trees.

Overview

m-bridging introduces a hierarchy of a tree. A coarser tree is smaller than its original tree but each
node of a coarser tree is larger than each node of its original tree. If both a coarser tree and each of its
segments fit in cache, cache misses in tree traversal will be much reduced.

Our main idea is to apply m-bridging recursively to a given space-partitioning tree. Note that
weight(x) used in the m-critical criterion for a coarser tree does not count the number of the nodes in
a segment; that is, weight(x) regards a coarser tree as a simple tree. We consider a level of segments.
We call the coarsest segment that includes the whole the root-level (or Oth-level) segment and call the
segments of an original tree last-level segments. We name such a hierarchical tree a recursively segmented
tree derived from m-bridging. We consider that the nodes of each tree on any level are stored continuously
into an array. This design improves the spacial locality of tree traversal.

An important concern is whether iter is definable on recursively segmented trees. This is immediate.
In the case of recursively segmented trees, the definition of Sub. g is extended by the following rule:

Suba,p = Seg(SegTree,, g).
Then, the definitions of hs; and h. are extended by the following cases:

hs(q, Seg(t)) = hs(t),
he(q, do, Seg(t)) = hs(t).

Another important concern is how to accelerate traversals. In traversing a root-to-leaf path, the
definition of iter for SPTree, g traverse all its nodes. If all these are necessary for calculating the result
of a query, it is difficult to obtain better cost than simply blocked trees. However, we can sometimes
ignore internal nodes in practice. For example, in the cases of range queries (Section 12.5.1) and a
k-nearest-neighbor query (Section 12.5.4), we are concerned only with leaf values. In such cases, we
can skip internal nodes and shortcut the traversal to a leaf. To enable such shortcut acceleration, we
introduce two additional parameters to iter. One is a skipping criterion ¢, that takes a querying point
and a one-hole subspace, and yields whether we can skip the target one-hole subspace. The other is a
function k. that calculates the contribution from one-hole subspace to a querying point. For example,
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if we can ignore internal nodes completely, k. is a constant function yielding tg. Then, we extend the
definition of hg as follows:

{s and k. as well as ¢, k;, and @ are given}

hs(q, Branch(z,xe, s,tr,tr)) = if ¢(g, ) then ky(z)
else if ¢(q, x.) then h.(q, ks(xs), s)
else if c.(q,z,z,) then k.(q,z,z.) ® hs(q,tr) ® hs(q, tRr)
else h.(q, tq,s) ® hs(q,tr) ® hs(q,tr).

If ¢, returns true, h. prunes the traversal of the next-level segment and instead applies k. to the one-hole
subspace, i.e., skips an internal segment.

Analysis

To determine m-bridging appropriate to recursively segmented trees, we analyze the cache complexity
for a simple query finding a leaf, which we call a root-to-leaf traversal. In this case, we can assume c,
always returns true in iter. For simplicity, we assume m > 4.

From Lemma 3, we can assume that the number of the levels of a recursively segmented tree derived
from m-bridging is at most log,,, ,(IN/m), where NN is the number of the nodes of its original tree. Since
from Lemma 1 any segment on any level fits into O(m) words, the cache misses caused by the traversal of
a segment is bounded by O([m/L]). To find a leaf from the root, we traverse O(log,, ,(N/m)) segments.
The total cache misses in a root-to-leaf traversal are bounded by O([m/L]log,, ,(N/m)), which reduces
to O(log;, N) if m = O(L), e.g., 4L.

Theorem 2. Let T be a recursively segmented tree derived from m-bridging of a full binary tree that has
N nodes. If m = O(L), the cache complezity of a root-to-leaf traversal on T is O(log, N).

Pros and Cons

The skip of internal segments imposes a restriction on space-partitioning trees in practice. For example,
vantage-point (VP) trees require a top-down one-by-one traversal for an effective pruning because the
pruning criterion for a subspace uses its ancestors’ subspaces implicitly. Pruning without ancestors’
subspaces is safe but would be ineffective. Therefore, recursively segmented trees derived from VP
trees are ineffective. To use recursively segmented trees in practice, we have to consider this additional
restriction.

The definitions of ¢, and k. are not always straightforward. We explain several examples in Section
12.5. If we are concerned only with leaf values, the definitions of ¢. and k. are straightforward. All in
all, to define reasonably c. and k. necessitates domain knowledge to some extent.

Although we have to deal with an additional restriction and requirement to use recursively segmented
trees, they can guarantee that a root-to-leaf traversal causes O(log; N) cache misses regardless of the
shape of a given tree. That is, recursively segmented trees are more restrictive and efficient than simply
blocked trees. In this sense, both have complementary characteristics.

12.4.3 Buffered Recursively Segmented Tree

Our aim is to capture an iterative nature in iterative tree traversal. We therefore sophisticate recursively
segmented trees for iterative querying.

Overview

A problematic case in iterative querying is that the trace of one query is quite different from that of
the next query. Such successive queries have a poor temporal locality. For a good temporal locality,
successive queries have to cause similar traces. When a series of different queries is given, we should
therefore reorder these queries for improving temporal locality.
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Our method of reordering queries for recursively segmented trees is to buffer querying points at each
segment. In a appropriately small segment, all queries tend to be similar because possible traces are
not many. All queries that reach a next-level segment also tend to be similar because quite different
queries do not reach it. To improve temporal locality, it is therefore sufficient to buffer querying points
at each segment on each level and postpone their traversals. Specifically, we equip each segment with
a buffer? of size B to postpone traversals on it. We assume that the buffers of the sibling segments on
the same level are a continuous array. When a buffer becomes full, buffered querying points traverse the
associated segment and are stored into the buffers of the next-level segments. We name such a buffered
version a buffered recursively segmented tree. Note that the buffered version of simply blocked trees, a
buffered simply blocked tree is also feasible.

Analysis

We analyze the cache complexity of iterative root-to-leaf traversal of a buffered recursively segmented
tree T. Let @ be a set of querying points. We assume that each buffer size B is the size of L querying
points and m = O(L). We first have to consider a worst-case series of queries regarding cache complexity.
That one path is completely different from the next path is that the intersection of the segments of both
traces is only the root-level segment. A series of such trace paths causes uniformly fill each buffer on the
same level. That is, first L querying points fill the buffer of the root-level segment; first L + L? querying
points fill all the buffers of the root-level and first-level segments; first L + L? + L? queries fill all the
buffers of the root-level, first-level, and second-level segments; ...; this is a worst case. Since L? < Z and
sibling buffers are continuous, flushing the full buffer of a segment into the next-level segments without
flushing their buffers causes O(L) cache misses. The flushes of the ith-level buffers cause [|Q|L~""!| and
a flush of the ith-level buffers cause [LZ] cache misses. The total cache misses of ¢th-level buffers are
bounded by O([|Q|/L]). Since the number of levels is bounded by O(log; N), the total cache misses of
the iterative root-to-leaf traversal of T regarding ) are bounded by O([|Q|/L]log; V).

Theorem 3. Let T be a buffered recursively segmented tree derived from m-bridging and equipped with
buffers of size B and N be the number of the nodes of its original tree. The cache complexity of iterative
root-to-leaf traversal of T regarding a set Q of querying points is O([|Q|/L]log N) if m = O(L) and
B =0(L).

We can easily analyze the cache complexity of iterative traversal of a root-to-leaf path on a buffered
simply blocked tree 7'. We assume B; = O(L). Letting Np be the number of blocks, a root-to-leaf path
overlaps at most Ng/2 + 1 blocks. The worst case is the iterative traversal of the longest block path. By
buffering querying points, the all buffers in the path flush per L queries in the worst case and the cache
misses per flush of a buffer are bounded by O(1). the total cache misses are O([|Q|/L][N/L]).

Theorem 4. Let T be a buffered simply blocked tree derived from By-blocking with buffers of size B
and N be the number of the nodes of its original tree. The cache complexity of the iterative traversal
of a root-to-leaf path of T regarding a set Q of querying points is O([|Q|/L][N/L]) if By = O(L) and
B =0(L).

If we use a naive linked-structure tree, the cache complexity of the traversal of a root-to-leaf path
is O(|Q|N). In the case of a balanced binary tree, naive linked-structure trees cost O(|Q|lg N) cache
misses. Meanwhile, letting B; = O(L), buffered simply blocked trees cost O([|Q|/L]log;, N) cache misses
through an analysis similar to one for buffered recursively segmented trees.

Handling Accumulation

Unfortunately, the asymptotic cost above does not model the cost of iter sufficiently. iter performs the
reduction with @ of values that are generated at the leaves of a trace. It raises an issue on cache misses.
Even though a root-to-leaf traversal can be an approximation of the trace of a query as mentioned earlier,
a trace has multiple leaves. To reduce them, an accumulation for each querying point is necessary. A

2 Although a buffer is useless for the root-level segment, we introduce it for brevity of explanation.



12.4. PROPOSED DATA STRUCTURES 121

matter is the buffer for this accumulation. A common yet space-efficient way is to use a resultant
array of iter for a accumulating buffer. Since replications of querying points are stored in buffers and
their traversals are postponed, accumulations on each element of a resultant array will be, however,
noncontinuous. In the worst case, a cache miss results at each accumulation of a value.

In addition to a resultant array, we can introduce accumulation buffers into each segment. Similarly
to the top-down pruning phase, the bottom-up reduction phase can be buffered and postponed. This
approach reduces noncontinuous accumulations to a resultant array. Still, it is difficult to improve the
worst-case cache complexity. Moreover, this approach increases constant factors in space complexity and
complicates implementation.

A reasonable heuristic is to split () into continuous blocks, each of which is denoted by @, and force
T to finish all postponed queries per Q. If |Qp| = O(Z), the segment of a resultant array corresponding
to @ p fits in the cache. Without tree traversals, the cache misses caused by the accumulations regarding
Q@ would be bounded by O([Qp/L]). Because the tree traversals for Qp may flush the whole cache, it
cannot be the worst-case bound of the reduction part of iter. However, by changing the block size under
L < |Qp| < Z, we can control the probability of cache misses. This heuristic with tuning on |@p] is a
practically reasonable choice for reducing the cache misses in iter.

12.4.4 Parallel Implementation

Although we have focused only on locality and cache complexity, our aim is to package locality enhance-
ment and parallelization. We now describe how to parallelize iter on buffered recursively segmented trees.
We suppose uniform distributed caches. Let P be the number of processors.

Simple Parallelization

iter has embarrassing parallelism regarding a given set @ of querying points. It is reasonable to divide
Q@ evenly to P processors. Although the cost of each query may be different, randomization can resolve
such imbalance in practice. Since blocking querying points is valuable for locality, randomization should
be performed per Q5.

Owing to the associativity and commutativity of @, the reduction part can be parallelized. Because
a set of values for reduction is usually much smaller than |@Q)|, it is not worth parallelizing the reduction
for a querying point with an additional synchronization cost.

Synchronization should be least. The parallelization of iter regarding @ for SP1ree, g requires only
a barrier synchronization at the end. For buffered recursively segmented trees, the race on the buffer
of each segment results. The mutual exclusion for each access to buffers is expensive. To elude race
on buffers, it is, however, sufficient to replicate the buffers of all segments for each processor. This
privatization of buffers prevents false sharing on a hierarchical cache in common multicore processors
and therefore is practically valuable.

Distributed Parallelization

Although the simple parallelization above utilizes only parallelism regarding (), we can utilize parallelism
on recursively segmented trees by distributing segments into each processor. Since this distribution
reduces the amount of shared data among all processors, this distributed parallelization is beneficial to
implementation on distributed-cache/-memory machines.

For load balancing of tree skeletons on m-bridged trees, the case of m = 2N /P guarantees asymptotic
linear speedup with maximum spatial locality. The case of smaller m, however, brings better load
balancing by sacrificing spatial locality. An appropriate range of m was explored in [Mat07b]. These are
based on single m-bridging and therefore schedule only last-level segments. Even though we can schedule
only last-level segments for recursively segmented trees, such too fine-grained scheduling causes a poor
spatial locality. We therefore have to consider to coarse-grained scheduling for recursively segmented
trees.

An important point is that forming recursively segmented trees and load balancing demand different
criteria on m-bridging. Specifically for load balancing, letting s be a segment, weight(s) in the m-critical
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criterion must be the number of the nodes of its original tree. We therefore have to apply an additional
m-bridging to recursively segmented trees for load balancing. We use m for the parameter of forming
recursively segmented trees and m’ for that of load balancing, assuming m < m/.

The calculation of m/-critical nodes on recursively segmented trees is straightforward. A problem
is that an m’-bridge does not necessarily match any segment of a recursively segmented tree. Even if
an m’-bridge does not match a segment, it can contain some of its finer-level segments. With a space-
containment criterion ¢’ : a x a — bool for SPTree,, g, we can assign processors to segments that cover
all nodes of an original tree.

Although processors are not assigned to coarse-level segments (especially, root-level ones), it is no
problem, rather convenient. Many querying points will pass through such coarse-level segments in travers-
ing different m’-bridges. It is therefore reasonable to share or replicate them among all processors. In
addition, m’-bridges of much smaller weight such as single-node ones (see Figure 12.2) are not worth
privatizing in practice. We therefore may neglect assigning processors to segments contained in such
cheap m’-bridges.

When an m/-bridge contains a segment, we do not have to assign a processor explicitly to the finer-
level segments contained in it. That is, we can prune processor assignment in top-down traversal.
The computational pattern of this processor assignment is therefore very close to iter. Intuitively, a
containment criterion ¢’ corresponds to a pruning criterion c in iter, and the destructive updating of
nodes regarding processor numbers corresponds to kj and k; in iter. Note that the assignment of processor
numbers does not cause race by definition.

By using the method above, we can distribute buffered recursively segmented trees. It is, however,
insufficient for tree traversal. We have to consider intersection (or communication) among processors
in tree traversal. We can implement it as a simple asynchronous parallel computing. We associate a
mailbox, which is an asynchronous buffer, with each segment numbered a processor number. When one
processor transmits a querying point to a segment with a mailbox for another processor, we insert the
querying point into the mailbox. Each processor always monitor its own mailboxes and transmit querying
points in an own mailbox to the buffer of segment with which the mailbox is associated. By using such an
asynchronous intersection, we can implement tree traversal on distributed buffered recursively segmented
trees.

In summary, how to distribute a buffered recursively segmented tree T is the following:

1. Calculate each m/-critical node on 7 and obtain its subspace, which may have a hole.

2. Distribute m/’-critical subspaces to all processors, where subspaces of much smaller weight may be
neglected.

3. Assign processor numbers to segments by using a space-containment criterion ¢’ in a manner similar
to iter.

4. Associate a mailbox for processor i with each segment numbered 1.

12.5 Applications

In this section, we describe applications of iter and explore the potential of our data structures on these
applications.

12.5.1 Batch Processing with Range Queries

In application of databases, batch processing is important. This usually performs a routine analysis on
data that is growing. Since the focus of such cases is on the difference from the result of the previous
analyses, an analysis query often contains a range of time such as last 24 hours. In addition to time, we
may consider other continuous data, e.g., prices and spatial position. A typical analysis query summarizes
the data of concerned ranges regarding a concerned key. If a set of concerned keys is given, its batch
processing will iterate such summarizing queries. iter covers such batch processing with range queries.
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For example, we consider a database of trade history. A trade is a triple of type Id x Time x Price,
where Id denotes trader’s identity numbers, Time denotes trade timestamps, and Price denotes trade
prices. The space partitioned by a given tree 7T is two-dimensional of type Id x Time and its subspaces
are rectangles of type Rectiqx Time. A leaf subspace of T is a trade list of type Listgx Timex Price- A
querying point is a line segment on Time of type Id x Period, where Period denotes the type of periods,
and a query sums up the trade prices on this line segment. That is, this batch processing calculates
the sales of traders during some period. The types and parameters of iter for this batch processing are
defined as follows.

o = Rectigx Time,

5 = List 19 x Timex Price>
~ = Id x Period,

6 = Price,
c(q, x) = isEmpty(q N x),
ky(g,2) =0,
ku((i,p),y) = Y [w | (G t,w) ey, i =4, tep],
T@y=x+y,
ce(q,,xe) = q S T,
ko(q,z,x4) = 0,
where [... ] ...] is a notation for list comprehension and }[...| ...] denotes list reduction with +.

If we perform distributed parallelization, we obtain a distributed database immediately. Since the
insertion of trades to this distributed 7 does not necessitate mutual exclusion except for mailbox, it is
therefore suited to data updated every day. Although balanced k-d trees are known to be appropriate
for range queries, the advantage of our recursively segmented trees is that its (re)construction does not
have to take the definition of space into account.

12.5.2 N-body Problem

The N-body problem is to calculate the contributions among N particles. Although the direct method
costs O(N?) time, the Barnes-Hut algorithm, which utilizes some approximation, costs O(N log N) time.
It typically uses an octree to hold N particles in the three-dimensional space. The main idea of the
Barnes-Hut algorithm is to approximate faraway particles by using a subspace containing them. This is
a pattern of iter where a space-partitioning tree contain all querying points.

For example, in gravitation simulations, a query calculates a force of type Force, which is a three-
dimensional vector. Particles (i.e., mass points) are type of Particle, which has to hold a pair of mass
and position for gravitation. The subspaces of the three-dimensional space are type of Rects. Each node
of a given octree has a pair of its subspace and a particle that approximates the particles contained in its
subspace. In addition to this pair, each leaf subspace has a particle list of type Listpgrticie. The types
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and parameters of iter for the Barnes-Hut algorithm are defined as follows.

o = Rects x Particle,
8 = Rects x Particle x List pgrticie,
~ = Particle,
0 = Force,
c(q, ) = isFaraway(q, ),
ky(g, (r,p)) = force(p, q),
ki(g, (r,p, L)) = if ¢(q, (r,p)) then force(p,q) else Y [force(p,q) | pe L, p # q]
Ty =x+y,
ce(q, x, xe) = isFaraway(q, z — x,),
ko(q,x,zq) = force(q,p),
where (r,p) = x — .,

where isFaraway(q,x) denotes a faraway criterion of particle ¢ from subspace z, force(p,q) denotes a
force from particle p to particle ¢, and + denotes a vector addition. Although SPTree, g is a binary
tree, it can represent any octree naturally by dividing each dimension successively.

In the definitions above of ¢, and k., we construct a one-hole subspace through the subtraction over
Rects x Particle. Although the subtraction over Rects is immediate, the subtraction over Particle requires
a consideration. Recall that the part of Particle denotes an approximation of the points contained in a
subspace. In the Barnes-Hut algorithm, The total mass and the center of mass are usually used for this
approximation. In this case, we can define the addition of Particle as the calculation of total mass and
that of the center of mass, and then define the subtraction as its cancellation operation. In addition, we
have to define isFaraway(q, x) for not only = of type Rects but the one-hole subspaces. Although a safe
definition of isFaraway is easy, a reasonable definition is important for effective pruning.

12.5.3 Ray Tracing

Ray tracing is a popular problem in computer graphics. It traces lines of sight (i.e., view rays) from a
viewpoint to objects settled in the three-dimensional space. An intersection point of view rays to objects
leads to a pixel of a resultant image. A given set of objects settled in the three-dimensional space is
called a scene.

In ray tracing algorithms, a bounding volume hierarchy (BVH) is often used for detecting intersections
in a scene. The BVH decomposes a bounding box into finer ones and holds an object at a leaf. It enables
us to prune intersection tests.

Photon mapping is the most popular algorithm for ray tracing. It scatters many photons over a scene
in advance and stores them usually into a k-d tree. Then, it collects photons around an intersection
point from the k-d tree and estimates the illumination at the point.

We can apply iter to both cases. In both cases, subspaces are type of Rects.

Each leaf of a BVH holds an objects of type Object, which is a supertype of Rects. A querying point
is a view ray of type Ray. A query calculates an intersection position of type Position. In the case of
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BVHs, the types and parameters of iter are defined as follows.

« = Rects,
B = Object,
v = Ray,

& = Position,
c(q, x) = (intersect(q, x) = poy),
k(g ) = poo,
ki(q,y) = intersect(q,y),
T @y = nearer(z,y),
ce(q, x,xe) = (intersect(q,x — Te) = Pop),

k‘c(q,x,x.) = Poo;

where intersect of type Ray x Object — Position calculates an intersection position, nearer of type
Position x Position — Position returns the position nearer to the viewpoint, and p., denotes the position
of the point at infinity. Each query and intersect return py, to denote no intersection.

In photon mapping, photons are stored in the leaves of a k-d tree and a query calculates k-nearest
neighbors of a given point under some bounded range [Jen00]. To calculate a set of k-nearest neighbors,
a size-bounded mergeable heap is useful. We consider an abstract data type Heapﬁ that denotes a
mergeable heap of k elements of type a. Its constructor initHeap takes an initial set of elements and a
weight function w to calculate the weight of an element for sorting. The merge operation is defined over
heaps that have the same weight function. Since the range of neighbors is bounded, a query point is a
ball of type Ball that consists of a center position and a radius. Let Photon be the type of photons, we
can define the types and parameters of iter as follows:

a = Rects,
B = Photon,
v = Ball,

k
§= Hea’pPhotonv

c(q, z) = isEmpty(q m x),
kb(Qu (E) = @7
ki(q,p) = initHeap({p}, distFrom,),

H®H' = merge(H,H'),
ce(q, ,0) = ¢ S o,
kc(qaxva) = @7

where distFrom; denotes a function that calculate a distance from the center of ball b to a given photon.

12.5.4 Nearest-Neighbor Classifiers

In nearest-neighbor querying by iter, a bounded range of neighbors is important because it is used in
top-down pruning. Without this bounded range, a query point would traverse the whole tree and incur a
terrible slowdown. While bounded ranges are natural in photon mapping, k-nearest-neighbor classifiers,
which are extensively used in pattern recognition, do not assume bounded ranges in general.

In the unbounded-range case, we generally perform bottom-up pruning by using an intermediate
result of k-nearest neighbors. iter cannot deal with this bottom-up pruning. One approach to dealing
with this limitation is multi-pass top-down pruning. Specifically, in the first pass, we find a leaf on the
basis of a querying point with an empty range and then approximate a range of neighbors from the
point(s) in the found leaf. In the second pass, we perform a range-bounded k-nearest-neighbor query
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with the approximated range. If we do not obtain k neighbors, we retry a range-bounded k-nearest-
neighbor query by relaxing the current range bound a little. In the after third passes, one-hole range
queries suffice for accumulating nearest neighbors.

We can implement bottom-up pruning itself straightforwardly on (buffered) recursively segmented
trees. In this case, it will be reasonable to perform bottom-up pruning at the root of each traversed
segment on each level. This, however, complicates implementation compared to iter. Because last-level
segments would provide reasonably approximated ranges in iterative top-down pruning, it would be
sufficient for k-nearest-neighbor queries to extend iter in a segment-aware manner.

12.6 Related Work

We discuss related work on various aspects.

12.6.1 Enhancing Locality in Tree Traversal

Jo et al’s work [JK11, JK12, JGK13] is the most relevant and similar to our work. Both theirs and
ours have the same purpose of providing not application-specific techniques to enhance locality and
parallelize, and target almost the same computational patterns. However, while their work aims at
automatic optimization, our work aims at abstraction of patterns.

Technically, traversal splicing [JK12] is very similar to the notion of buffered recursively segmented
trees. Their traversal splicing divides a traversal into ones on the top half and on the bottom half, records
querying points into the horizontal boundary, and then interleaves top-half traversal and bottom-half
traversal. Our buffered recursively segmented trees also record querying points of the boundaries of
segments. The shapes of boundaries and the ways of recording querying points are, however, different.
The boundary in their traversal splicing is not recursive. It means that they assumed balanced trees
implicitly. Their traversal splicing records a querying point with a trace from the root and does not
record a querying point into multiple nodes on the boundary. That is, their traversal splicing is based on
the snapshot /restore of tree traversal. Our approach is based on the divide and conquer of tree traversal.
It is advantageous to distributed parallelization of tree traversal.

Last but not least, they did not analyze cache complexity at all. Although we have not analyzed
iter itself, we have examined a situation where our techniques would be effective for cache complexity,
through a priori analysis of model cases.

12.6.2 Cache-Efficient /-Oblivious Trees

Cache-oblivious algorithms [FLPR99] are tuning-free yet cache-efficient ones. Many cache-oblivious data
structures, whose operations are cache-oblivious, were developed. Cache-oblivious trees designed for
spatial data were, for example, B-trees [MABO0O, BDFCO05, BFCF*07], k-d trees [AADHMO3], and mesh
layouts [BKTW11]. The main advantage of cache-oblivious ones is portability. Cache-oblivious ones are
ready to work efficiently regardless of cache sizes. Moreover, these B-trees and k-d trees also guarantee
the cache complexity of updating, which our data structures do not guarantee. All in all, these cache-
oblivious trees are more useful than ours for a simple single query.

Our data structures are, however, not always poorer than these cache-oblivious ones. For example, a
root-to-leaf traversal of B-tree [MAB00, BDFC05, BEFCF*07] and k-d trees [AADHMO3| costs the same
O(log;, N) cache misses as our recursively segmented trees. In addition, it is difficult to compare the
cache complexity of iterative tree traversal or iter, for which our buffered recursively segmented trees are
designed. In this sense, our data structures are incomparable to the cache-oblivious tree above.

Also developed were cache-efficient (and cache-aware) tree data structures, e.g., sequence heaps
[San00] and BVHs [YMO06]. The design of buffered recursively segmented trees are similar to that of
sequence heaps on the aspects of hierarchical buffering with parametrized fan-outs and buffer sizes.

Cache-efficient /-oblivious trees basically suppose balanced trees or particularly a complete binary
trees. A way of balancing trees relies somewhat on the definition of a specific space-partitioning tree.
Our approach does not suppose balanced trees. Imbalanced trees are practically simple and/or efficient.



12.7. CONCLUSION 127

For example, many N-body simulations use octree, which can be imbalanced, and imbalanced k-d trees
were efficient for photon mapping [WGS04]. The main advantage of our approach based on m-bridge is
genericity regarding the shapes of trees.

12.6.3 Iterative Search

In state-space search (or combinatorial search), we can find iterative patterns such as iterative deepening
depth-first search, IDA* search, and Monte-Carlo tree search. While the traversal that we deal with is to
traverse tree data structures, these traverse state space and the traces of search form trees in hindsight.
A state is per se a value used in search and the next states can be calculated from a current state. These
are state transition rather than tree traversal. These locality issues are therefore quite different from our
iterative tree traversal.

Since state-space search is state transition, the locality in transition table is important. Actually,
a distributed parallelization regarding tables [RPBS99] was quite effective for IDA* search [RPBS99]
and Monte-Carlo tree search [YKK'11]. As seen from these results, both locality enhancement and
parallelization therefore rely strongly on data structures.

12.6.4 Data-Parallel Skeletons

In parallel programming, parallel computing patterns are called skeletons [Col89, RG02]. Those which
exploit parallelism of data structures are called data-parallel skeletons. Since iter exploits parallelisms of
given data structures, we can regard it as a data-parallel skeleton.

What kind of skeletons is iter, then? The map to querying points is a list skeleton [Ski93]. The
pruning and reduction of space-partitioning trees can be implemented with tree skeletons [Ski9%6, GCS94].
Moreover, space-partitioning trees are based on the freedom on dividing a given multidimensional space.
This trait in a two-dimensional case is closely relevant to the algebra used in matrix skeletons [EHKTO07].
iter is actually a chimera of different data-parallel skeletons. This leads to an interesting observation
on skeletons. Even though applications of matrix skeletons and tree ones are very limited, a chimera of
them can have important applications.

12.7 Conclusion

In this chapter, we have presented an application of m-bridging to the design of data structures for
iterative tree traversal. Our parallel pattern iter that formulates typical iterative tree traversal can deal
on our data structures with important applications.

We plan to implement iter and our data structures and evaluate them experimentally by using im-
portant applications.

A further step in future work that we consider is to deal with fast algorithms for the N-body problem.
Many problems in statistical learning are known to be formalized as a kind of N-body problem [GMO1].
In Riegel’s recent work [Riel3], a wider range of problems were formalized as the generalized N-body
problem and a fast algorithm for solving it was presented. If we incorporated these with parallel patterns
on our data structures, our approach would be more valuable.






Chapter 13

Towards Neighborhood Abstractions

In this part, we have investigated parallel programming for neighborhood computations in cache-efficient
and divide-and-conquer manners. Unfortunately, we have not built a technical connection between the
work in Chapter 11 and that in Chapter 12, which deal with seemingly different computations. Both
stencil computation and querying of space-partitioning are, however, conceptually very close.

Stencil computation is usually considered as a regular array-based computation. In this sense, it seems
to be out of the scope of tree-based computations. This regularity of stencil computation is, however,
derived from a uniform grid. If we adopt an adaptive grid, stencil computation becomes irregular. In
fact, adaptive mesh refinement for partial differential equation solvers is considered as adaptive stencils
[DS06], and its load balancing uses space-partitioning trees [Mit07]. Moreover, grids can be hierarchical
in multigrid methods [BHMOO0]. In this case, stencil computation becomes a tree-based computation.

In querying of space-partitioning trees, we find neighbors by visiting spatial nodes. We can also
consider this visited nodes as neighbors, which have various granularity. In this sense, a query is a tree-
shaped stencil. Besides, in the domain of N-body problems, fast multipole methods (FMMs), which are
faster algorithms based on space-partitioning trees, were developed. The original FMM [GR87] performs
a typical stencil computation at each spatial level.

These connections between stencil computation and space-partitioning trees are derived from physical
laws. Physical contributions such as gravity are inversely proportional to distance in general. It is natural
to use neighbors for calculating their approximations. Since we always calculate approximations of model
formulae in scientific computing on the basis of numerical analysis, use of neighborhood is primordial.
Then, to improve the precision of approximations in general, we have to calculate contributions of a far
distance. Hierarchical subspaces, which space-partitioning trees represent, enable us to interpret faraway
areas adaptively as neighbors. Use of space-partitioning trees is therefore reasonable to improve the
precision of approximations.

Because of this natural connection, it is desired to unify abstractions of stencil computation and
querying of space-partitioning trees. We have been pursued a unified abstraction for various neighborhood
computations. At the beginning, we conjectured that trees were useful for such a unified abstraction.
Through the work in this part, we, however, found trees to be inadequate to abstract neighborhood
computations because a tree structure is merely an axis of a neighborhood subspace. We have to focus
on the formalization of neighborhood rather than overall iterative and /or recursive computations. In fact,
from the perspective of abstractions of neighborhood, Chapter 11 formalizes neighborhood as constant
band matrices and Chapter 12 formalizes it as a root-to-leaf path in space-partitioning trees. Since both
are far different, it is reasonably difficult to build a technical connection between both.

If we focus on the formalization of neighborhood, a unified abstraction for parallel neighborhood
computations is still difficult to design. This is because the structures of neighborhood affect global
recursions of individual neighborhood computations. For example, Callahan-Kosaraju algorithms [CK95,
Cal93] construct neighborhood as well-separated pairs on space-partitioning trees. We can represent these
pairs as side links among nodes. However, the construction of these pairs is not a recursion on trees but
a recursion on pairs of subspaces. In fact, it contains a peculiar shuffling of siblings from the viewpoint
of tree computations. Because the global recursion of a whole computation is of key importance of load

129



130 CHAPTER 13. TOWARDS NEIGHBORHOOD ABSTRACTIONS

balancing, the variety of global recursions depending on kinds of neighborhood makes it difficult to design
abstractions. We therefore leave it for future work.



Chapter 14

Conclusion

14.1 Summary of Contributions

In this dissertation, we have dealt with parallel programming with trees in a divide-and-conquer manner.
Our main contributions in this work are summarized as follows:

We have designed an iterator-based interface between tree skeletons and tree-structure implementa-
tion, and have developed a tree skeleton library loosely coupled between both by using our interface.
We have demonstrated the benefits of its flexibility experimentally. (Chapter 3)

We have developed a parallelizer that transforms sequential recursive functions in C into tree
skeleton calls with operators based on the formalization by Matsuzaki at al. [MHTO06]. It hides the
complicated API of tree skeletons from programmers and brings the benefits of tree skeletons with
no burden on programmers. (Chapter 4)

We have developed a novel syntax-directed divide-and-conquer method of data-flow analysis based
on Tarjan’s formalization [Tar8la] and Rosen’s high-level approach [Ros77, Ros80|. It can deal
with arbitrary goto/label statements. We have demonstrated the feasibility and scalability of our
method experimentally through prototype implementations on a C compiler. (Chapter 7)

We have developed a syntax-directed divide-and-conquer method for constructing value graphs on
the basis of a functional formalization of value graphs and Rosen’s high-level approach [Ros77,
Ros80]. It tames goto/label statements troublesome in ¢-function placement. (Chapter 8)

We have developed a linear algebraic approach to optimizing stencil computation. We have pre-
sented its concept, techniques to implement it, and its effects on asymptotic complexities. We
demonstrated its performance gain experimentally through a prototype library. (Chapter 11)

We have developed techniques for enhancing the asymptotic cache complexity of iterative traversal
of space-partitioning trees, on the basis of its skeletal formalization and m-bridging [Rei93]. We
have explored the applicability of our approach in practically important problems. (Chapter 12)

14.2 Retrospection

As concluding remarks of this dissertation, we describe the retrospection on our work and summarize
our observations from practice.

First of all, we should clarify the meaning of structured approaches that we have pursued. As seen
from that the notion of structured programming [BJ66, Dij68, Knu74, DDHT72] was controversial, to
define the notion of “structured” formally and reasonably is difficult. We think that a little ambiguity
of “structured” is unavoidable. Yet, we intentionally use “structured” because we consider it to be the
principle of programming and abstraction. “A structured manner” in this dissertation roughly means
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to use or obey some pattern. This pattern would be highly abstract or a little ambiguous. We think
that attitudes towards patterns rather than patterns themselves are of huge significance. For example,
it is important to discover patterns, to apply patterns, to compose patterns, and especially, to restrict
oneself to some pattern. In other words, a disciplined attitude through patterns is of true significance.
To pursue a structured approach is therefore to investigate how to restrict oneself to a pattern or style
reasonable in concerns and/or domains.

Our primary concern is load balancing for parallel computing. Computations easy to load balance
are of crucial importance for parallel programs portable among different parallel machines. We have
adopted the divide-and-conquer paradigm for the primary pattern in this concern because divide-and-
conquer algorithms are ready both for parallelization and load balancing. We have restricted ourselves
to the divide-and-conquer paradigm. How “structured” our approaches are is therefore how much part
is in a divide-and-conquer manner.

We have been focusing on use of trees because of its versatility in programming and its affinity
with the divide-and-conquer paradigm. Our work started from tree skeletons (Chapter 2) because tree
skeletons were indeed patterns that enabled divide-and-conquer load balancing and because the work on
list skeletons achieved solid results both in theory and practice.

Our work, in fact, resulted in several improvements on usability of tree skeletons (Chapters 3 and
4). Yet, tree skeletons did not become useful for actual problems. By rethinking list skeletons, we
have noticed that tree skeletons are unnatural and inherently not intuitive for programming with trees
(Chapter 5). A tree is usually a representation equipped with an interpretation. The interpretation of
a tree often determines an essential structure of the tree and operators used with the tree. Because
tree skeletons operate trees without any interpretation, it is natural that they are difficult to use. We
therefore separate away from tree skeletons.

Instead of tree skeletons, we next adopted syntax-directed programming. This is to describe an
interpretation of trees in their syntax and to define calculations on their syntax, and to perform load
balancing by utilizing the interpretation of trees. This is a typical style in functional programming,
has been used to formalize list skeletons, and obeys by definition the divide-and-conquer paradigm. We
selected AST-based program analysis as a case study of syntax-directed programming.

Our work on AST-based program analysis resulted successfully in syntax-directed divide-and-conquer
methods (Chapters 7 and 8). We also developed how to deal with goto-derived data flow, which is a
typical irregularity in syntax-directed computations. We have two AST-based methods on the same
language. This result justified our separation from tree skeletons. The interpretation of trees is more
important than tree structure.

Because neighborhood computations are very popular in various domains, we have dealt with cache-
efficient divide-and-conquer programming for neighborhood computations (Chapters 11 and 12). Unfor-
tunately, we have not developed a unified tree-based abstraction for various neighborhood computations
because the abstraction of neighborhood subspace are inherently beyond trees (Chapter 13). However, by
limiting the interpretation of trees to space partitioning and formalizing neighborhood as a root-to-leaf
path in trees, we have found another usage of segmented trees (Chapter 12). In this case, tree structures
have been, in fact, non-essential either to specification or abstraction. It suggest that what we should
consider truly is not the structure of trees but the interpretation of trees.

In summary, we have learnt from practice the following lessons:

e The interpretation of trees is an essential issue in programming with trees.
e Syntax-directed programming is both reasonable and useful for parallel programming.

e Tree structures can be non-essential either to specification or abstraction even in application do-
mains in which trees are extensively used.

Although these are not outstandingly novel, these are reasonable; these are realities.
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