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A STUDY ON DESIGN OF ORTHOGONAL
DTCWTS WITH IMPROVED PROPERTIES

DAIWEI WANG
Abstract

The Dual tree complex wavelet transforms (DTCWTs) have been found to
be successful in many applications of signal and image processing. DTCWTs
employ two real wavelet transforms, where one wavelet corresponds to the
real part of complex wavelet and the other is the imaginary part. Two
wavelet bases are required to be a Hilbert transform pair. Thus, DTCWTs
are nearly shift invariant and have a good directional selectivity in two or
higher dimensions with limited redundancies. In this dissertation, we pro-
pose two new classes of DTCWTs with improved properties.

In Chapter 2, we review the Fourier transform at first and then introduce
the fundamentals of dual tree complex wavelet transform. The wavelet trans-
form has been proved to be a successful tool to express the signal in time
and frequency domain simultaneously. To obtain the wavelet coefficients ef-
ficiently, the discrete wavelet transform has been introduced since it can be
achieved by a tree of two-channel filter banks. Then, we discuss the design
conditions of two-channel filter banks, i.e., the perfect reconstruction and
orthonormality. Additionally, some properties of scaling and wavelet func-
tions including orthonormality, symmetry and vanishing moments are also
given. Moreover, the structure of DTCWT is introduced, where two wavelet
bases are required to form a Hilbert transform pair. Thus, the corresponding
scaling lowpass filters must satisfy the half-sample delay condition. Finally,
the objective measures of quality are given to evaluate the performance of
the complex wavelet.

In Chapter 3, we propose a new class of DTCWTs with improved analytic-
ity and frequency selectivity by using general IIR filters with numerator and
denominator of different degree. In the common-factor technique proposed
by Selesnick, the maximally flat allpass filter was used to satisfy the half-
sample delay condition, resulting in poor analyticity of complex wavelets.
Thus, to improve the analyticity of complex wavelets, we present a method

for designing allpass filters with the specified degree of flatness and equirip-



v

ple phase response in the approximation band. Moreover, to improve the
frequency selectivity of scaling lowpass filters, we locate the specified num-
ber of zeros at z = —1 and minimize the stopband error. The well-known
Remez exchange algorithm has been applied to approximate the equiripple
response. Therefore, a set of filter coefficients can be easily obtained by solv-
ing the eigenvalue problem. Furthermore, we investigate the performance
on the proposed DTCWTs and dedicate how to choose the approximation
band and stopband properly. It is shown that the conventional DTCWTs
proposed by Selesnick are only the special cases of DTCWTs proposed in
this dissertation.

In Chapter 4, we propose another class of almost symmetric DTCWTs
with arbitrary center of symmetry. We specify the degree of flatness of
group delay, and the number of vanishing moments, then apply the Remez
exchange algorithm to minimize the difference between two scaling lowpass
filters in the frequency domain, in order to improve the analyticity of com-
plex wavelets. Therefore, the equiripple behaviour of the error function can
be obtained through a few iterations. Moreover, two scaling lowpass filters
can be obtained simultaneously. As a result, the complex wavelets are or-
thogonal and almost symmetric, and have the improved analyticity. Since
the group delay of scaling lowpass filters can be arbitrarily specified, the
scaling functions have the arbitrary center of symmetry. Finally, several ex-
periments of signal denoising are carried out to demonstrate the efficiency of
the proposed DTCWTs. It is clear that the proposed DTCWTs can achieve

better performance on noise reduction.
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Notation

o(t) scaling function

Ww(t) wavelet function

() complex wavelet function

U (t) wavelet function of Tree A (real part of ¥.(t))

o (t) wavelet function of Tree B (imaginary part of 1).(t))
d(w) Fourier transform of ¢(t)

U(w) Fourier transform of 1 (t)

. (%) Fourier transform of . (t)

Uy (t) Fourier transform of () of Tree A

Wy (t) Fourier transform of v (t) of Tree B

Cin scaling coefficient

djn wavelet coefficient

d; complex wavelet coefficient

d, wavelet coefficient of Tree A (real part of dj,)

dr, wavelet coefficient of Tree B (imaginary part of d5,)
djm wavelet coefficient after thresholding

chn complex wavelet coefficient after thresholding

h(n) impulse response of lowpass filter in analysis filter
hi(n) impulse response of lowpass filter of Tree A

ho(n) impulse response of lowpass filter of Tree B
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transfer function of lowpass filter in analysis filter
transfer function of lowpass filter in synthesis filter
transfer function of lowpass filter of Tree A
transfer function of lowpass filter of Tree B
impulse response of highpass filter in analysis filter
transfer function of highpass filter in analysis filter
transfer function of highpass filter in synthesis filter
moment of impulse response of highpass filter
moment of wavelet function

number of vanishing moment

phase response of lowpass filter

phase response of lowpass filter of Tree A

phase response of lowpass filter of Tree B

desired phase response of lowpass filter

desired phase response of lowpass filter of Tree A
desired phase response of lowpass filter of Tree B
error phase response of lowpass filter

error phase response of lowpass filter of Tree A
error phase response of lowpass filter of Tree B
group delay of lowpass filter

group delay of lowpass filter of Tree A

group delay of lowpass filter of Tree B

transfer function of allpass filter



coefficient of allpass filter

degree of allpass filter

degree of flatness of group delay

degree of FIR filter or numerator of IIR filter

number of integer delay in half-sample delay condition
product filter

cutoff frequency of approximation band of allpass filter
cutoff frequency of stopband of lowpass filter
threshold value

error function

objective measure of analyticity of complex wavelet
Hilbert transform

largest integer not greater than -

thresholding operator






Chapter 1 Introduction

1.1 Background

A wavelet is a locally oscillating function that can be used to capture in-
formative, efficient, and useful descriptions of a signal. Despite of its short
history, wavelet theory has been proved to be a powerful mathematical tool
for analysis and synthesis of signals and has been used in a remarkable
diversity of disciplines such as physics, geophysics, numerical analysis, sig-
nal processing, biomedical engineering, statistics, and computer graphics
1] ~ [3], [26].

Why have wavelets been proved so useful in such a wide range of appli-
cations? The primary reason is because they collect information from both
temporal and frequency domain simultaneously while cutting up data into
different frequency components, and then study each component with a
resolution matched to its scale. Therefore, they can provide an extremely
efficient representation for many types of signals, that appear often in
practice but are not well matched by the Fourier basis, which is ideally
meant for periodic signals. Another reason encourages us is that the co-
efficients from a fine-scale representation can be easily obtained from two
octave-band, discrete-time filter banks that recursively apply a discrete-
time lowpass filter, a highpass filter, and upsampling and downsampling
operations [1] ~ [3]. However, the wavelet transform itself also suffer four
fundamental shortcomings in spite of its efficient signal representation and

multiscale analysis [26];
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1. OSCILLATION
It is attractive that if wavelet coefficients could be large at the
edge or the sharp position. Generally, the wavelet coefficients tend to

oscillate positive and negative around these areas.

2. SHIFT VARIANCE A small shift of signal would generate a
great difference of wavelet coefficients, especially the wavelet coeffi-

cients oscillate around singularities.

3. ALTASING
As mentioned above, the wavelet coefficients can be computed from
the signal via iterated discrete-time downsampling operations from

lowpass and highpass filters, resulting in substantial aliasing.

4. LACK OF DIRECTIONAL SELECTIVITY

In two or higher dimensions, the wavelet produces a checkerboard
pattern that is oriented along 4 directions, i.e., 0°, 45°, 90°, 135°.
This lack of directional selectivity greatly complicates modelling and

processing of geometric image features like edges.

The undecimated wavelet transform [10] seems to be a good solution
to these four DW'T shortcomings, since downsampling and upsampling
operations have not been adopted. However, the undecimated wavelet
transform leads in a huge redundancy as the output of each level of signal
contains the same number of samples as the input. Therefore, a better
solution between shift invariance and redundancies in the wavelet coef-
ficients is to use a complex wavelet instead, in which one of the most

successful and widely-used approaches is dual-tree complex wavelet trans-

form (DTCWT).
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DTCWT was originally introduced by Kingsbury [13], and has been
found to be successful in many applications of signal and image process-
ing [13] ~ [29]. DTCWT provides the following significant improvements
over the conventional discrete wavelet transform (DWT) in [1], i.e., it is of
approximate shift invariance, enhanced directional selectivity for multidi-
mensional signals and gives the explicit phase information [26]. Generally,
the DTCWT is constructed by a Hilbert transform pair of wavelets (90°
out of phase with each other). It has been shown in [20], [23] and [27] ~
[30] that the necessary and sufficient condition for two wavelet bases to
be a Hilbert transform pair is that the two corresponding lowpass filters

should satisty the half-sample delay condition.

1.2 Previous Design Methods

Several design procedures for constructing DTCW'T's had been presented
in [13] ~ [48]. In [20], Selesnick had proposed a common-factor design tech-
nique, where the scaling lowpass filters are constructed by using allpass
filters to satisfy the half-sample delay condition. This method is simple
and effective, since the approximation accuracy of the half-sample delay is
controlled only by the allpass filter. Selesnick had adopted the maximally
flat allpass filter and given a class of FIR orthonormal and biorthogonal
solutions, and IIR orthonormal solution, where the scaling lowpass fil-
ters have as many zeros at z = —1 as possible to obtain the maximum
number of vanishing moments of wavelets, resulting in the maximally flat
magnitude responses of the scaling lowpass filters. It is well known that
frequency selectivity is a useful property for many applications of signal

processing. However, the maximally flat filters have poor frequency selec-
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tivity [2]. In addition, the resulting IIR scaling lowpass filters have the
numerator and denominator of the (almost) same degree. In [25], a new
class of Hilbert transform pairs of orthonormal wavelet bases has been
proposed by using general TIR filters, where the degree of numerator is
larger than that of the denominator, but only the maximally flat design
has been discussed. The maximally flat allpass filters have a larger phase
error as |w| increases, resulting in a poor analyticity of complex wavelet.

The wavelet filters obtained by the common-factor method have non-
linear phase responses, resulting in asymmetric wavelet bases. Generally,
the symmetric wavelet bases are widely used in image processing since
the perceptually objectionable distortions around image edges can be ef-
fectively reduced. Therefore, several methods have been proposed for ob-
taining symmetric wavelet bases. Q-shift filters were proposed by Kings-
bury in [16], [17], [22]. In [16], two scaling lowpass filters were selected to
be the time-reversed versions of each other. Therefore, the group delay
of lowpass filter is required to be 1/4 (quarter) or 3/4 sample from the
half-sample delay condition, and then the filter was called as Q-shift filter.
Some design methods for Q-shift filters have been also proposed in [17],
[22], [41], [42] to improve the vanishing moments, symmetry and so on. In
addition, SSH (symmetric self-Hilbertian) filter had been proposed by Tay
in [30] and its design had been discussed in [31], [45], [47]. In principle,
SSH filters are the same as Q-shift filters, and have a group delay of 1/4
sample.

In many applications of signal and image processing, digital filters with
the specified (fractional or integer) group delay are often needed [3], [6].

For the conventional DWTs, nearly symmetric orthogonal wavelets, e.g.,
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coiflets, had been proposed in [1, chapter 8.2], and the original coiflets had
also been generalized by varying the group delay at w = 0, i.e., the center
of symmetry of scaling function, where non-integer group delay was used
to obtain a rich class of new wavelets [11], [12]. Therefore, it is reasonable
to design a class of almost symmetric DTCW'Ts with arbitrarily specified

group delay responses.

1.3 Contruibutions and Organizations of the

Dissertation

This dissertation proposes two new classes of DTCWTs with different im-
proved properties. First of all, we propose a new class of DTCW'T's with
improved analyticity and frequency selectivity by using general IIR filters
with numerator and denominator of different degree based on common-
factor method. Next, we propose another class of almost symmetric
DTCWTs with arbitrary center of symmetry. The scaling lowpass fil-
ters can have the specified group delay responses, resulting in the scaling
functions having arbitrary center of symmetry. The resulting DTCWTs
are orthogonal and almost symmetric, and have the improved analyticity.

In Chapter 2, we first review Fourier transform and short time Fourier
transform, and then introduce the theory of wavelet transform including
wavelet series expansion and multiresolution. It is shown that the signal
can be easily constructed from a single wavelet by its shift and scaling.
The discrete wavelet transform is introduced to obtain the wavelet co-
efficients efficiently, since the coefficients can be calculated by a tree of

two-channel filter banks. Next, we discuss the properties of wavelets in-
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cluding orthonormality, symmetry and vanishing moments. Moreover, the
structure of Dual tree complex wavelet transforms (DTCWTs) is given,
which is consisted from two conventional discrete wavelet transform. Two
wavelet bases are required to form a Hilbert transform pair, thus, the
corresponding scaling lowpass filters must satisfy the half-sample delay
condition. Finally, two objective measures are introduced to evaluate the
performance of complex wavelet.

In Chapter 3, we propose a new class of DTCW'Ts with improved ana-
lyticity and frequency selectivity by using general IIR filters with numer-
ator and denominator of different degree. To improve the analyticity of
complex wavelet, we present a method for designing allpass filters with
the specified degree of flatness at w = 0 and equiripple phase response
in the approximation band. To improve the frequency selectivity of the
scaling lowpass filters, we specify the number of zeros at z = —1 from the
viewpoint of vanishing moments and then minimize the stopband error by
using the remaining degree of freedom. The proposed design procedures
are based on the well-known Remez exchange algorithm, thus, a set of filter
coefficients can be easily obtained by solving the eigenvalue problem. The
optimal solution is attained through a few iterations. It is shown that the
conventional FIR and IIR orthonormal solutions proposed in [20] are only
the special cases of DTCWTs proposed in this dissertation. Moreover, we
investigate the performance on the proposed DTCWTs and indicate how
to choose the approximation band properly.

In Chapter 4, we propose another class of almost symmetric DTCWTs
with arbitrary center of symmetry. We design simultaneously two scaling

lowpass filters with the specified flat group delay at w = 0, which sat-
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isfy the half-sample delay condition. In addition to specifying the number
of vanishing moments, we apply the Remez exchange algorithm to min-
imize the difference between two scaling lowpass filters in the frequency
domain, in order to improve the analyticity of complex wavelets. The
equiripple behaviour of the error function can be obtained through a few
iterations. As a result, the complex wavelets are orthogonal and almost
symmetric, and have the improved analyticity. Differently from Q-shift
filters, the group delay responses of scaling lowpass filters can be arbitrar-
ily specified, resulting in the scaling functions having the arbitrary center
of symmetry. Moreover, it is shown that DTCW'Ts proposed in this dis-
sertation can achieve better analyticity than Q-shift filters. Finally, we
introduce wavelet thresholding scheme to investigate the performance of
noise reduction by using the proposed DTCWTs.

In Chapter 5, we conclude the dissertation.
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Chapter 2 Fundamentals of Dual
Tree Complex Wavelet

Transform

2.1 Introduction

In this chapter, we briefly review the theory of Fourier analysis and short
time Fourier transform, and then introduce the fundamentals of wavelet
theory, from wavelet series expansion, to two-channel filter bank. Next,
a newly-developed technique referred as dual tree complex wavelet trans-
form (DTCWT) is introduced. Two measures used for evaluating the

performance of complex wavelet are given at the end of this chapter.

2.2 Fourier Analysis

2.2.1 Fourier Transform

The Fourier transform is one of the most significant mathematical tool for
decomposing the signal into a sum of sines and cosines basis functions.
Each of these basis functions is a complex exponential of a different fre-
quency. Therefore, the Fourier transform maps the signal in time domain

to the frequency domain.
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Generally, the Fourier transform of a signal x(f) can be expressed as
X(w) = / z(t)e I dL. (2.1)

In addition, z(t) can be obtained from X (w) via the inverse Fourier trans-

form:

o(t) = % /_ T X (W), (2.2)

According to Eq.(2.1), we can not obtain the frequency spectrum for the
signal in accurate time position. According to Eq.(2.2), it is difficult to
extract the time information corresponding to the specified frequency spec-
trum. That is to say, the Fourier transform can only provide either time
or frequency domain information. Therefore, short-time Fourier transform
(STFT) had been proposed to obtain the local information in both time

and frequency domains.

2.2.2  Short-Time Fourier Transform

The concept of STFT is obvious that it uses a window function (e.g., Hann
window or Gaussian window), which is nonzero for only a short period of
time, to provide the local information of time and frequency as the window
slides along the time axis. The STFT can be expressed as

X(w, ty) = / z(t)w(t — to)e ¥ dt, (2.3)
where w(t) is the window function and ¢, is the local position. Thus,
STFT is time and frequency localized, which can provide both time and

frequency information.
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However, the STFT only provides the equal resolution in time for lower
and higher frequencies since the resolution is determined by the window
size in advance. For the practical usage, it is reasonable to provide mul-
tiresolution for time-frequency analysis. Therefore, the wavelet transform

had been proposed and proved to be a successful tool instead of STFT.

2.3 Wavelet Theory

2.3.1 Wavelet Series Expansion and Multiresolution

In the previous section, the Fourier transform is employed to transform
signals between time and frequency domains. However, the signal can not
contain information in both time and frequency domains simultaneously.
In order to overcome the limitation of Fourier transform, another trans-
form referred as wawvelet transform had been proposed and proved to be a
successful tool instead of Fourier transform. Differently from basis func-
tions (sines and cosines) in Fourier transform, the wavelet bases are a set
of locally oscillating functions, which are constructed from a single mother
(or father) wavelet by its shift and scaling. Therefore, the scaling func-
tions ¢(t) and wavelet functions () at scale j with n shift are expressed
as,

Gin(t) = 2776(27t — )
(2.4)

bin(t) = 2202t )

Generally, a signal z(t) can be represented as a linear combination of
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the wavelet bases as

2(t) = Cion®iom(t) + DD dinthin(t), (2.5)

Jj=jo n
where ¢, , are the scaling coefficients at scale 270 and d;,, are the wavelet
coefficients at scale 2/. Eq.(2.5) is regarded as wavelet series expansion.

The scaling coefficients c;, , can be obtained by

00
= | 00501 (2.6)
while the wavelet coefficients d;,, can be obtained by
+o00
b= [ sttty 2.7)

The first term in Eq.(2.5) represents the approximation of the signal
z(t) at level jo by the linear combination of the scaling functions ¢, ,(t)
and the second term represents the details in different levels of the signal
z(t) by the linear combination of the wavelet functions ;,(¢). Thus,
the scaling function has the characteristic of lowpass nature (“smooth”
the signal) whereas the wavelet function has the characteristic of highpass
nature (take “difference” of signal).

It should be noted that at each given resolution (level j) of the signal,
the approximation plus the detail, the ¢;,(t)’s plus the 1;,(¢)’s, combine

into a multiresolution of the signal at the finer level j + 1,

D Ciiinbint) =D cinbin(t) + D dinthin(t). (2.8)

Thus, the signal is usually expressed by the wavelet series expansion in its

multiresolution representation. Fig.2.1 shows each mentioned-above trans-
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form in time-frequency representation. The Fourier transform only pro-
vides information about either time or frequency; The short-time Fourier
transform provides local time-frequency information, but with the same
resolution; The wavelet transform provides information about the time

and frequency with different resolution.

>
o
C
[}
>
jog
g
time
(a) Fourier transform (FT).
>
(&)
C
[}
>
jog
g
time
(b) Short-time Fourier transform (STFT).
()
=
S
>
oy
©
o
w

time
(c) Wavelet transform (WT).

Fig.2.1 Comparison of FT, STFT and WT
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2.3.2 Discrete Wavelet Transform

For the practical usage of the wavelet transform and its multiresolution
analysis, discrete wavelet transform had been proposed to compute the
coefficients ¢;, and d;, quickly and efficiently. In the discrete time, the

scaling function ¢(t) satisfy dilation equation:

() = V2)  h(n)g(2t —n), (2.9)

and the wavelet function ¢(t) satisfy wavelet equation:

U(t) = V2Y g(m)o(2t —n). (2.10)

where h(n) and g(n) are lowpass filter and highpass filter from a two-
channel filter bank, respectively.

Thus, multiresolution analysis in discrete time can be achieved by a tree
of two-channel filter banks. The scaling and wavelet coefficients at scale
27 can be computed from the scaling coefficients at the finer scale 2771
through a discrete-time filtering followed by a downsampling operations,
while the scaling coefficients at the scale 271! can be synthesized from the
scaling and wavelet coefficients at the scale 2/ via a up-sampling operation
followed by a discrete-time filtering. For instance, we start with ¢;, 11, and

perform the decomposition (j; — jo + 1) times:

Cjitin — Cjm —7 Cih—1n —7 0 T 7 Cjm

pN N\ N\ N :

djlzn dj1_17n o djo:”

while we can recover ¢;, 41, by performing the reconstruction (j; — jo+1)
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times:

Cjo,n > Cjot+1,n roo > Cin 7 Cii+ln

jo,n djgt1,m T djy n
Thus, it is obvious that the discrete wavelet transform provides an efficient
discrete-time approach to compute the wavelet series expansion by its

recursive process.

2.3.3 Two Channel Filter Banks

2.3.3.1 Basic Structure

The basic structure of two-channel filter bank is shown in Fig.2.2. In the
analysis bank, H(z) is a lowpass filter and G(z) is a highpass filter. In
the synthesis bank, H(z) is a lowpass filter and G(z) is a highpass fil-
ter. The down-sampling operators ({) are decimators and the upsampling
operators (1) are expanders. Basically, the properties (orthogonality, sym-
metry, vanishing moments and so on) of scaling and wavelet function are

determined by the filter banks.
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..................................................

analySIS deumator |nterpo|ator synthesis
input i o | output

X (Z)— E}—»Y(z

..................................................

Fig.2.2 Two-channel filter bank.

2.3.3.2 Perfect Reconstruction

Consider the input signal is X (z), then the output Y (z) is consisted from

lowpass and highpass channels,

H(2)[H (2)X (2) + H(=2)X (~2)]

lowpass output =

G(2)[G(2)X (2) + G(=2) X (~2)]

highpass output =

N — N —

Therefore, the output Y'(z) can be expressed as

[H(2)H(2) + G(2)G(2)] X (2)
(2.11)

[H(=2)H (2) + G(=2)G(2)] X (~2).

For perfect reconstruction with N sample delays, Y (z) = X (2)z=". So the
first term in Eq.(2.11) should cancel the signal distortion and the second
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term must be zero. Thus, the corresponding filter banks should satisfy

H(2)H(2) + G(2)G(z) = 227N
) ) , (2.12)
H(—2)H(z) + G(—2)G(2) =0
where N is odd. Thus, the synthesis bank H(z),G(z) can be directly

derived from analysis bank H(z), G(z) as
H(z) =G(-2) and G(z)=—H(-2). (2.13)
Then, Eq.(2.12) becomes

H(2)G(—2) — H(—2)G(z) =227, (2.14)

which is perfect reconstruction condition.

2.3.3.3 Orthonormality

It is well-known that the orthonormal wavelets form a tight Riesz basis,
and the corresponding transform has the [2>-norm-preserving property. In
applications, the orthogonality has several advantages such as noise decor-
relation in denoising, energy preservation and so on [46]. Therefore, we
restrict ourself to the case of orthonormal wavelet bases in this disser-
tation. The corresponding filter banks should satisfy the orthonormality
condition, i.e., the synthesis filter bank should be time-reversed of analysis

filter banks,

H(z)=2zNH(z™Y) and G(z)=2VG(:™. (2.15)
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According to Eq.(2.13), Eq.(2.15) becomes
H(—2)=—2"G(z™") and G(—2)=z"VH(z). (2.16)

Then the orthonormality condition can be derived from Eq.(2.14),
Eq.(2.15) and Eq.(2.16),

Hz)H(zY+ H(—2)H(—2z"1) =2
GGz +G(—2)G(-zH =2 . (2.17)
H(z)G(zY)+ H(—2)G(—z"1) =0

2.3.3.4 Symmetry

If the scaling function ¢(¢) and wavelet function ¢ (¢) are symmetric and

their center of symmetry are located at 7y and %, respectively,

ot —70) = (10 — t)

N N

P(t — 5) :lb(g —t)

(2.18)

Eq.(2.18) requires that the corresponding scaling lowpass filter must have

a linear phase response;
O(w) = —Tow, (2.19)

where 73 is the constant.
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2.3.3.5 Vanishing Moments

The moment of the wavelet function is defined by

m(r) = /_ T e, (2.20)

o0

and the moment of impulse response g(n) is given by

pr) = n"g(n). (2.21)
Generally, the wavelets function is required to have K vanishing mo-
ments,
m(r) = / t"Y(t)dt =0
e (r=0,1,---,K—1). (2.22)
p(r) =Y n"g(n) =0
According to Eq.(2.16), we have
g(n) = (=1)"h(N —n). (2.23)
Therefore, the scaling lowpass filter H(z) must have K zeros at z = —1;
H(z) = Q)1 + 271, (2.24)

where Q(z) is a FIR or IIR filter.
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2.4 Dual Tree Complex Wavelet Transform

In the previous section, the wavelet theory and filter banks have been
introduced. However, the conventional wavelet transform has some un-
avoidable shortcomings, like shift variance, lack of directionality and so
on. Therefore, the dual-tree complex wavelet transform is proposed to

overcome the shortcomings of DWT.

2.4.1 Basic Structure

Dual-Tree Complex Wavelet Transform (DTCWT) was originally pro-
posed by Kingsbury [13], and has been found to be successful in many
applications of signal and image processing [13] ~ [29]. It not only inher-
its the merit of DWT, like multiresolution analysis, time-frequency rep-
resentation and so on, but also makes a comparable improvement to the
shortcomings of DWT, i.e., it is of approximate shift invariance, enhanced
directional selectivity for multidimensional signals and gives the explicit
phase information [26]. Besides, it achieves these with a redundancy fac-
tor of only 2¢ for d-dimensional signals, which is substantially lower than
the undecimated DW'T.

DTCWT employs two real DWTs, as shown in Fig.2.3, where the first
DWT is the real part of DTCW'T and the other one is the imaginary part.
Each DWT is consisted from two-channel filter bank. Let {¢;(t),1;(t)} be

the scaling and wavelet functions of two DWTs, where ¢ = 1,2. Then, the
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Real parlt_I y |_|1(Z)_,Q2_>
(z —><:)—>{
G,(z —><:)—>
Gl(z)—’@—:///l///////
'/magmargp(ﬁrt)// H@)+2)—~
(2
G (Z)—’(:)—’
GaO@)—~ —

Fig.2.3 Dual tree complex wavelet filter bank.

complex wavelet 1.(t) is expressed as

Ye(t) = Pi(t) + jea(t). (2.25)

Generally, two wavelet functions ;(t) and (t) are required to be a
pair of Hilbert transform. Thus the complex wavelet 1).(t) is analytic, i.e.,

the spectrum is one-sided:
| )
U (w) =V (w) 4+ jUs(w) = : (2.26)

where W;(w) is the Fourier transform of ;(t).
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2.4.2 Half-sample Delay Condition

It had been proven in [20], [23] ~ [27], [30] and [31] that two wavelet

functions ;(t) are a Hilbert transform pair;

Ua(t) = H{t1(8)}, (2.27)

that is,
Vy(w) = ' : (2.28)

if and only if the corresponding scaling lowpass filters H;(z) and Hy(z)
satisfy

Hy(e?) = Hy(e%)e1@M+3) (|| < ), (2.29)

where M is an integer. Eq.(2.29) is the generalized half-sample delay
condition, which is the necessary and sufficient condition for two wavelet
bases to form a Hilbert transform pair. It should be noted that M = 0 is

used in all design examples in this dissertation.

2.4.3 Error Function

It is obvious in Eq.(2.29) that Hy(e’) needs to be approximated to
H,y(e3*)e1@M+3)w  Specifically, the scaling lowpass filters should be offset

from another one by a half sample. Therefore, we define the error function

E(w) as

E(w) = Hy(e/) — Hy(e/)e 1M +2), (2.30)
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In this dissertation, we will minimize the error function F(w) to improve

the analyticity.

2.5 Objective Measures of Analyticity

Practically, it is impossible to achieve the ideal Hilbert transform. There-
fore, to evaluate the analyticity of complex wavelet, we use the p-norm of
the spectrum ¥.(w) to define an objective measure of quality as

AR
||\IIC(W)HP,(O,OO) ,

E, (2.31)

where

1wlla = ( [ r\vc<w>\pdw);. (232)

Ifp=o0, By = pli)rgo E, evaluates the peak error in the negative frequency
domain. If p = 2, F, evaluates the square root of the negative frequency
energy. In this dissertation, we use F, and Es to evaluate the analyticity
of the complex wavelets. It should be noted that the lower the values of

E. and Es, the better the analyticity of complex wavelet.

2.6 Summary

In this chapter, we have introduced the Fourier transform and short-time
Fourier transform at first and then reviewed the conventional wavelet the-
ory and interpreted the discrete wavelet transform achieved by two-channel
filter banks. Next, we discussed the orthornomality and the perfect recon-

struction of two-channel filter banks. In addition, some important prop-
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erties such as symmetry, vanishing moments of wavelets have been dis-
cussed. Next, DTCWT was introduced. The half-sample delay condition
was given which is the necessary and sufficient condition for two wavelet
bases to be a Hilbert transform pair. Finally, two objective measures were

introduced to evaluate the performance of the complex wavelets.
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Chapter 3 Orthogonal DTCWTs
with Improved Analyticity

and Frequency Selectivity

3.1 Introduction

Dual tree complex wavelet transforms (DTCWTs) have been proposed and
found to be successful in many applications of signal and image processing
[13], [16] ~ [22], [26]. Two wavelet bases are required to form to be a
Hilbert transform pair. The corresponding scaling lowpass filters satisfy
the half-sample delay condition. Several design procedures for Hilbert
transform pairs of wavelet bases have been presented in [13], [16] ~ [22],
[26], [30], [31] and [38] by using FIR filters, which are corresponding to
the compactly supported wavelets. In [20], Selesnick had proposed the
common-factor technique, where the scaling lowpass filters are constructed
by using allpass filters to satisfy the half-sample delay condition. Selesnick
had adopted the maximally flat allpass filter and given a class of FIR
orthonormal and biorthogonal solutions, and IIR orthonormal solution.
However, the maximally flat allpass filter has a large phase error as |w|
increases, resulting in a poor analyticity of complex wavelet. In addition,
the scaling lowpass filters in [26] have as many zeros at z = —1 as possible,
resulting a weak frequency selectivity. Moreover, the resulting IIR scaling

lowpass filters have the numerator and denominator of the (almost) same
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degree.

In [25], Kawada and Zhang had proposed a design method based on
common-factor technique by using general IIR filters with numerator and
denominator of different degree. We will review that method at first and
then propose a new class of DTCWTs with improved analyticity and fre-
quency selectivity. It is shown that the conventional FIR and IIR orthonor-
mal solutions proposed in [20] are only the special cases of DTCWTSs pro-
posed in this disseratation. Finally, we investigate the performance on the

proposed DTCWTs and indicate how to choose the approximation band

properly.

3.2 The Common-Factor Technique

3.2.1 Hilbert Transform Pairs by Allpass Filter

It is known [6] that the transfer function of an allpass filter A(z) with a
delay of 7 samples is defined by

(3.1)

D(z) =) a(n)z™" (3.2)

with

aln) = (~1)" ( / ) (r=J) (3.3)
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where J is the degree of A(z) and a(n) are real filter coefficients, a(0) = 1
and (), represents the rising factorial, i.e., (), := (z)(x+1) - - - (x+n—1).
The allpass filter A(z) has unit magnitude response at all frequencies and
its phase response 6(w) is given by

J
> a, sin(nw)
O(w) = —Jw +2tan~" == . (3.4)

> ay, cos(nw)

n=0

In [20], Selesnick had proposed the common factor technique where the
scaling lowpass filters Hy(z) and Hs(z) are composed of the allpass filter
by

Hi(z) = F(2)D(z)
(3.5)
Hy(z) = F(2)z27/D(z7)

Since both of scaling lowpass filters have the same factor F'(z), we have

Hy(z) = Hy(2)z = H(2)A(2). (3.6)

It is clear that Hy(z) is expressed as the product of Hi(z) and A(z). The
half-sample delay condition in Eq.(2.29) can be approximately achieved if

the allpass filter is an approximate half-sample delay;
A% m em1@MER)e (1y] < ). (3.7)

Thus the half-sample delay condition is achieved approximately, and two
wavelet bases form an approximate Hilbert transform pair. The advantage
of this method is that the approximation accuracy of the half-sample delay

is controlled only by the allpass filter.
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3.2.2 FIR Orthonormal Solution

After A(z) is determined, F(z) needs to be constructed for H;(z) and
Hs(z). To obtain wavelet bases with K vanishing moments, F'(z) is chosen

as

F(2) = Q(2)(1+ 2 )¥. (3.8)

{Hl(z) = Q(x)(1+2z1%D(2) (3.9)

Hy(z) = Q()(1+2"H)%"D(z"Y)

It is clear that H;(z) and Hs(z) have the same product filter P(z);
P(z) = Hi(2)H\(27") = Hy(2)Ha(27)
=Q()Q(z"H(1+ )51 +2HED(z)D(z™). (3.10)

=Q(2)Q(z") (2 +2+27)D(2)D(+7")

Let Q(z) be a FIR filter and defining

R(z)=Q(2)Q(z"") = Z r(n)z™", (3.11)
S(2)=(z+2+ 2 ) D()D(z"") = > sn)z, (3.12)

where 7(n) = r(—n) for 1 <n < Nj and s(n) = s(—n) for 1 <n < J+ K,
and Eq.(3.10) becomes

P(z) = R(2)S(2). (3.13)



3.2 The Common-Factor Technique 33

Therefore, the orthonormality condition in Eq.(2.17) becomes,
P(z)+ P(—z) = 2, (3.14)

or equivalently,

1 (n=0)
> s@2n—k)r(k) = : (3.15)
k=Imin 0 (1<n< N1+—2‘]+K)
where I, = max{—Ny,2n — J — K} and . = min{Ny,2n + J + K}.
Note that P(z) is a halfband filter. The degree of H;(2) is N = N1 +J+ K.
Since r(n) = r(—n), there are totally (N + 1)/2 equations with respect
to (N1 + 1) unknown coeflicients of r(n) in Eq.(3.15). Therefore, we can
obtain the only solution if (N +1)/2 = Ny + 1.
In [20], Selesnick had chosen N; = J + K — 1 and obtained the filter of
minimal degree for given J and K, which corresponds to the maximal K

for given J and Ny,

N+1
Kmm:Nl—J+1:T+—J. (3.16)

Thus the scaling lowpass filters have the maximally flat magnitude re-
sponses, resulting in the maximum number of vanishing moments. This is

the FIR orthonormal solution proposed in [20].

3.2.3 IIR Orthonormal Solution

In general, IIR filters require a lower computational complexity than FIR

filters to achieve a sharp frequency response. IIR filters can be also used
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to construct DTCWT. In [20], Selesnick has chosen

_ (1 _i_Zfl)K
F(z) = NI (3.17)
then
( (14 2HED(z)
e =0
$ DN (3.18)
Hy(z) :(1 = é(;) D)
H,(z) and Hs(z) have the same product filter P(z),
Defining
B(z) =C(2)C(z"") = ) bn)z"", (3.20)

where b(n) = b(—n) for 1 < n < N;. From the orthonormality condition
in Eq.(2.16),

S(z) +S(—2) = 2B(z%). (3.21)
thus No = | ZAE | and
b(n) = s(2n), (3.22)

where |z | means the largest integer not greater than z. This is the IIR
orthonormal solution proposed in [20]. It is clear that the numerator
and denominator of H;(z) are of degree N = J + K and 2N, = 2| Z£E |

respectively, which are the almost same.



3.2 The Common-Factor Technique 35

3.2.4 General I[IR Orthonormal Solution

Now we consider the case of using general IIR filters with numerator and

denominator of different degree [25]. We choose

Q) +=7H"

F(z) = oy (3.23)
then the corresponding scaling lowpass filters H;(z) become
( Q)1 +2)"D(z)
e =0
< , (3.24)
CQ(2)(1+ 2 )&= D(z7Y)
S ()

where the degree of numerator is not less than the degree of denominator,
that is, N=J+ K + N; > 2N,. If N > 2N,, then N is an odd number,
whereas if N = 2N,, N is an even number.

Thus, the product filter P(z) is
P(z) = Hy(2)Hi(27") = Ha(2) Ha(27)

_QEQENA+2)"(1+2)"D(z)D(z"")

_ R(2)S(2)
B(z?)

According to the orthonormality condition, we have

b(n) (0<n<N,)
> s@2n—k)r(k) = . (3.26)

N
k=Imin 0 (Ng <n S 5)
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We rewrite Eq.(3.26) in the matrix form as

b = Slr, (327)
and
Sar =0, (3.28)
where b = [b(0),b(1),--- ,b(No)]", v = [r(0),r(1),---, r(N)]", 0 =
[0,0,---,0]7, and the elements of the matrices S; and S, are given by
s(2m) (n=0)
Si(m,n) = (3.29)

s(2m—n)+s2m+n) (n=1,2,...,Ny)

where 0 < m < N, and

[ S(2(Ny + 1 +m)) (n = 0)

20 =4 Nyt 1t —n) SNyt 1L ) D)

(n:1,2,..‘,N1)

\
where 0 <m < |¥]— N, —1. Note that s(—n) = s(n) =0forn > J+ K.

Assuming 7(0) = 1 without any loss of generality, there are (|5 —
N;) equations with respect to N; unknown coefficients r(n) in Eq.(3.28).
Therefore, it is clear that the only solution r(n) exists if |J| — Ny = Ny,
and then b(n) can be obtained by using Eq.(3.27). When N > 2Ny, Ny +
2Ny = J4+ K —1, since N is odd. If we choose Ny = 0, then N; = J+ K —1,
which is correspondent to the FIR orthonormal solution in [20]. If we
choose Ny =0, then N = J+ K. When N isodd, 2Ny = J+ K—1 = N—1,
while if N is even, 2Ny = J + K = N. Thus N, = || = [&5 ], and it
is the IIR orthonormal solution in [20]. Therefore, it is clear that the FIR
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and ITR orthonormal solutions proposed in [20] are only the special cases
of general IIR orthonormal solutions when Ny = 0 or N; = 0. It should
be noted that the minimum-phase spectral factor approach is applied to
get Q(z) from R(z), C(z) from B(z) in this dissertation. TABLE.3.1
summarizes the FIR/IIR orthonormal solutions using general IIR filters

with numerator and denominator of different degree.

TABLE 3.1 FIR/IIR Orthonormal Solutions

Ny, No N Number of equation Filter Type
Ny #£0, N, =0 ODD Ni=J+K-1 FIR [20]
Ny #0, Ny #0 ODD Ni+ Ny =] IR

Ny=0,N,#0 | EVENorODD | N,=|&]=|ZbK) IIR [20]
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3.2.5  Design Examples

In this section, two examples will be presented. In the first example,
we consider a class of DTCWTs using general IIR filters. In the second

example, K and J will be varied to construct a new class of DTCWTs.

Example 3.1

We consider a class of DTCWTs using IIR filters with numerator and
denominator of different degree. As proposed in [20], we have used the
maximally flat allpass filter with J = 2 and K = 4. To obtain the filters
of minimal degree, we can choose {Ny, No} = {5,0},{3,1},{1,2},{0,3},
where the degree of numerators are N = 11,9, 7, 6, respectively. Note that
the filter with {Ny, No} = {5,0} is FIR filter. We have designed these
four filters, and the resulting magnitude responses of H;(z) are shown in
Fig.3.1. It is seen that IIR filters have more sharp magnitude responses
than FIR filter. To get stable filters, the numerator and denominator are
obtained by using the minimum-phase spectral factor [20]. Their group
delay responses are given in Fig.3.2. It is seen that the group delay be-
comes more flat as a decreasing Ny, and the half-sample delay condition is
approximately achieved. Moreover, the magnitude responses of F(w) are
shown in Fig.3.3. The maximum error of IIR filters are smaller than the
conventional FIR filter. The scaling and wavelet functions ¢;(t), ¢;(t) are
also shown in Fig.3.4. Furthermore, the spectrum ¥;(w) and the spectrum
U.(w) are shown in Fig.3.5, Fig.3.6 and Fig.3.7 respectively. In Fig.3.7,

the complex wavelet constructed by FIR filter has a bigger spectrum in
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the negative frequency domain than that by IIR filters. Finally, the ana-
lyticity measures of F., and F, are summarized in Table 3.2 and both of

E, and E5 decrease as an increasing N,.

TABLE 3.2 Analyticity Measures E, and Ej.

Ny Ny Eo (%) E2 (%)
5 0 1.627 1.894
3 1 1.064 1.173
1 2 1.017 1.061
0 3 1.014 1.048
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Fig.3.1 Magnitude responses of scaling lowpass filters H;(z).
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Example 3.2

We consider a class of DTCWTs using IIR Filters with N = 9, N; = 3.
We can choose different K and J, where K + J = 6. Therefore, K and
J are selected as {K,J} = {4,2},{3,3},{2,4}, respectively. The result-
ing magnitude response of H;(z) are shown in Fig.3.8. It is obvious that
with the increasing of K, the transition band of the scaling lowpass filters
becomes sharp. Their group delay responses are given in Fig.3.9, where
the half-sample delay condition is approximately achieved. Moreover, the
magnitude responses of F(w) are given in Fig.3.10. It is maximum when
{K =4,J = 2} while minimum when {K = 2, J = 4}. Next, the scaling
functions ¢;(t) and wavelet functions v;(¢) are shown in Fig.3.11. Fur-
thermore, the spectrum of wavelet function ¥;(w) and complex wavelet
V. (w) are given in Fig.3.12, Fig.3.13, and Fig.3.14, respectively. When
{K = 2,J = 4}, the negative spectrum of DTCWT is small, i.e., bet-
ter analyticity of DTCWT. Finally, the objective measures of quality are

summarized in Table 3.3.
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TABLE 3.3 Analyticity Measures E,, and Es.
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3 3 0.254 0.293
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Fig.3.8 Magnitude responses of scaling lowpass filters H;(z).
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Fig.3.10 Magnitude responses of F(w).
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3.3 DTCWTs with Improved Analyticity

In the previous section, we had introduced the common-factor technique,
where the maximally flat allpass filters A(z) had been adopted for con-
structing the scaling lowpass filters. Since w = 0 is chosen as the point of
approximation, the phase error will increase as |w| increases. Therefore,
F(w) has a large error in transition band, resulting in a poor analyticity
of complex wavelet. In the following, we will discuss how to improve the

analyticity of complex wavelet.

3.3.1 Flatness Condition

From Egs.(2.30) and (3.5), we have

B(w) = Hy(e™) — Hy(e7)eT2M+2)
(3.31)
= Hi(e)[A(e?) — e

)

thus

O(w) + (2M + 3)w

|[B(w)| = 2|Hi(e’)||sin 5

. (3.32)

where 6(w) is the phase response of A(z). It is clear that |E(w)| is de-
pendent on both the magnitude response |H;(e’*)| and the phase error of
A(z). Since Hi(z) is a lowpass filter, we must minimize the phase error
not only in passband but also in transition band to improve the analytic-
ity of complex wavelet. There are many design methods for allpass filters
to approximate a fractional delay response, for example, the maximally

flat [6], equiripple approximations [8], and so on. It will be better if the
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minimax (Chebyshev) phase approximation of allpass filters is used.

It is known that the wavelet function is defined by the infinite product
formula. Thus, it is necessary that A(z) has a certain degree of flatness
at w = 0 to improve the analyticity. In the following, we present a design
method of allpass filters with the specified degree of flatness at w = 0 and
equiripple phase response in the approximation band.

The desired phase response is 4(w) = —(2M + 1)w. The difference

0.(w) between 0(w) and 6,4(w) is given by

0.(w) = O(w) — Og(w) = 2tan"! g‘;—gz;, (3.33)
where
Ny(w) =Y a(n)sin{(n - g M+ 1))

(3.34)

i
iy
E
Il
S
M-1
[en)

a(n) cos{(n — % + M+ i)w}

Firstly, we consider the flatness condition of the phase response at w = 0.
It is required that the derivatives of §(w) are equal to that of 6;(w) at
w = 0;

82T+10(w)

aw2r+l

_ 627’+19d(w)
Y2t

(r=0,1,---,L—1), (3.35)

w=0 w=0

where L is a parameter that controls the degree of flatness, and 0 < L < J.
Eq.(3.35) is equivalent to

a2r+19€ (w)

aw2r+1 =0 (T = 07 17 e 7L — 1) (336)

w=0
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From Eq.(3.33), Eq.(3.36) can be reduced to

a2r+1NJ(w)

-0  (r=0,1,---,L—1). (3.37)

w=0
By substituting N;(w) in Eq.(3.34) into Eq.(3.37), we can derive a system

of linear equations as follows;

J

Z(n—%JrM%—}l)?T“a(n):O (r=0,1,---,L—1). (3.38)

n=0
It should be noted that if L = J, we can solve the linear equations in

Eq.(3.38) to obtain the maximally flat allpass filters, due to a(0) = 1.

3.3.2 Phase Error Minimization

In the following, we consider the case of L < J. We want to obtain an
equiripple phase response in the approximation band [0, w.] by using the
remaining degree of freedom J — L. Let w; (0 <wp <wy < -+ <wy_p =
w.) be the extremal frequencies in the approximation band. We apply

Remez exchange algorithm [4] and formulate 0. (w) as

Z a(n)sin{(n — J + M + 1)(JJZ}

96<wi) n=0 2 4 i
tan 5 = P ) = (—1)%, (3.39)
Z a(n) cos{(n — 5t M + Z)wz}

where § is an error. We then rewrite Eqs.(3.38) and (3.39 ) in the matrix

form as

Pa = 6Qa, (3.40)
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where a = [a(0),a(1),--- ,a(J)]", and the elements of the matrices P and

Q are given by

(

P(m,n) = <

\

Q(m,n) =

\

(n— 24+ M+ Lem+y (m=0,1,---,L—1)

Sin{(n—%%—M%—i)w(me)} (m:L’L+17... 7J)

(3.41)

(3.42)
(—1)™ L cos{(n — % + M + %l)w(m_L)}

(m=L,L+1,---,J)

It should be noted that Eq.(3.40) corresponds to a generalized eigenvalue

problem, i.e., § is

an eigenvalue, and a is the corresponding eigenvector.

To minimize §, we should choose the absolute minimum eigenvalue by

solving the eigenvalue problem, thus the corresponding eigenvector give a

set of filter coefficients a(n). To be an equiripple phase response in the

approximation band, we make use of an iteration procedure to obtain the

optimal filter coefficients a(n) [8],[39].
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3.3.3  Design Algorithm

In this section, we summarize the algorithm for designing allpass filters
with specified degree of flatness at w = 0 and equiripple phase response in

the approximation band.

Design Algorithm
Begin
(1) Read J, L and w..
(2) Select initial extremal frequencies €2; (0 < €y < ) < -+ <
Q-1 = w.) equally spaced in [0, w,].
Repeat
(3) Set w; =€, for i =0,1,---,J—L).
(4) Compute P and Q then find the absolute minimum eigenvalue ¢
to obtain a set of filter coefficients a(n).
(5) Search the peak frequencies ; (0 < Qp <y <--- < Q= w,)
of f.(w) in the approximation band [0, w,].
Until
Satisfy the following condition for a prescribed small constant ¢ (e.g.,
e =1071%),

J—L

Z|L&)¢-Qi|<5

=0

End.



3.3 DTCWTs with Improved Analyticity 55

3.3.4 Design Examples

In this section, we present two design examples to demonstrate the ef-
ficiency of our proposed algorithm. First of all, we design a class of
DTCWTs with improved analyticity by using FIR scaling lowpass filters.
Next, we pick different w. to investigate the influence on the analyticity

of complex wavelet.

Example 3.3

First of all, we consider a class of DTCWTs with improved analyticity
by using FIR filters. We have designed an allpass filter with J = 2,

3

¢m and L = 1. The resulting phase error f.(w) and phase response

We =
of allpass filter A(z) are shown in Fig.3.15 and Fig.3.16, respectively. For
the comparison, the phase response and phase error with {L = 0, L = 2}
are also plotted. Note that L = 0 means the allpass filter without the
flatness condition, while L = 2 means the maximally flat allpass filter
has been adopted. We then have used the method proposed in [20] to
construct the scaling lowpass filters H;(z) with Ny = 5, K = 4. The
magnitude response and group delay of H;(z) are shown in Fig.3.17 and
Fig.3.18, respectively. The scaling lowpass filters have the same degree
(N = 11) and the magnitude responses are the almost same. However,
E(w) are different, as shown in Fig.3.19. When L = 0, the maximum error
of F(w) is minimum, while it is maximum when L = 2. Moreover, the

scaling function and wavelet functions ¢;(t) and wavelet function 1);(t)

with different L are shown in Fig.3.20. Furthermore, the spectrum of
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U, (w) are shown in Fig.3.21, which are the almost same. The spectrum of
complex wavelet W.(w) are shown in Fig.3.22 and Fig.3.23, respectively. In
Fig.3.23, the negative spectrum is small when L = 1. Finally the objective
measures of quality are summarized in TABLE.3.4. When L = 1, the
analyticity of complex wavelets is better. It is necessary to let allpass

filter have certain flatness degree while minimizing the phase error.

TABLE 3.4 Analyticity Measures E,, and Es.

L Eoo (%) E2(%)
0 1.077 1.0
1 0.689 0.830
2 1.627 1.894
0.05
/
"""" L=0 ]
— L=t 1
004r 1 - _ L2 / 1
/
/
0.03+ ; .

0.02F

0.01f

PHASE ERROR (=)

-0.01}

_0.02 Il Il Il Il Il Il
0 0.05 0.1 0.15 0.2 0.25 0.3

NORMALIZED FREQUENCY

Fig.3.15 Phase errors of allpass filters A(z).
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Fig.3.16 Phase responses of allpass filters A(z).
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Fig.3.17 Magnitude responses of scaling lowpass filters H;(z).
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Fig.3.18 Group delay responses of scaling lowpass filters H;(z).
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Fig.3.19 Magnitude responses of F(w).
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Fig.3.22 Magnitude responses of U.(w).
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Example 3.4

We consider a class of DTCWTs with improved analyticity by using IIR
filters. We have designed three allpass filters with J = 2, L = 1. The
approximation band is selected as w. = {0.357,0.557,0.757}. First of all,
the phase error 6,.(w) are shown in Fig.3.24. It is obvious that with the
increasing of w,., the phase error also increase. The phase responses of
allpass filters A(z) are shown in Fig.3.25. Next, we have constructed the
scaling lowpass filters H;(z) with K =4, N; =5 and Ny = 1. Their mag-
nitude responses are shown in Fig.3.26, which are almost the same. Their
group delay responses are shown in Fig.3.27, respectively. Moreover, the
magnitude responses of error function F(w) are shown in Fig.3.28. It is
obvious that F(w) is minimum when w, = 0.557, while it is maximum
when w. = 0.757. If w, is too small or too big, the maximum error F(w)
will increase, resulting in a poor analyticity, as shown in Table 3.5. That is
to say, how to determine the approximation band will effect F(w), as well
as the analyticity of complex wavelet. In addition, the scaling functions
¢i(t) and wavelet functions v;(t) are shown in Fig.3.29. Furthermore, the
spectrum of ¥,;(w) and complex wavelet are shown in Fig.3.30, Fig.3.31
and Fig.3.32, respectively. In Fig.3.32, it is clear that the negative spec-
trum of DTCWT is minimum when w, = 0.557. Finally, E,, and E, are

summarized in Table 3.5.
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TABLE 3.5 Analyticity Measures E,, and Es.

We Ew(%) E5(%)
0.357 0.718 0.782
0.55m 0.395 0.417
0.757 1.523 1.527

PHASE ERROR ()

-0.05

1
0 0.05

Fig.3.24
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I
0.35

0.4

Phase errors of allpass filters A(z).
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Fig.3.26 Magnitude responses of scaling lowpass filters H;(z).
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Fig.3.29 Scaling and wavelet functions ¢;(t), ¢;(t).
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3.4 DTCWTs with Improved Frequency Se-
lectivity

It is well-known in [3] that frequency selectivity is a useful property for
many applications of signal and image processing. However, the maximally
flat filters have poor frequency selectivity. In the above-mentioned sec-
tions, the orthogonal scaling lowpass filters have as many zeros at z = —1
as possible to obtain the maximum number of vanishing moments, re-
sulting in the maximally flat magnitude responses. In the following, in
order to improve the frequency selectivity of the scaling lowpass filters, we
specify the number of zeros at z = —1 from the viewpoint of vanishing
moments and then minimize the stopband error by using the remaining
degree of freedom. The filter coefficients can be obtained easily by solving

an eigenvalue problem.

3.4.1 Formulation using Remez exchange algorithm

We first specify the number of zeros at z = —1 from the viewpoint of
regularity. We assume K < K4, where K., = [%J + Ny — J. Then
the remaining degree of freedom is K,,,, — K, which can be used for
obtaining the optimal possible frequency selectivity. Since zeros on the
unit circle are complex-conjugate pair except z = +1, K,,,, — K should
be even, i.e., K. — K = 21.

Next, we apply the Remez exchange algorithm to get an equiripple mag-

nitude response in the stopband [ws, 7], where w; is the cutoff frequency
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of scaling lowpass filters. Assuming w; (ws = wp < wy < +-+ < wy < 7) to

be a set of extremal frequencies, we formulate P(e’*) as

R(e7%)S(ew) _ 1+ (—1)
B(ei?wi) 2

P(e/) = 5, (3.43)

where d(> 0) is an error. Note that we force P(e/*) > 0 to permit spectral

factorization of R(z). From Eq.(3.43), we have

1+ (

S(e?)R(e¥) = —2_1)25B(ej2°‘”), (3.44)

where

;

R(e’) =r(0) + 2 Z r(n) cos(nw)
. : (3.45)
B(e) =b(0) + 2Zb cos(nw)

\

Thus, we rewrite Eq.(3.44) in the matrix form as
Pir =0Qb, (3.46)

where the elements of the matrices P; and Q; are given by

S(eem) (n=0)

RW“”{zﬂawnmde) (n=1,2,...,Ny)

(3.47)
(1+(=1)m)/2 (n=0)

Q1(m,n) = { (14 (=1)™) cos(2nw,) (n=1,2,---,Na)

It should be noted that the orthonormality condition has been given in

Eqgs.(3.27) and (3.28). Hence, we use Eq.(3.27) to obtain

P1r = (Sle = 5Q181r. (348)
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We rewrite Eq.(3.48) in the matrix form as

0
r= [ QS ] r, (3.49)

which is correspondent to a generalized eigenvalue problem, i.e., J is the

eigenvalue and r is the corresponding eigenvector. Since there exist more
than one eigenvalue, we choose the minimum positive eigenvalue § and the
corresponding eigenvector gives a set of filter coefficients r(n). The initial
extremal frequencies may not be the optimal peak frequencies so that we
make use of an iteration procedure to obtain the optimal coefficients r(n).

We then compute b(n) by Eq.(3.27).
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3.4.2  Design Algorithm

Design Algorithm
Begin
(1) Read K, J, L and the cutoff frequency w;.
(2) Design A(z) to get a(n), and use Eq.(3.12) to compute s(n).
(3) Select initial extremal frequencies €; (ws = Qg < Q) < -+ <

)y < m) equally spaced in the stopband.

(4) Setw; =Q; fori=0,1,--- 1.

(5) Compute Sy and S2 in Eq.(3.29) and Eq.(3.30), respectively.

(6) Compute Py and Qq in Eq.(3.47).

(7) Choose the minimum positive eigenvalue ¢ and corresponding

eigenvector r in Eq.(3.49) to obtain a set of filter coefficients r(n).

(8) Obtain the coefficients b(n) by Eq.(3.28).

(9) Search the peak frequencies €; (ws = Qg < Q3 < --- < Qy <)
of P(e’*) in the stopband.

Until
Satisfy the following condition for a prescribed small constant € (e.g.,

e =1071%);

1

Z|wi—ﬂi|<€

=1

End.
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3.4.3 Design Examples

In the following, two examples will be presented to demonstrate our pro-
posed procedure. We construct a class of DTCWTs with improved ana-
lyticity and frequency selectivity by using general IIR filters at first. Next,
we investigate the influence of the stopband on the analyticity of complex

wavelet.

Example 3.5

We consider a class of DTCWTs with improved analyticity and frequency
selectivity. Firstly, we have used the allpass filter with J = 2, L = 1,
we, = 0.51m, and then designed the scaling lowpass filters H;(z) with
N =13, Ny =1, wy, = 0.67r. We set K = 4 and N; = 7. The re-
sulting magnitude response of H;(z) are shown in Fig.3.33 and Fig.3.34,
respectively. For comparison, the scaling lowpass filter with the maxi-
mally flat magnitude response (K = 6, N; = 5), and the filter with two
equiripples in the stopband (K = 2, N; = 9) are also designed and their
magnitude responses are shown in Fig.3.33. It is clear that the magnitude
responses of H;(z) with improved frequency selectivity are more sharp
than the maximally flat filter. Their group delay responses are shown
in Fig.3.35. In addition, the magnitude responses of E(w) are shown in
Fig.3.36, where the error decreases at the expense of decreasing vanish-
ing moments. Besides, the scaling functions ¢;(t) and wavelet functions
Y;(t) are shown in Fig.3.37. The wavelet spectrum V¥;(w) are shown in

Fig.3.38, which are almost same. Furthermore, the spectrum W.(w) are



74Chapter 3 Orthogonal DTCWTs with Improved Analyticity and Frequency Selectivity

shown in Fig.3.39 and Fig.3.40, where the negative spectrum of proposed
DTCWTs are smaller than that constructed by the maximally flat scaling
lowpass filter. Finally, Table 3.6 summarizes the analyticity measures of
E., and E,. Tt is seen that the analyticity can be also improved slightly
by improving the frequency selectivity of H;(z).

TABLE 3.6 Analyticity Measures E,, and Es.

K N B (%) By (%)
6 5 0.268 0.299
4 7 0.262 0.236
2 9 0.258 0.232
“““ N,=5,K=6
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Fig.3.33 Magnitude responses of scaling lowpass filters H;(z).
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Example 3.6

We consider a class of DTCWTs with improved analyticity and fre-
quency selectivity. Firstly, we have used the allpass filter with J = 2,
L =1, w. = 0.517, and then designed scaling lowpass filters H;(z) with
K =4, Ny = 7, and Ny = 1. The cutoff frequency w, is chosen as
ws = {0.567,0.617,0.887}, respectively. The magnitude responses of re-
sulting lowpass filters are shown in Fig.3.41 and Fig.3.42, respectively. It
is obvious that the scaling lowpass filters become sharp as wy decreases.
Their group delay responses are shown in Fig.3.43, where the half-sample
delay condition are almost achieved. Next, the magnitude responses of
E(w) are shown in Fig.3.44. It is seen in Fig.3.44 that cutoff frequency
w; influence the magnitude responses of F(w). If w; is too small or too
big, the maximum error E(w) increase, resulting in a poor analyticity of
complex wavelet, as shown in Table 3.7. Moreover, the scaling functions
¢i(t) and wavelet functions 1;(t) are shown in Fig.3.45. The wavelet spec-
trum W, (w) are given in Fig.3.46. Furthermore, the spectrum of DTCWTs
are shown in Fig.3.47 and Fig.3.48, respectively. In Fig.3.48, the negative
spectrum is minimum when wy; = 0.617. Finally, we summarize the objec-

tive measures of quality E,, and Fs in Table 3.7.

TABLE 3.7 Analyticity Measures E,, and Es.

Ws Eo (%) Es (%)
0.567 0.298 0.366
0.61m 0.262 0.254

0.88m 0.263 0.290
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3.5 Performance Investigation

In this section, we investigate the performance on the proposed DTCWTs
with improved analyticity and frequency selectivity. First of all, we have
designed the allpass filters with J = 2, L = 1 and the cutoff frequency is
chosen as w. = {0.357,0.527,0.807}. Then we have designed the scaling
lowpass filters H;(z) with K =2, Ny =5, Ny = 1 and ws; = 0.677. The
resulting magnitude responses of E(w) are shown in Fig.3.49, and it is
seen that the maximum error of F(w) is the minimum when w. = 0.52.
If w,. is too small or too big, the maximum error of F(w) will increase,
resulting in a poor analyticity as shown in Table 3.8. That is to say,
how to determine the cutoff frequency w. influences F(w) as well as the
analyticity of complex wavelets. Next, we have varied w, from 0.37 to 0.87
to investigate the relationship between the analyticity measures of F, F»
and the cutoff frequency w,. It is seen in Fig.3.50 when w, is too small or
too big, the analyticity measures of E.,, E5 become larger. Furthermore,
we have also varied cutoff frequency w, from 0.557 to 0.957 to investigate
the relationship between the optimal frequency w* and w,. It is clear

in Fig.3.51 that if the stopband is too wide, i.e., wy is closer to 0.57, the

opt
c

optimal cutoff frequency w?"* is larger, that is, the approximation band of
allpass filter become wider. It is because the stopband error of lowpass
scaling filter is larger in this case, requiring the allpass filter to improve the
error E(w) also in stopband. On other hand, the optimal frequency w%"
is almost constant when the stopband is not too wide, since the stopband

error of lowpass scaling filter is small and has little effect on the analyticity.

Finally, the objective measures of quality are summarized in Table 3.8.
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TABLE 3.8 Analyticity Measures E,, and Es.

We Es (%) E5(%)
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0.527 0.292 0.378
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3.6 Summary

In this chapter, we have firstly reviewed the common-factor technique
proposed by Selesnick [20]. Next, the common-factor technique by using
general IIR filters with numerator and denominator of different degree
was introduced [25]. It has been proved that the FIR and IIR orthonor-
mal solutions proposed in [20] are only the special cases of general IIR
orthonormal solutions. Moreover, in order to improve the analyticity of
complex wavelet, we have proposed a design procedure of allpass filter
with the specified degree of flatness at w = 0 and an equiripple phase
response in the approximation band. Furthermore, to improve the fre-
quency selectivity of scaling lowpass filters, we have specified the number
of vanishing moments at z = —1 and used the remaining degree of free-
dom to approximate an equiripple magnitude response in the stopband.
Some design examples are presented to demonstrate the efficiency of our
proposed algorithm. Finally, the performance on the proposed DTCWTs
has been investigated, where a properly chosen approximation band can

improve the analyticity of complex wavelets.
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Chapter 4 Almost Symmetric
DTCWTs with Arbitrary
Center of Symmetry

4.1 Introduction

In the previous chapter, the common-factor method has been generalized
by using IR filters with numerator and denominator of different degree to
obtain a class of general ITR orthogonal solutions. However, the wavelet
filters obtained by the common-factor method have nonlinear phase re-
sponses, resulting in asymmetric wavelet bases. Therefore, the purpose
of this chapter is to design the symmetric orthogonal DTCWTs. Q-shift
filter is one of the representative filters used for obtaining the symmet-
ric wavelet bases, which was proposed by Kingsbury in [16], [17], [22].
The group delay responses of Q-shift filters are required to be 1/4 or 3/4
sample from the half-sample delay condition. However, digital filters with
the specified (fractional or integer) group delay are often needed in many
applications of signal and image processing [3], [6].

Thus, in this chapter, we review the design of Q-shift filters at first
and then propose a method for designing two scaling lowpass filters with
the arbitrarily specified flat group delay responses, which satisfy the half-
sample delay condition. Moreover, two scaling lowpass filters are designed

simultaneously to satisfy the specified degree of flatness of group delays,
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vanishing moments and orthogonality condition. Furthermore, the differ-
ence of the frequency responses between two scaling lowpass filters can be
effectively minimized to improve the analyticity of complex wavelet. It
will be shown that the proposed DTCWTs can have arbitrary center of
symmetry with improved analyticity. Finally, several experiments of sig-

nal denoising are carried out to demonstrate the efficiency of the proposed

DTCWTs.

4.2 Q-Shift Filters

In [16] and [17] and [22], Kingsbury had proposed Q-shift filters in order
to provide the improved symmetry property. One scaling lowpass filter is

chosen to be the time reverse of another filter;
Hy(z) = 2 NH (271, (4.1)

where H;(z) is FIR filter of degree N for ¢ = 1,2. The transfer function
of H;(z) are given by

Hi(z) =Y hi(n)z™", (4.2)

where h;(n) are real filter coefficients and N is an odd number.
Q-shift filters are required to have linear phase responses. That is, the

desired phase response of H;(z) is

() = (5 — e (4.3)

Therefore, the phase response of Hy(z) will be —(& + 1)w, and then two

scaling lowpass filters H;(z) and Hs(z) satisfy the half-sample delay con-
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dition.

In addition to the phase condition given in Eq.(4.3), H;(z) is also
required to satisfy the conditions of regularity and orthonormality of
wavelets. From the viewpoint of regularity, H;(z) must have K zeros

at z = —1;

Hi(z) = Qi(2)(1+ 271" (4.4)

When the maximum K is chosen, the maximum number of vanishing mo-
ments can be obtained.

Moreover the condition of orthonormality for H;(z) is given by
Hi(2)Hy(z™ ) + Hy(—2)Hy(—2 ') = 2, (4.5)

which means the product filter P;(2) = H;(2)H;(2™!) must satisfy

pi(2n) = , (4.6)
0 (n>0)
where p;(n) = p;(—n) is the impulse response of P(z).

To achieve the approximate group delay of }1, Kingsbury had proposed a
method in [22] for designing a linear-phase lowpass filter Hs(2) of degree
2N + 1.

HL2(Z) = Hl(ZQ) -+ Z_lHl(Z_Q)
; (4.7)
= H,(2*) + 27 ' Hy(2?)
which has a group delay of 3. By subsampling Hp»(2), the scaling lowpass
filter H,(z) can be obtained with half of its delay and twice its bandwidth.

To avoid unwanted passbands appear from subsampled filters, it is rea-
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sonable to ensure that the stopband of H;(z) reduces as much energy
as possible. It is sufficient to consider the combined frequency responses

between Hi(z) and H;(z?), which is
Hy(2)H(2%) |0 = Hi(e7)H (7). (4.8)

Assuming the stopband cutoff frequency of H;(z) is ws, then the transition
band and passband of H;(z*) should extend from 7 — % to 7. Therefore,

to avoid the overlapping from H;(z?),
ws<m—— = wsgg. (4.9)

Thus, the Q-shift filter can be designed from Hps(z) of degree 2N + 1

with zero amplitude for the stopband, i.e., § < w, < 7.

4.3 DTCWTs with Arbitrary Center of
Symmetry

The Q-shift filters can construct the symmetric wavelet bases with the
fixed center of symmetry. To obtain the wavelet functions with arbitrary
center of symmetry, we propose a new design method of scaling lowpass
filters with arbitrarily specified flat group delay responses at w = 0, which
satisfy the half-sample delay condition.
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4.3.1 Approximation of Flat Group Delay

To obtain symmetric wavelet bases, the desired linear phase response 6¢(w)

of H;(z) is
0% (w) = —Tw. (4.10)
From the half-sample delay condition in Eq.(2.29),

1
72=71+2M+§. (4.11)

Therefore, the scaling functions have the arbitrary center of symmetry
since the group delay 7, can be arbitrarily specified.

We now consider the flatness condition of group delay response. Many
criterions can be used to approximate the group delay, e.g., the maximally
flat, weighted least square, equiripple approximation, and so on. To obtain
a number of vanishing moments on scaling functions [1], [12], we use the
flat approximation in this dissertation. From Eq.(4.2), the phase response

of H;(z) is given by

Z hi(n) sin(nw)
0;(w) = — tan~! 2= : (4.12)

Thus, the difference 6¢(w) between 0;(w) and 6%(w) is

N;(w)
D;(w)’

0%(w) = 0;(w) — 0% (w) = tan™" (4.13)
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where

Ni(w) =Y hi(n)sin{(r; — n)w}
< =0 : (4.14)

Di(w) = hi(n)cos{(r; — n)w}

\
The group delay response is required to be flat with the specified degree

of flatness at w = 0;

TZ(O) =T;
0% 13 (w)

aw%

(4.15)
=0 (r=1,2,---,L—1)

where L (> 0) is a parameter that controls the degree of flatness. Since

Ti(w) = —895—5”), Eq.(4.15) is equivalent to

a2r+1 92 (w)

S =0 (r=0,1,---,L—1). (4.16)

w=0

By using Eq.(4.13), Eq.(4.16) can be reduced to

O2 1N, (w)

S =0 (r=0,1,---,L—1). (4.17)

w=0

We substitute N;(w) in Eq.(4.14) into Eq.(4.17), then derive a set of linear
equations;

Y (=) hi(n) =0 (r=0,1,--- L - 1). (4.18)

n=0
It is clear that there are L equations in Eq.(4.18) with respect to (N + 1)

unknown coefficients h;(n).
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4.3.2  Orthonormality and Vanishing Moments

In addition to the group delay condition, the wavelets are also required to
have the specified number of vanishing moments and satisfy the condition
of orthogonality. Thus, to obtain K zeros at z = —1, Eq.(4.4) is equivalent
to

8TH¢(6jw)

= =0,1,--- , K —1). 4.1
G 0 (r=01- K~1) (4.19)

By substituting H;(e’*) in Eq.(4.2) into Eq.(4.19), we obtain a set of linear
equations as follow;

N

> (=1)"hi(n) =0 (r=0,1,-- K —1), (4.20)

n=0
where there are K equations with respect to h;(n).

Moreover, we rewrite the orthonormality condition in Eq.(4.6) as

N-2n 1 (n=0)
> hi(2n+ k)h(k) = : (4.21)
k=0 0 (n>0)

where there exist (N + 1)/2 equations with respect to h;(n). If K + L =
(N +1)/2, the number of equations becomes K + L+ (N +1)/2=N+1
in Eqgs.(4.18), (4.20) and (4.21) with respect to (N + 1) unknown filter
coefficients h;(n). By solving Egs.(4.18), (4.20) and (4.21), the scaling
lowpass filters h;(n) can be obtained for ¢ = 1, 2.

It is seen that Eq.(4.21) is a set of quadratic constraints on the filter
coefficients h;(n). Generally, it is difficult to solve this nonlinear prob-

lem, particularly if the filter is of higher degree, although some nonlinear
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optimization tools are available, such as Matlab optimization toolbox.

4.3.3 Linearization of the Design Problem

In the following, we first linearize the nonlinear equation in Eq.(4.21), and
then use an iterative procedure to obtain a set of filter coefficients, as
proposed in [22].

Let hgl) (n) be the filter coefficients at (th iteration, which is given by

hP(n) = BV () + AR (n). (4.22)

Then, Eq.(4.21) becomes

N—-2n
>RV + 20)h Y (k) + Y (k + 2n) ARY (k)
k=0

+ BV (R)ARY (k + 20) + AR (k) AR (k + 20)] = 6(n). (4.23)

Assuming Ahl(-l)(k:) becomes small enough as [ increases, then the term

ARV (K)ARY (k + 2n) can be neglected. Therefore, we have

N
> [V (k4 2n0) + bV (k + 2n)] AR (k)
k=0

N—-2n
=d(n) — > Wk +20)n "V (k), (4.24)
k=0

where hglil)(k) = 0 for £k < 0 and £k > N. Similarly, Eq.(4.18) and
Eq.(4.20) become

N N

> (m =) AR () =Y (0 — )T ATV (). (4.25)

n=0 n=0
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S (=) AR (n) =Y (=1 ek (n), (4.26)

Therefore, we can obtain Ahgl)(n) by solving the set of linear equations
in Eq.(4.24), Eq.(4.25) and Eq.(4.26), if coefficients hl(.l_l)(n) have already
known. The filter coefficients are subsequently updated by Ahgl)(n) in
Eq.(4.22).

To converge to the optimal solution, a set of good initial coefficients
hgo)(n) are needed. It is known that Pi(z) = H;(2)H;(27!) is a linear
phase half band filter. We firstly design P;(z) as the maximally flat half-
band filter, and choose the magnitude responses of H;(z) as |H;(e/*)| =

| P,(e7%)|2. Then we set its phase response as 7;, that is
H(e™) = |P,(e*)|ze 79T (4.27)

Therefore, a set of initial coefficients hgo)(n) are computed by taking N +1

point inverse discrete Fourier transform (IDFT).
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4.3.4 Design Algorithm

Design Algorithm

Begin
1) Read N, K, L and 7;.
2) Set | = 0.

3) Obtain the filter coefficients hgl)(n) by taking N 4+ 1 point IDFT of
H;(e’*) in Eq.(4.27).

Repeat

3 l=1+1;
4) Solve Egs.(4.24), Eq.(4.25) and Eq.(4.26) to obtain a set of coeffi-
cients Ahgl)(n).

5) Update the filter coefficients with A" (n) = h{'™V(n) + ARV (n).

Until
Satisfy the following condition for a prescribed small constant € (e.g.,

e =1071%);

N

S IAR ()] < e.

n=0

End.
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4.3.5 Design Examples

In this section, two examples will be given to demonstrate the proposed
algorithm. First of all, we consider a class of DTCWTs with different
degree of flatness and number of vanishing moments. Next, we consider a

class of DTCWT's with different center of symmetry.

Example 4.1

We consider a class of DTCWTs with N = 15, K = {3,5,7} and L =
(N+1)/2— K = {5,3,1} with group delay {7 = 8.5, 7, = 9.0}. We have
designed these three scaling lowpass filters, and the resulting magnitude
responses of H;(z) are shown in Fig.4.1, Fig.4.2, respectively. With the
increasing of the number of vanishing moments K, the transition band
becomes sharp. The group delay responses become flat as an increasing
L, as shown in Fig.4.3. It is clear that the half-sample delay condition are
approximately achieved. In addition, the magnitude responses of F(w)
has been shown in Fig.4.4. It is maximum when {K = 5, L = 3}, while
it is minimum when {K = 3,L = 5}. Since two scaling lowpass filters
are designed independently, it is difficult to minimize the error function.
Moreover, the scaling function ¢;(t) and wavelet functions ;(t) are shown
in Fig.4.5. Furthermore, the spectrum of the wavelet functions W;(w)
and the spectrum of the complex wavelet W.(w) are given in Fig.4.6 and
Fig.4.7, respectively. It is obvious that the negative spectrum is maximum
when K =5, L = 3 while it is minimum when K = 3, L = 5. Finally, the

analyticity measures of F,, and E, are summarized in Table 4.1.
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TABLE 4.1 Analyticity Measures E,, and Es.

N K L Eo (%) Ex(%)
15 3 5 1.221 1.334
15 5 3 33.882 39.031
15 7 1 14.484 17.021
0.4
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Fig.4.8 Magnitude responses of ¥.(w).
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Example 4.2

We consider a class of DTCWTs with N = 17, K = 4, L. = 5. Since
the group delay can be arbitrarily specified, the group delay 7; is se-
lected as 7 = {7.6,8.3,9.0}. From the half-sample delay condition,
7 = {8.1,8.8,9.5}. The magnitude responses of H;(z) are shown in Fig.4.9
and Fig.4.10 respectively, which are almost the same. Next, the group de-
lay responses are displayed in Fig.4.11. From Fig.4.11, it is clear that
the half-sample delay has been approximately achieved and the scaling
lowpass filters have flat group delay response at w = 0. The magnitude
responses of F(w) are shown in Fig.4.12. It is obvious in Fig.4.12 that
choosing different 7; can influence the error function E(w). It is mini-
mum when {7; = 8.3, » = 8.8}. Moreover, the scaling functions ¢;(¢) and
wavelet functions 1);(t) are shown in Fig.4.13. It is obvious that the scaling
functions have different center of symmetry, while the center of symmetry
of wavelet functions remain unchanged. Furthermore, the spectrums of
wavelet function U;(w) and complex wavelet W.(w) are given in Fig.4.14,
Fig.4.15, respectively. When {7 = 8.3, 75 = 8.8}, the negative spectrum
of ¥.(w) is minimum, as shown in Fig.4.16. Finally, we summarize the

analyticity measures of E,, and F5 in Table 4.2.

TABLE 4.2 Analyticity Measures E,, and Es.

N K L n Eoo (%) B (%)
15 4 5 7.6 6.829 7.264
15 4 5 8.3 1.275 1.322
15 4 5 9.0 9.486 10.004
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4.4 DTCWTs with Improved Analyticity

In the previous section, the scaling lowpass filters with the specified flat
group delay have been designed. However, the scaling lowpass filters are
designed independently, so that the difference of frequency responses be-
tween two scaling lowpass filters has not been taken into consideration,
which results in poor analyticity of complex wavelet. In the following, we
design two scaling lowpass filters simultaneously to improve the analytic-
ity of complex wavelet. Furthermore, the Remez exchange algorithm will
be applied to obtain an equiripple behaviour of the error function. It will
be shown that the resulting complex wavelets are orthogonal and almost

symmetric, and have the improved analyticity.

4.4.1 Initial Solution

To minimize the difference of frequency responses between two scaling
lowpass filters, we consider the case of L+ K < (N +1)/2. The remaining
degree of freedom is I = (N +1)/2 — K — L. We will use the remaining
degree of freedom to improve the analyticity of complex wavelets. Let
Or(0 < @y < @1 < -+ < Wr—1 < 7) be the frequency points at which

makes the error between two scaling lowpass filters equal to zero;

E(@y) = Hy(#™) — Hy (e )eI@MH2)o — ), (4.28)
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Eq.(4.28) is separated into real and imaginary parts to obtain a set of

linear equations as follows;

S {ha(n) cos(ni) — b (n) cos|(n + 2M + %)@k]} ~0

. . (4.29)
Z{hg(n) sin(nwy) — hi(n)sin[(n + 2M + %)d}k]} =0

for k =0,1,---,1 — 1. Similarly, Eq.(4.18), Eq.(4.20) and Eq.(4.21) be-

> (m=n)* M hy(n) =0

<i° (r=0,1,--,L—1), (4.30)
Z(T —n)*hy(n) =0
> (=1 hy(n) =0

<?O (r=0,1,--,K—1), (4.31)
> (=1)"n"hy(n) =0
z_:” hi(2n + k)hi (k) = d(n)

<;j (4.32)

There are totally 2K +2L+N+1+21 = 2(N+1) equations in Egs.(4.29),
(4.30), (4.31) and (4.32) with respect to 2N + 2 unknown filter coefficients
hi(n), ha(n). Thus, we can obtain the filter coefficients hy(n) and ha(n)
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simultaneously by solving this set of equations.

4.4.2 Formulation using Remez exchange algorithm

In the previous section, we use the remaining degree of freedom to let
the frequency points equal to zero. However, the frequency points wy are
equally spaced in [0, 7]. In the following, we apply the Remez exchange
algorithm to obtain an equiripple magnitude behaviours of the error func-
tion F(w) in order to improve the analyticity of complex wavelet.

It is obvious that if the scaling lowpass filters have no remaining degree
of freedom (I = 0), the error function £(w) has only one peak point, while
there are I 4+ 1 peak points if I > 0. We want to make it to be equiripple
when I > 0. Therefore, we apply Remez exchange algorithm to obtain the
equiripple behavior of F(w). Let w;(0 < wy < wy < -+ < wy < 7) be the
frequencies of the peak points of E(w), which are computed by using the
filter coefficients obtained in the preceding section. Then we formulate

the error function E(w) as follows;
E(w;) = Ha(e?) — Hy(e7%)e T@Mt2)wi — 5ei(0c(wi)+40), (4.33)

where ¢ is a magnitude error and A6 is a phase error. 6.(w;) is the phase
of F(w;) computed by using the filter coefficients in the preceding section.

Since 0e72? = § cos(Af) + jdsin(A) = 6, + jds, Eq.(4.33) becomes

Hay (7)) — Hy(e)e 7CEM+2)w _ (5, + j§,)el% @) = 0. (4.34)
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Therefore, Eq.(4.34) is separated into real and imaginary parts as,

S () cosns) — h(n) cosl(n + 20 + 3 )]}

—0c cos(fe(w;)) + d5sin(fe(w;)) =0

i : (4.35)

> {ha(n) sin(nw;) — hy (n) sin[(n + 2M + %)wi]}

n=0

—0csin(fe(w;)) — 05 cos(fe(w;)) =0

\
for:=0,1,---,1.

It should be noted that Eqgs.(4.30), (4.31), (4.32) and (4.35) have
2K + 2L+ N +1+2(I +1) = 2N + 4 equations with respect to 2N + 2
filter coefficients h;(n) plus d. and d;. Therefore, we can solve this set of
equations to obtain a set of coefficients hy(n) and ha(n), respectively. Fur-
thermore, we make use of an iterative procedure to obtain the equiripple
magnitude response of F(w). Thus, the optimal filter coefficients can be
easily obtained through a few iterations. The design algorithm is given in

the following.
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4.4.3 Design Algorithm

Design Algorithm
Begin
1. Read N, K, L and 71, 7.

2. Select initial frequency points wy (0 < @y < @y < -++ < Q1 < )

equally spaced in [0, 7.

3. Solve Egs.(4.29), (4.30), (4.31) and (4.32) to obtain a set of initial
coefficients hy(n), ha(n).

4. Compute F(w) to find the peak frequency points €2;(0 < 2y < Q; <
e < Qp <o),

Repeat

5) Set w; =Q; (i=0,1,---,1).

6) Solve Eqs.(4.30), (4.31), (4.32) and (4.35) to obtain a set of filter
coefficients hy(n), ho(n).

7) Compute E(w) to find the peak frequency points ©;(0 < Qp < € <

< Q<)

Until
Satisfy the following condition for a prescribed small constant € (e.g.,

e =10"12);

1
1=0

End.
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4.4.4 Design Examples

In this section, several examples are presented to demonstrate the effective-
ness of our proposed algorithm. In the first design example, we consider
a class of DTCW'Ts with different flatness degree of group delay. In the
second example, we consider a class of DTCWTs with different center of
symmetry. Finally, we consider a class of DTCWTs and compare with
the Q-shift filter designed by Kingsbury in [22] to show the priority of our
proposed algorithm.

Example 4.3

We have used the proposed method to design Hi(z) and Hs(z) with
N =15 K =4, L ={3,2,1} and ; = 9.0, » = 9.5. The remaining
degree of freedom is I = {1, 2, 3}, respectively. The magnitude responses
of scaling lowpass filters are given in Fig.4.17 and Fig.4.18, which are al-
most the same. Their group delay responses are shown in Fig.4.19, where
the half-sample delay condition is approximately achieved. Moreover, the
magnitude responses of F(w) with different I are shown in Fig.4.20. It is
clear that the euqiripple magnitude responses of F(w) have been obtained
and the maximum error of |E(w)| has been effectively minimized by ap-
plying the Remez exchange algorithm. In addition, the scaling functions
¢i(t) and wavelet functions are presented in Fig.4.21, which are almost
the same. Furthermore, Fig.4.22 displays the wavelet spectrum ¥;(w) and
the complex wavelet spectrum W.(w) are given in Fig.4.23. The negative

spectrum of DTCW'Ts are shown in Fig.4.24. It is minimum when [ = 2,
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while it is maximum when [ = 1, i.e., poor analyticity of DTCWT. Fi-
nally, the analyticity measures of F, and F5 are summarized in Table 4.3.
It is obvious that the analyticity of complex wavelet has been improved

by minimizing the magnitude responses of E(w).

TABLE 4.3 Analyticity Measures E,, and Es.

N K L I Eoo(%) Ex(%)
15 4 3 1 1.146 1.360
15 4 2 2 0.513 0.578

15 4 1 3 0.638 0.665
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Fig.4.17 Magnitude responses of scaling lowpass filters H;(z).

0.8

0.6

0.4

MAGNITUDE RESPONSE

1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
NORMALIZED FREQUENCY

ggd

Fig.4.18 Magnitude responses of scaling lowpass filters Hy(z).
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Fig.4.23 Magnitude responses of ¥.(w).
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Example 4.4

We consider a class of almost symmetric DTCWTs with N = 21, K = 6,
L = 3 and I = 2. The group delay 7 is selected as , = 9.3. From
the half-sample delay condition, 7 = 9.8 is selected. The magnitude
responses of the scaling lowpass filters H;(z) are shown in Fig.4.25 and
Fig.4.26. For comparison, the magnitude responses of other two filters with
71 = 81,75 =8.6 and 7y = 11.0, 5 = 11.5 are also shown in Fig.4.25 and
Fig.4.26. The corresponding group delay responses are shown in Fig.4.27.
Moreover, the magnitude responses of F(w) are shown in Fig.4.28, and
are equiripple. It is clear that the maximum error of F(w) depends on the
group delay 7; also. In addition, the scaling functions ¢;(t) and wavelet
functions 1;(t) are given in Fig.4.29, respectively. In Fig.4.29, the scaling
functions have different center of symmetry, while the center of symmetry
of wavelet functions remain unchanged. However, the resulting scaling
and wavelet functions have different behaviors depending on the group
delays. Furthermore, the spectrum of wavelet ¥;(w) and complex wavelets
are given in Fig.4.30, Fig.4.31, and Fig.4.32, respectively. Finally, the

analyticity measures of F,, and E, are summarized in Table 4.4.

TABLE 4.4 Analyticity Measures E,, and Es.

21 6 3 2 8.1 0.380 0.372
21 6 3 2 9.3 1.251 1.092

21 6 3 2 11.0 0.740 0.634
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Example 4.5

We have constructed a class of DTCWTs with N = 15, K = 2, L =
3,and I = 3. Weset m = 7.25 and » = 7.75 from the half-sample
delay condition. For comparison, the Q-shift filter proposed by Kingsbury
in [22] is also designed, where N = 15, K = 1,74 = 725,75 = 7.75.
The magnitude responses of the scaling lowpass filters H;(z) are shown in
Fig.4.33, Fig.4.34, Fig.4.35 and Fig.4.36, respectively. It is seen in Fig.4.33
and Fig.4.35 that the Q-shift filter has a sharp magnitude response, but has
only one zero at z = —1, which means the wavelet has only one vanishing
moment. In Fig.4.33 and Fig.4.35, the magnitude responses of two filters
with 71 = 6.5, = 7.0 and 74 = 8.0, = 8.5 are also shown. Their
group delay responses are shown in Fig.4.37. It is seen that the group
delay responses of the proposed filters are consistent with the specified
group delays at w = 0, and more flat than the Q-shift filter. Moreover,
the magnitude responses of F(w) are shown in Fig.4.38, and are smaller
than that of the Q-shift filter. In addition, the scaling functions ¢;(t)
and wavelet functions ;(t) are shown in Fig.4.39. It is obvious that the
proposed lowpass filters with different group delay responses can result
in the scaling functions having different center of symmetry compared
with that of Q-shift filter. Furthermore, the spectrum of wavelet function
U, (w) are shown in Fig.4.40. The complex wavelet spectrum V.(w) and
their negative spectrum are shown in Fig.4.42. The analyticity measures
of F, and Fy are summarized in Table 4.5. It is clear that when 74 = 6.5
and 7, = 7.0 are chosen, the analyticity is the best, compared with the

Q-shift and other two filters.
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Fig.4.37 Group delay responses of scaling lowpass filters H;(z).
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TABLE 4.5 Analyticity Measures E,, and Es.

L I K T1 P Eoo(%) EQ(%)
Q-shift filter 1 7.25 7.75 1.139 1.338
3 3 2 6.50 7.00 0.150 0.175
3 3 2 7.25 7.75 0.429 0.414
3 3 2 8.00 8.50 0.217 0.296
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Fig.4.42 Magnitude responses of W, (w).
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4.5 Signal Denoising Application

In the previous section, the almost symmetric DTCWT with improved
analyticity has been proposed. In this section, we review the wavelet
thresholding method at first, and then introduce the DTCW'T threshold-
ing scheme. Moreover, several experiments are carried out to investigate

the performance on noise reduction.

4.5.1 Denoising Using Wavelet Thresholding

In the real world, the signals are inevitably mixed with some noises. It
is necessary to remove the noise corrupting a signal to recover that signal
and proceed with further data analysis [15]. Wavelet thresholding scheme,
which was firstly proposed by Donoho and his coworkers in [5], is consid-
ered as a preferred denoising method to suppress noise by thresholding
the wavelet coefficients. Generally, wavelet thresholding scheme consists
of three steps to reduce the noise, which are shown in Fig.4.43. First of
all, we transform the noisy signal into wavelet domain by taking a forward
DWT to obtain the approximation and wavelet coefficients, respectively.
Next, we suppress the wavelet coefficients smaller than a given amplitude
(using a hard or soft thresholding) to remove the noise. Finally, we take
the IDWT to obtain the denoised signal.

Let D(-, - ) denote the thresholding operator, then the hard thresholding
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—> DWT %[Thresholding]—t IDWT [—

Fig.4.43 Denoising using wavelet thresholding.

can be expressed as

. dijn  |djn| =T
djn = D(djn,T) = : (4.36)
0 |dj,n <T

In the case of soft thresholding,

dj,n — T x Sgﬂ(dj,n) ’dj,n’ > T

d;p =D(djn,T) = (4.37)

0 |dj7n| <T
where T is the given threshold value, j is the decomposition level of DW'T,

and sgn(+) is the signum function.

4.5.2  Denoising Using DTCWT Thresholding

It has been shown in [26] that DWT is not very efficient for denoising
since it is lack of shift invariance, leading to artifacts in the reconstructed
signal. Denoising using DTCWT gives a substantial performance to DWT.
It is effective to threshold the complex wavelet coefficients rather than its
real and imaginary parts separately because the magnitude of complex
wavelet coefficients are free of aliasing distortion, which results in a nearly
shift-invariance.

In the previous section, we have shown that the key to obtain the shift

invariance from DTCWTT lies in that the corresponding wavelet functions
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Fig.4.44 The conventional implementation of DTCWT decomposition.

are Hilbert transform pair. The necessary and sufficient condition for two
wavelet bases to form a Hilbert transform pair is that two scaling lowpass
filters satisfy the half-sample delay condition. For wavelet coefficients to
be the Hilbert transform pair in finite levels of decomposition, it was sug-
gested in [16] and [17] that for the first level of decomposition, the same
filter bank were adopted for Tree A and Tree B, but with one sample de-
lay difference between each other. In addition, two scaling lowpass filters,
which satisfy half-sample delay condition, were adopted for the rest of
levels, as shown in Fig.4.44. In [26], Selesnick had used the Daubechies
length-10 filter at the first level, and the orthonormal solutions of length
12 based on the common-factor technique at the subsequent levels. How-
ever, two wavelet coefficients at the first level are not Hilbert transform
pair, which results in a poor performance of noise reduction. Thus, a new
scheme is proposed in the following, as shown in Fig.4.45. On the real
part of DTCWTT, the signal is directly inputted to the tree A of DTCWT.

On the imaginary part, it is firstly through an allpass filter A(z) approxi-
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Fig.4.45 Allpass filter with approximately half-sample delay
ahead of DTCWTT.

mating to half-sample delay, and then inputted to the tree B. Therefore,
the corresponding wavelet coefficients are Hilbert transform pair at each
level. Moreover, we define the wavelet coefficients at level j from tree A
as dﬁn and from tree B as dfn, then the complex wavelet coefficients are

s, = dit, +dP i. The thresholding operator D(-,-) in hard thresholding

becomes
A di, || =T
&5, = D(d;,,,T) = , (4.38)

0 |d§’n| <T
while in the soft thresholding,

|d;,n| B Tdc dc >
~ d¢ | 7,m | j,n| - T
g~ ) =4 |Tn . (4.39)

.77” J7n,
0 |df,|<T
Furthermore, A(z71) is needed to cancel the phase of A(z). A(z™1) can be

realized by reversing the input signal, passing it through A(z), and then

re-reversing the output signal.
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4.5.3 Experiments on Signal Denoising

The noisy signal x(n) is defined:

z(n) = xo(n) + zn(n), (4.40)

where z(n) is the original signal, zy(n) is the additive white noise with
N(0,0?). In the following, four specific signals, Blocks, Bumps, Heauvy
Sine and Doppler are used as the original signal zo(n). We generate
the noisy signal x(n) by adding xy(n) with ¢ = 0.4. First of all, we
use the procedure proposed in [17] to investigate the performance of the
proposed DTCW'T on noise reduction by using hard thresholding. For
the first level of DTCWT, we use the filter bank of length 8 proposed
by Abdelnour and Selesnick in [18]. For the rest of levels, we use the
Q-shift filter with {N = 15, K = 1,73 = 7.25} proposed by Kingsbury
n [22], DTCWT with {N = 15K = 2, L = 3,1 = 3,77 = 7.25} and
{N = 15K = 2L = 3,1 = 3,77 = 6.5} in Example 4.4.4. For the
purpose of simplicity, we name DTCWT with 7, = 7.25 as filter 1, and
DTCWT with 71 = 6.5 as filter 2. We then calculate the signal-noise
ratio (SNR) by using different threshold value 7" from 0 to 5. SNR with
the optimal threshold value is shown in Table 4.6. It is obvious that
the proposed DTCWTs can achieve better performance (higher SNR) on
noise reduction than Q-shift filter. Next, we use the proposed denoising
scheme. We use the maximally allpass filter A(z) of degree J = 1 with
approximately half-sample delay. The results are given in Table 4.6. It is
clear that the proposed denoising scheme can obtain higher SNR than the

conventional scheme proposed in [17].
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Moreover, we investigate the performance of DTCWTs and DWT con-
structed by Daubechies 9/7 filter on noise reduction. Table 4.7 summarizes
the comparison of SNR using hard thresholding with optimal threshold
value. It is clear that the denoising using DTCWT thresholding achieves
better performance than that by DWT, averagely 2.52dB improved. Ta-
ble 4.9 summarizes the comparison of SNR using soft thresholding, and
denoising using DTCWT thresholding performs better. In addition, fil-
ter 2 owns the best performance on noise reduction for the most cases,
since the corresponding complex wavelet is approximately analytic. The
optimal threshold value of hard and soft thresholding are summarized in
Table 4.8 and 4.10, respectively.

Finally, denoised signals using hard and soft thresholding are shown
in Fig.4.46 ~ Fig.4.53. It is obvious that the denoised signal by using
the proposed DTCWTs have little noise compared with the conventional
DWT and Q-shift filters.
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TABLE 4.6 Comparison of SNR(dB) for DTCWT denoising
schemes using hard thresholding.

Q-shift filter filter 1 filter 2
Previous Previous Previous
Signal |(|Initial SNR|| [17] |Proposed|| [17] |Proposed|| [17] |Proposed
Blocks 17.872 19.792 | 24.178 || 19.949 | 25.837 || 19.995 | 25.360
Bumps 17.866 23.140 | 25.830 || 23.302 | 25.700 || 23.105 | 25.911
Heavy sine 17.690 29.539 | 28.378 30.001 | 30.058 || 31.117 | 30.334
Doppler 18.087 22.476 | 26.065 || 22.062 | 25.624 || 22.486 | 25.956
Average 17.879 23.736 | 26.113 || 23.828 | 26.805 24.175 | 26.890

TABLE 4.7 Comparison of SNR(dB) using hard thresholding
with optimal threshold value.

D9/7 filter Q-shift filter filter 1 filter 2

Blocks 17.872 22.743 24.178 25.837 25.360
Bumps 17.866 23.092 25.830 25.700 25.911
Heavy sine 17.690 26.692 28.378 30.058 30.334
Doppler 18.087 23.810 26.065 25.624 25.956
Average 17.879 24.084 26.113 26.805 26.890
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TABLE 4.8 The optimal threshold value of hard thresholding.
D9/7 filter Q-shift filter filter 1 filter 2
Blocks 1.10 1.55 1.60 1.50
Bumps 1.15 1.45 1.75 1.50
Heavy sine 1.10 1.45 1.75 1.55
Doppler 1.20 1.65 1.45 1.50
TABLE 4.9 Comparison of SNR(dB) using soft thresholding
with optimal threshold value.
D9/7 filter Q-shift filter filter 1 filter 2
Blocks 17.872 22.291 22.859 23.684 23.369
Bumps 17.866 22.455 24.246 24.228 24.395
Heavy sine 17.690 25.468 27.318 28.075 28.099
Doppler 18.087 23.232 24.893 23.968 24.463
Average 17.879 23.361 24.829 24.989 25.082
TABLE 4.10 The optimal threshold value of soft thresholding.
D9/7 filter Q-shift filter filter 1 filter 2
Blocks 0.45 0.60 0.65 0.65
Bumps 0.45 0.70 0.70 0.70
Heavy sine 0.65 0.85 0.90 0.90
Doppler 0.50 0.70 0.65 0.70
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Fig.4.46 Denoising using hard thresholding for signal Blocks.
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Fig.4.47 Denoising using soft thresholding for signal Blocks.
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Fig.4.48 Denoising using hard thresholding for signal Bumps.
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Fig.4.49 Denoising using soft thresholding for signal Bumps.
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Fig.4.50 Denoising using hard thresholding for signal Heavy sine.
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Fig.4.51 Denoising using soft thresholding for signal Heavy sine.
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Fig.4.52 Denoising using hard thresholding for signal Doppler.
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Fig.4.53 Denoising using soft thresholding for signal Doppler.
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4.6 Summary

In this chapter, we have firstly reviewed the conventional Q-shift filters
for DTCWTSs proposed by Kingsbury in [16], [17] and [22]. We then have
proposed a new method for designing DTCW'T's with arbitrary center of
symmetry. We have specified the degree of flatness of group delay response
at w = 0, and the number of vanishing moments. Next, we have applied
the Remez exchange algorithm to minimize the magnitude of the error
function, resulting in the improved analyticity of complex wavelet. Two
scaling lowpass filters can be obtained simultaneously by iteratively solv-
ing a set of equations. Therefore, the optimal solution is attained through
a few iterations. As a result, the proposed DTCW'Ts are orthogonal and
almost symmetric, and have the improved analyticity. Furthermore, we
compared the proposed DTCWTs with Q-shift filter proposed by Kings-
bury. It is obvious that the proposed DTCWTs can have arbitrary center
of symmetry, while the center of symmetry of Q-shift filter remains un-
changed. Finally, several experiments of signal denoising are carried out to
demonstrate the efficiency of the proposed DTCWTs. It is clear that the

proposed DTCWTs can achieve better performance on noise reduction.
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Chapter 5 Conclusion

In this dissertation, we have proposed two new classes of DTCW'T's with
different improved properties. First of all, we have proposed a new class of
DTCWTs with improved analyticity and frequency selectivity. Next, we
have proposed another class of almost symmetric DTCW'T's with arbitrary
center of symmetry. The resulting DTCWTs are orthogonal and almost
symmetric, and have the improved analyticities.

In Chapter 2, we have reviewed the Fourier transform and then intro-
duced fundamentals of dual tree complex wavelet transform. The wavelet
transform has been proved to be a successful tool to express the signal in
time and frequency domain simultaneously. To obtain the wavelet coeffi-
cients efficiently, the discrete wavelet transform has been introduced since
it can be achieved by a tree of two-channel filter banks. Then, we discussed
the design conditions of two-channel filter banks, i.e., perfect reconstruc-
tion and orthogonality. Additionally, some properties of wavelet functions
including orthonormality, symmetry and vanishing moments have been
also given. Moreover, the structure of DTCW'T was introduced, where
two wavelet bases are required to form a Hilbert transform pair. Thus,
the corresponding scaling lowpass filters must satisfy the half-sample de-
lay condition. Finally, the objective measures of quality were given to
evaluate the performance of the complex wavelet.

In Chapter 3, we have proposed a new class of DTCW'T's with improved
analyticity and frequency selectivity by using general IIR filters with nu-
merator and denominator of different degree. The proposed DTCWTs in-

clude the conventional DTCWTs proposed by Selesnick as a special cases.
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First of all, we have given a design method of allpass filters with the speci-
fied degree of flatness and equiripple phase responses in the approximation
band to improve the analyticity of complex wavelets. Next, we have spec-
ified the number of vanishing moments and applied the Remez exchange
algorithm to minimize the stopband error in order to improve the fre-
quency selectivity of scaling lowpass filters. Finally, we have investigated
the performance on the proposed DTCWTs, where a properly chosen ap-
proximation band can improve the analyticity of complex wavelets.

In Chapter 4, we have proposed another class of almost symmetric or-
thogonal DTCW'Ts with arbitrary center of symmetry. First of all, two
scaling lowpass filters are designed separately with the specified number of
vanishing moments and the specified flatness degree of group delay, which
satisfy the half-sample delay condition. Next, two scaling lowpass filters
are designed simultaneously by applying the Remez exchange algorithm
to minimize the difference of frequency responses between two scaling low-
pass filters, in order to improve the analyticity of complex wavelets. The
equiripple behaviour of the error function can be obtained through a few
iterations. As a result, the proposed DTCWTs are orthogonal, almost
symmetric and have the improved analyticity. Differently from Q-shift fil-
ters, the group delay responses of scaling lowpass filters can be arbitrarily
specified, resulting in the scaling functions having the arbitrary center of
symmetry. Finally, we have introduced signal denoising by using wavelet
thresholding to investigate the performance of the proposed DTCWTs on
noise reduction. It is shown that the proposed DTCWTs can achieve

better performance on noise reduction than the conventional DWT and

Q-shift filter.
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