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顔表情自動認識における西洋人と東洋人の基本的表情の違いに対する分析 

 

BENITEZ GARCIA Gibran de Jesus 

 

 

概 要 

 

表情認識（FER : Facial Expression Recognition）は、ヒューマン・コンピュー

タ・インタラクション（HCI）分野における重要な研究トピックの一つになっ

ている。近年における表情の自動認識に関する研究の進展により、統制され

た環境下及び実環境下において高い認識率が達成されている。ここでは、表

情認識システムにおいて問題となる、照明変化、個人差、部分的隠れ等の克

服が図られている。これらの研究では、筆者が知る限り、いずれも基本的な

顔表情についての文化的な普遍性（表情は人種によらず人類に共通）を前提

としている。しかし、この普遍性に対しては近年心理学分野の専門家の一部

から疑問が持たれ、反論が唱えられるようになっている。  

本論文では、HCIの観点から顔表情の文化的普遍性を評価するために、西洋

人と東洋人の典型的顔表情間での違いについて分析を行う。さらに、この分

析を行うために顔表情の自動認識システムを提案する。本システムでは、顔

を額、眉－目、口、鼻の４つの領域に分割し、各顔領域におけるアピアラン

ス特徴と幾何学的特徴から個別に算出したフーリエ係数によって記述される

ハイブリッド特徴を用いている。個々の顔における静的構造を考慮し、最終

的に SVM（Support Vector Machines）により分類する。複数の標準的なデータ

ベースに基づいて２つの異なる文化的地域に分けられた顔表情画像を用意す

る。これらの顔表情画像に対して表情の自動認識と表情顔に対する視覚的評

価を行うことによって文化の違いに着目した分析を行う。基準となる表情認

識として、西洋人、東洋人双方からの 40 人の被検者による表情認識実験につ

いて述べる。評価結果より、個々の顔領域及びそれらの組合せに基づく文化

に特有な顔表情の違いを特定する。最後に、これらの違いに対処するための

２つの可能な方法を提案する。一つは、各々の文化における典型的な色、形

状、テクスチャ特徴の抽出に基づいて予め民族性を検出しておく方法である。

もう一つは、最終的な分類プロセスにおいて文化に特有な基本表情を個別に

考慮する方法である。 

本論文における主たる成果は、以下の通りである。  



１）西洋人と東洋人の顔表情におけるアピアランス特徴と幾何学的特徴の違

いに対する定性的及び定量的分析 

２）顔の部分領域への分割とハイブリッド特徴に基づく表情の自動認識シス

テム 

３）表情の自動認識において、多文化圏に関わる顔表情データベースを用い

る場合の留意点 

４）多文化環境における表情の自動認識における２つの対処方法  

 

本論文の構成は次の通りである。  

第１章では、本論文における研究の動機、目的、貢献について述べる。  

第２章では、表情認識分野における研究の背景を述べると共に、心理学的

観点から関連研究について詳しく述べる。特に、HCIの観点から多文化圏顔表

情データベースを対象とした表情認識研究に着目する。  

第３章では、顔の領域分割に基づく表情の自動認識手法を提案する。顔を

４つの領域に自動分割する。本提案手法では、顔の一つの領域を使うだけで

も６つの基本表情を認識することができる。このため、部分的な隠れの問題

への対処としても有用である。最後に、同じ顔画像の複数の領域から得られ

た結果を統合するために、モーダルバリュー手法を提案する。  

第４章では、ハイブリッド特徴のフーリエ係数に基づく自動表情認識手法

を提案する。本手法では、異なる３つの顔領域の画素値（アピアランス特徴）

と形状（幾何学的特徴）から抽出された情報を利用する。部分的隠れの問題

にも対処できる。本手法は、アピアランス情報及び幾何学的情報の各々に対

する局所フーリエ係数（LFC）及び顔フーリエ記述子（FFD）の組合せに基づ

いている。更に、特徴抽出時に表情顔から無表情顔を差し引くことによって、

各個人の顔の静的構造による影響を考慮する。  

第５章では、アピアランス特徴、幾何学的特徴、及びハイブリッド特徴に

基づく表情の自動認識及び視覚的分析によって構成される西洋人と東洋人の

基本表情の分析について述べる。表情認識に対する分析では、グループ内、

グループ外での性能、及び、多文化環境での認識に着目する。人間の被験者

を対象とした、基本的な顔表情の認識における文化的な違いを示す実験につ

いても本章で述べる。最後に、多文化環境を対象とした表情認識における２

つの可能な対処策を提案する。一つは、予め民族性を検出しておく方法、も

う一つは文化に特有な表情に関する既知情報を考慮する方法である。 

第６章では、結論及び今後の課題について述べる。 
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A B S T R A C T  

 

Facial Expression Recognition (FER) has been one of the main targets of the well-

known Human Computer Interaction (HCI) research field. Recent developments on 

this topic have attained high recognition rates under controlled and “in-the-wild” 

environments overcoming some of the main problems attached to FER systems, 

such as illumination changes, individual differences, partial occlusion, and so on. 

However, to the best of the author’s knowledge, all of those proposals have taken 

for granted the cultural universality of basic facial expressions of emotion. This 

hypothesis recently has been questioned and in some degree refuted by certain part 

of the research community from the psychological viewpoint. 

In this dissertation, an analysis of the differences between Western-

Caucasian (WSN) and East-Asian (ASN) prototypic facial expressions is presented 

in order to assess the cultural universality from an HCI viewpoint. In addition, a 

full automated FER system is proposed for this analysis. This system is based on 

hybrid features of specific facial regions of forehead, eyes-eyebrows, mouth and 

nose, which are described by Fourier coefficients calculated individually from 

appearance and geometric features. The proposal takes advantage of the static 

structure of individual faces to be finally classified by Support Vector Machines. 

The culture-specific analysis is composed by automatic facial expression 

recognition and visual analysis of facial expression images from different standard 

databases divided into two different cultural datasets. Additionally, a human study 

applied to 40 subjects from both ethnic races is presented as a baseline. Evaluation 

results aid in identifying culture-specific facial expression differences based on 

individual and combined facial regions. Finally, two possible solutions for solving 

these differences are proposed. The first one builds on an early ethnicity detection 

which is based on the extraction of color, shape and texture representative features 

from each culture. The second approach independently considers the culture-

specific basic expressions for the final classification process. 
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In summary, the main contributions of this dissertation are: 

1) Qualitative and quantitative analysis of appearance and geometric feature 

differences between Western-Caucasian and East-Asian facial expressions. 

2) A fully automated FER system based on facial region segmentation and hybrid 

features. 

3) The prior considerations for working with multicultural databases on FER. 

4) Two possible solutions for FER with multicultural environments. 

This dissertation is organized as follows.  

Chapter 1 introduced the motivation, objectives and contributions of this 

dissertation.  

Chapter 2 presented, in detail, the background of FER and reviewed the 

related works from the psychological viewpoint along with the proposals which 

work with multicultural databases for FER from HCI.  

Chapter 3 explained the proposed FER method based on facial region 

segmentation. The automatic segmentation is focused on four facial regions. This 

proposal is capable to recognize the six basic expression by using only one part of 

the face. Therefore, it is useful for dealing with the problem of partial occlusion. 

Finally a modal value approach is proposed for unifying the different results 

obtained by facial regions of the same face image. 

Chapter 4 described the proposed fully automated FER method based on 

Fourier coefficients of hybrid features. This method takes advantage of information 

extracted from pixel intensities (appearance features) and facial shapes (geometric 

features) of three different facial regions. Hence, it also overcomes the problem of 

partial occlusion. This proposal is based on a combination of Local Fourier 

Coefficients (LFC) and Facial Fourier Descriptors (FFD) of appearance and 

geometric information, respectively. In addition, this method takes into account the 

effect of the static structure of the faces by subtracting the neutral face from the 

expressive face at the feature extraction level. 

Chapter 5 introduced the proposed analysis of differences between 

Western-Caucasian (WSN) and East-Asian (ASN) basic facial expressions, it is 

composed by FER and visual analysis which are divided by appearance, geometric 

and hybrid features. The FER analysis is focused on in- and out-group performance 

as well as multicultural tests. The proposed human study which shows cultural 

differences in perceiving the basic facial expressions, is also described in this 

chapter. Finally, the two possible solutions for working with multicultural 

environments are detailed, which are based on an early ethnicity detection and the 

consideration of previously found culture-specific expressions, respectively. 

Chapter 6 drew the conclusion and the future works of this research. 
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CHAPTER I 

1. INTRODUCTION 

This chapter presents the motivation and main objectives of the research work 

presented in this thesis. The specific contributions and the organization of the thesis 

are also listed in this chapter.  
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1.1 Motivation 

The face presents essential information about any human being, such as sex, age, 

race, emotional state, and more. Facial expressions are a set of facial muscle 

movements which can directly express emotional states. Since the studies of 

Charles Darwin [1], facial expressions have been considered as a universal 

language, which can be recognized across different races and cultures around the 

world. Following the study of Darwin, Paul Ekman et al. [2] established the 

universality of basic facial expressions of emotions which are consistent among 

cultures. Thus, the prototypic expressions of anger, disgust, fear, happiness, sadness 

and surprise have known to be universally recognized and expressed.  

 Since the appearance of the first computers and robots, one of the main 

targets of HCI (Human Computer Interaction) is to attain a complex interface which 

can understand and replicate the human emotions. For that reason, in the past two 

decades many research efforts have been proposed for automatic facial expression 

recognition (FER) [3]. The general approach of any FER system is based on three 

steps: face detection, feature extraction and expression classification [4]. In order 

to make an accurate analysis of facial expressions, the feature extraction process is 

crucial. Therefore, FER systems can be divided in three groups based on its feature 

extraction process: appearance-, geometric- and hybrid-based methods [5]. 

Appearance features represent the skin texture of the face and its changes, like 

wrinkles and creases. Meanwhile, geometric features represent the shape of the face 

by using specific feature points from different facial parts. Finally, hybrid features 

describe the facial characteristics by merging the attributes of appearance- and 

geometric-based methods [6].  

 FER systems can be applied to virtual reality, smart environments, user 

profiling, customer satisfaction analysis, and more [3]. Indeed, with the rapid 

globalization and cultural integration, cross-cultural communication is now fast 

becoming essential. In addition, wireless communication has merged the needs of 

understanding the complexities of emotions with remote technology for distance 

communication [7]. Related to this issue, from the psychological field a central 

debate has emerged about the reliability of the six basic expressions across different 

cultures. Hence, a certain part of the research community has promoted an opposite 

theory of the universality hypothesis. They proposed that the facial expressions are 

based on cultural learning and different races may have different ways to express 
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emotions. Therefore, the six basic expressions cannot cover the requirements of all 

different cultures [8].  

Recent cross-cultural studies have to some degree refuted the assumed 

universality of prototypic expressions by finding differences in perceiving facial 

expressions of Western-Caucasian and East-Asian people [9, 10], which are related 

to the mental representations of six basic facial expressions of emotion. In spite of 

these findings, from the viewpoint of HCI the cultural universality is taken for 

granted. Therefore, FER systems do not consider the cultural differences of facial 

expressions [11]. On the other hand, there are still some questions that cannot be 

precisely answered. For example, should companion robots and digital avatars be 

designed to display a set of facial expressions that are universally recognized, or 

should they be adapted to express cultural-specific emotions? In order to try to 

answer these kind of questions, the differences of facial expressions among cultures 

have to be taken into account by FER systems. Furthermore, a deep analysis of 

recognition and especially representation of those differences is needed.  

1.2 Objectives 

This thesis builds on the knowledge that from a viewpoint of HCI the cultural 

universality of the six basic expressions is taken for granted. Hence the aim of this 

research is to analyze the prototypic facial expressions of Western-Caucasians and 

East-Asians for FER from a composite perspective of HCI and psychology. 

Following objectives are set as guidelines to fulfil the aim. 

  

 To analyze related works from a psychological viewpoint in detail. 

 To study methods from HCI viewpoint that employ multicultural datasets 

for evaluating FER systems.  

 To study the main problems that affect the FER systems. 

 To develop an approach to recognize facial expressions from specific facial 

regions. 

 To analyze the effect of the static structure of the face for FER. 

 To develop a FER system based on integral facial features, which 

incorporates features of appearance and geometric facial regions. 

 To define a methodology for analyzing all possible scenarios for cross-

cultural facial expression recognition. 

 To determine automatic tools for analyzing the visual differences of faces 

while showing facial expressions. 
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 To compare the findings obtained by proposed FER systems with 

performance reached by human beings of diverse culture origin. 

 To establish the prior considerations when working with multicultural 

datasets for FER systems. 

 To propose possible solutions for multicultural environments of FER taking 

into account the considerations and differences previously found. 

1.3 Contributions 

The main contributions of this research work are resumed in the proposals of FER 

system based on facial region segmentation, FER system based on hybrid features, 

and facial expression analysis of differences between Western-Caucasian and East-

Asian faces. 

1.3.1 FER System based on Facial Region Segmentation  

The proposed FER system based on facial region segmentation tries to overcome 

the problem of partial occlusion. The proposal instead of working with a whole 

image, automatically segments the face into the four facial regions of eyes-

eyebrows, forehead, mouth and nose. Thus, in order to solve the partial occlusion 

problem, the facial regions that are not occluded are used for the classification.  

Indeed, the use of facial region segmentation also helps to improve the performance 

of FER for non-occluded faces because it allows the possibility to get several 

decisions from one facial image. The system employs the sub-block Eigenphases 

algorithm in the feature extraction process. The main contributions of this system 

are listed below. 

 

 An automatic method for facial region segmentation based on the eyes 

distance. 

 A method for merging feature vectors of individual facial regions based on 

PCA.  

 Particular solutions of different partial occlusions using non-occluded facial 

regions. 

 A classification approach which employs the most frequent decision of 

different SVMs for unifying results of different facial regions from the same 

expressive face. 
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1.3.2 FER System based on Hybrid Features  

The fully automated FER system based on hybrid features reduces the problem of 

individual differences by taking into account the effect of the static structure of 

individual faces and improve the recognition rate by merging appearance and 

geometric features. The system is based on Fourier coefficients and it extracts 

appearance features by using 2-D Discrete Fourier Transform (DFT) called Local 

Fourier Coefficients and geometric features by using Fourier Descriptors (FD) 

called Facial Fourier Descriptors, finally both features are merged using PCA in the 

feature extraction step. In order to overcome the problem of individual differences, 

neutral faces are subtracted from the expressive at the level of feature conformation. 

The main contributions of this system are: 

 

 An appearance-based feature extraction method using Local Fourier 

Coefficients (LFC). 

 A geometric-based feature extraction method using Facial Fourier 

Descriptors (FFD). 

 An approach for fusing feature vectors from different facial regions and 

types of features.  

 A practical solution for the problem of individual differences by employing 

neutral faces. 

1.3.3 Facial Expression Analysis of Differences between 

Western-Caucasian and East-Asian Faces  

The methodical analysis of Western-Caucasian and East-Asian prototypic facial 

expressions intends to assess the cultural universality of the basic expressions of 

emotions. This analysis is composed by facial expression recognition and visual 

analysis. Additionally, a human study supports the culture-specific facial 

expression differences based on individual and combined facial regions. Based on 

these findings, two possible solutions for multicultural FER are proposed. In 

summary, the main contributions of this analysis includes:  

 

 A methodical process for cultural analysis of FER systems based on six 

different cross-cultural classification modalities supported by psychological 

studies. 

 Supplementary findings to the theory of cultural specificity for FER based 

on four individual facial regions and its combinations. 
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 Qualitative and quantitative analysis of appearance and geometric feature 

differences between Western-Caucasian and East-Asian facial expressions. 

 A detailed comparison among cultural differences shown in different 

datasets and the mental representations reported in the psychological 

literature.  

 The prior considerations when working with multicultural datasets on FER 

systems. 

 Two possible solutions for working with multicultural environments. Based 

on an early ethnicity detection and independent culture-specific basic 

expressions for the classification process. 

1.4 Organization of the Thesis 

The rest of the thesis is organized as follows. 

 Chapter 2  

Presents, in detail, a description of the long debate about the universality of 

facial expressions of emotions, the background of FER and related works 

from the psychological viewpoint along with the proposals which work with 

multicultural databases for FER from HCI. 

 Chapter 3  

Explains the proposed FER method based on facial region segmentation 

which is focused on four facial regions. This proposal is capable to 

recognize the six basic expression by using only one part of the face. 

Therefore, a modal value approach is proposed for unifying the different 

results obtained by facial regions of the same face image. 

 Chapter 4  

Describes the proposed fully automated FER method based on Fourier 

coefficients of hybrid features. This method takes advantage of information 

extracted from pixel intensities (appearance features) and facial shapes 

(geometric features) of three different facial regions. Hence, it also 

overcomes the problem of partial occlusion. This proposal is based on a 

combination of Local Fourier Coefficients (LFC) and Facial Fourier 

Descriptors (FFD) of appearance and geometric information, respectively. 

In addition, this method takes into account the effect of the static structure 

of the faces by subtracting the neutral face from the expressive at the feature 

extraction level. 
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 Chapter 5  

Introduces the proposed analysis of differences between Western-Caucasian 

(WSN) and East-Asian (ASN) basic facial expressions, it is composed by 

FER and visual analysis which are divided by appearance, geometric and 

hybrid features. The FER analysis is focused on in- and out-group 

performance of independent (WSN and ASN) cultural and multicultural 

(MUL) datasets. On the other hand, the visual analysis is based on 

reconstructed images from Eigenfaces for appearance features and 

caricature faces for geometric features. The proposed human study which 

shows cultural differences in perceiving the basic facial expressions, is also 

described in this chapter. Finally, the two possible solutions for working 

with multicultural environments are detailed, which are based on an early 

ethnicity detection and the consideration of previously found culture-

specific expressions, respectively.  

 Chapter 6  

Draws the conclusion and the future works of this research 
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CHAPTER II 

2. BACKGROUND 

Facial expressions are the straight link to showing human emotions. However, 

there is an active debate about the universality of the basic facial expressions of 

emotion. In order to detail the starting point of the main topic presented in the 

thesis, this chapter presents details about the long debate about the universality 

hypothesis, and the principles of automated facial expression recognition systems. 

In addition, related works of the thesis are also presented here. 
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2.1 Universality of Facial Expressions of Emotion 

Facial expressions are a set of facial muscle movements which can directly express 

human emotions. Charles Darwin was the first one to try to reveal the origins of 

facial expressions [1]. He claimed that facial expressions are innate and evolved 

human behaviors, which can be recognized across different races and cultures 

around the world. On the other hand, anthropological studies found cultural 

differences in behaviors expected to be biological, instinctual and therefore 

universal. For example, the opposite gestures for indicating “yes” and “no” [12], 

and the masking of negative emotions with smiles in Asian countries [13]. 

Therefore, anthropologists proposed that facial expressions are socially learned and 

not biologically innate [14].  

It is worth noting that facial expressions are part of the communication 

process among humans, which involves the signaling and decoding of information, 

in this case, any facial expression. In order to measure both sides of the process, 

Paul Ekman et al. [15] proposed the Facial Action Coding System (FACS) which 

is focused on anatomical facial muscle movements called Action Units (AUs), with 

this system they standardized the prototypic expressions of anger, disgust, fear, 

happiness, sadness and surprise [2]. Thus, the universality of six basic facial 

expressions of emotions was stablished. Studies that support this hypothesis are 

based on decoding process which involves the perception of emotions based on top-

down information. Usually for testing the universal recognition of facial 

expressions, the n-Alternative Forced Choice task where n = 6 referred to the six 

basic expressions. However, the conclusions of those studies do not consider the 

misclassification errors which can be affected by cultural differences [8]. Moreover, 

Jack R.E. [8] summarized several studies of recognition research of “universal” 

facial expressions and showed that they do not obtain similar levels of recognition 

across cultures, highlighting that the six prototypic expressions are not universally 

recognized at the same level and those results required more careful interpretation.  

Furthermore, Elfenbein et al. [16] defined the in-group advantage 

hypothesis which establishes that members of different cultural groups have 

different ways of developing facial expressions, and each person tends to appreciate 

other people’s facial expressions based on their own cultural knowledge. Once 

more, this hypothesis is based on the missing considerations of the studies that 

support the cultural universality of six basic expressions. Specifically mentioning 

that some of these studies do not provide the statistical tests that could show whether 

any cultural differences emerged in accuracy. Even some researchers assert that, in  
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order to highlight the universal recognition, some works deliberately hid the 

mentioned information, then the cultural differences could be totally avoided [17, 

18]. In summary, the in-group advantage affirms that people are more accurate at 

recognizing facial expressions shown by members of their same cultural group, 

hypothesis which has been supported by different experiments [10, 19-21]. 

A different reason for the variation in accuracy of the basic facial 

expressions of emotion is related to culture-specific decoding rules [22], which may 

restrain the previous knowledge of certain facial expression, for example, 

recognizing anger in someone’s face but reporting sadness for being a more socially 

acceptable emotion. Recently, different psychological studies have been proposed 

in order to address the origins of cultural differences in facial expression recognition 

[20, 23, 24], and for the first time, they show that some cultures have systematic 

confusions due to an inadequate decoding strategy which restricts distinguishing 

certain expressions. The problem lies into a repetitively process of sampling 

information from certain facial regions that dismisses the rest of the face. For 

instance, Jack et al. [25] demonstrated that Westerners distribute eye fixations 

across the face, whereas East Asians mainly fixate the eye region. Thus, they 

conclude that Westerns recognized the six basic expressions with high accuracy, 

whereas East Asians have several problems to recognize the expressions of fear and 

disgust, confusing them with surprise and anger, respectively. Summarizing, these 

studies show that culture builds the expectations of facial expression signals (where 

to focus when recognizing emotions) and challenge the universality of the six basic 

facial expressions of emotion. 

Certain facial expressions have proved to have biological origins, this is the 

case for fear and disgust. The opened eyes of fear expression increase visual field 

for reacting against danger, whereas wrinkled nose of disgust blocks the nasal 

passage protecting from noxious contaminants [26]. However, as mentioned before, 

these primitive facial expressions presents the lowest recognition rates across 

cultures [25]. Thus, some facial elements that represent facial expressions are 

shaped by cultural learning and social interactions. On the other hand, a part of the 

psychological research community believe that only a subset of the six basic facial 

expressions of emotion is universally recognized, i.e. the expressions of happiness, 

surprise, anger and sadness [27, 28]. Therefore, a new formulation of the cultural 

universality of facial expressions should be proposed with fewer than six facial 

expression signals. 
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As a summary, facial expressions may have biological origins, may have 

evolved from primitive human beings, and certainly have been shaped by cultural 

factors and social interactions.  On the other hand, the debate about the universality 

of facial expressions of emotion started just after the proposal of the universality 

hypothesis more than one-hundred years ago. However, with the new cross-

disciplinary approaches, this debate has reached a new juncture where many 

research works can contribute to revealing some of the still unanswered questions.  

2.2 Facial Expression Recognition 

Automatic Facial Expression Recognition (FER) is a computer system that 

attempts to automatically detect and recognize facial motions which describe an 

specific facial expression [3]. The general approach of any automatic FER system 

consists of three steps: face image acquisition, facial feature extraction and facial 

expression classification (Figure 2.1). Face image acquisition (FIA) is a stage for 

getting the face image and automatically find the facial region from the input image 

or sequences of frames. After the face is found, the next step is to extract and 

describe the facial changes caused by the facial expressions, this task is done by 

facial feature extraction stage (FFE). Finally, the extracted facial features can be 

recognized as a group of AUs or prototypic expressions in the facial expression 

classification stage (FEC) [4]. 

 

 
 

Figure 2.1. Basic structure of FER systems. 

2.2.1 Main Problems of FER Systems 

There are many problems which affect any FER system, the must recurrent and its 

relations are illustrated in Figure 2.2. A few problems can be easily solved by 

limiting the database or improving the algorithm used for one of the three steps for 

the basic structure before mentioned. On the other hand, some problems as those 

related with the intensity of facial expressions on testing data are not easy to cover. 
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Figure 2.2. Concept map of main problems facing FER systems. 
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From Figure 2.2 we can detect 11 main problems (highlighted in grey) 

which directly affect the performance of FER systems [3, 4, 6]. In addition, these 

problems can be specifically related with one of the three stages of FER structure, 

these relations are illustrated in Figure 2.3. Shown below are listed the mentioned 

problems with a briefly explanation on their relations. 

 

 
 

Figure 2.3. Relationships between problems and each step of FER systems. 

 

 Acquisition Problems. Image acquisition problems are related to the 

properties of video cameras, the size of the facial region relative to the dimensions 

of the input image, and all the issues of lighting and background. These factors plus 

head orientation and partial occlusion may influence face detection and in general, 

the performance of any FER system. This problem affects only the stage of face 

image acquisition (FIA). 

 Databases. This problem lies on the limited data sets which in some cases 

lack of diversity with respect to age, gender and ethnic background. Same as 

previous, this problem is related only with FIA stage. 

 Deliberate vs Spontaneous Expression. Most of the facial expression 

databases are collected by asking professional actors to perform series of facial 

expressions. Thus, these representations are not straight linked to the true feelings 

of the subjects and may differ in appearance and timing from spontaneously 

occurring behavior. On the other hand, an ideal FER system may properly perform 

for both, deliberate and spontaneous expressions. This problem faces the FIA stage 

and it is related with the data set and the way to obtain it. In addition, it is also 

related with the stage of facial feature extraction (FFE) because the way to describe 

spontaneous and deliberate facial expressions may be different one from the other. 
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 Transitions among Expressions. The assumption of singular expressions 

which are the last state which started from neutral position is not always feasible 

because in real life facial expressions are more complex. For example, the variation 

level of AUs within the same expression could be misclassified. In this case, a 

database should include combinations of AUs, especially for those that involve co-

articulation effects. Thus, this problem is related with FIA and FFE stages because 

timing should be taken into account for the way to extract its features. 

 Intensity of Facial Expressions. Expressions can vary in intensity, and of 

course a low intensity level is more difficult to recognize than a peak one. This 

problem is strongly related with FIA stage because in most cases it has to be handled 

in a sequence of frames instead of only static pictures. 

 Level of Description. This problem is based on the 6 prototypic expressions 

(anger, disgust, fear, happiness, sadness and surprise) and the way to recognize all 

of the possible human facial expressions. In this case, some individual facial actions 

like wink could be considered as an expression. This problem is strongly related 

with FFE stage. 

 Individual Differences. Differences in appearance like facial shape, texture, 

color and age are a latent problem in FER systems. In addition, differences in the 

way of expressing emotions, related to frequency of peak expressions, degree of 

facial plasticity, individual morphology and neutral expression misrecognition, are 

problems that have to be avoided on the FFE stage. 

 Cultural Universality. This problem lies with some experimental proofs that 

can be found in psychological studies which argued that in general, Asian subjects 

have difficulties to express some of the six prototypic basic expressions. Therefore, 

a group of researchers found that Western-Caucasian and East-Asian people cannot 

develop in same degree the same facial expressions. Basically this problem faces 

either the FFE and FEC stages. 

 Prototypic Expressions. The prototypic expressions tend to be insufficient 

to categorize all of the emotional states of human beings. Therefore some 

researchers propose to use more than just the 6 basic facial expressions, or vice 

versa. In this case, the problem is related just with the stage of facial expression 

classification (FEC). 

 Multimodal Expression. Facial expressions are just one part of a complex 

system which includes different channels of nonverbal communication for 

describing human behavior. For example, the expression of happiness is often 

associated with an increase of vocal fundamental frequency. This problem intends 

to include more than only facial aspects to recognize the human emotions. Hence, 

it is related with the 3 stages of FER. 
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Figure 2.4. Proposed algorithms related to FIA step.
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2.3 FER Methods 

As mentioned before, all of the problems presented in the previous section are 

related with the three steps of FER basic structure. Therefore, many of the proposed 

FER methods are focused in one of those stages. The following sub-sections present 

all surveyed methods divided on the basic structure steps of: face image acquisition, 

facial feature extraction and facial expression classification. 

2.3.1 Face Image Acquisition 

FIA stage is in charge to acquire a face image and properly detect the face on that 

frame. This step is extremely important because without a good face detection the 

system can't provide acceptable results. This stage is divided into two sections, first 

one focused on proposed methods for face detection and second on databases 

available for FER evaluation. The surveyed methods are presented in the concept 

map shown in Figure 2.4. 

Face Detection. Most FER research assumes that face images are properly 

detected and aligned, otherwise some works include one step of face detection at 

the beginning of their systems. Face detection algorithms may be performed with 

photographs taken in controlled environments (facial images) or in arbitrary scenes 

(arbitrary images). The decision to develop a method which includes what kind of 

face detection algorithm depends on the data set to be used or even the application 

of the system.  

To detect the face using facial images, Huang and Huang [29] obtain an 

estimation of the facial region location within the image by employing a Canny 

edge detector. This location is estimated based on the valley of pixel intensities that 

is generated between the lips and the two vertical boundaries that represent the 

outline of the face, drawn as two symmetrical edges. The main problems of this 

approach are related to the partial occlusion, thus the face doesn’t have to present 

external elements like glasses, scarf, facial hair and medical masks. Pantic and 

Rothkrantz [30] use dual-view facial images, obtained by mounting a camera on a 

helmet. Their approach is based on a method which employs the HSV color model 

in order to localize the contour of the face. This algorithm is similar to that based 

on the relative RGB model [31]. Finally, the profile view image is processed by 

applying a profile-detection algorithm, which defines the profile contour from a 

thresholded image. 
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On the other hand, for the algorithms which use images under uncontrolled 

environments, Viola-Jones [32] is the most widely used. Based on a set of rectangle 

Haar features, they developed a robust real-time face detector. Thus, the features 

that could be a face are discriminated by using Adaboost in a cascade architecture. 

Some disadvantages of this method are the problems to handle illumination changes 

and face rotation. Huang et al. [33] developed a rotation invariant multi-view face 

detector based on Viola-Jones algorithm. This method detects faces with random 

rotation in-plane and off-plane based on a novel Width-First-Search (WFS) tree 

detector structure. They employed the Vector Boosting algorithm for learning 

vector-output strong classifiers, the domain-partition-based weak learning method 

and the sparse feature in granular space. Deligiannidis and Arabnia [34] use the 

CIELab color space to extracts skin color regions and employs a correlation-based 

method (Orientation Matching) for the detection of faces as elliptic regions. Finally, 

Lyons et al. [35] based on 3D images performed the face detection using face size 

discrimination, orthogonal projection and cascade architecture classification. 

 

Table 2.1. Databases more commonly used in FER systems. 

Database Subjects Expressions Race Format Data 

JAFFE [36] 10 6 + Neu East-Asian Static 2D 

CK+ [37] 120 6 + Neu Multicultural Dynamic 2D 

MMI [38] 75 6 + Neu Caucasian Static 2D 

FABO [39] 23 6 + Neu Caucasian Dynamic 2D 

BU-3DFE [40] 100 6 + Neu Caucasian Static 3D 

RU-FACS [41] 100 6 + Neu Caucasian Dynamic 3D 

MUG [81] 123 6 + Neu Caucasian Dynamic 2D 

TFEID [82] 40 6 + Neu East-Asian Static 2D 

JACFEE [96] 56 6 + Neu Multicultural Static 2D 

GEMEP [97] 10 6 + Neu Caucasian Dynamic 2D 

RU-FACS [105] 100 5 Caucasian Dynamic 3D 

Belfast [106] 256 6 + Neu Caucasian Dynamic 2D 

SMIC [107] 16 3 + Neu Multicultural Dynamic 2D 

DISFA [108] 27 6 + Neu Multicultural Dynamic 2D 

SEMAINE [109] 150 5 + Neu Multicultural Dynamic 2D 

 

Databases. Every FER system needs a database for training and evaluating 

its performance. Therefore, standard databases are required for comparing different 

methods and systems. Some of the most used public available databases for FER 

are listed in Error! Reference source not found..  
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It is worth noted that not all the databases include the six basic expressions 

of emotions and most of them are captured in two dimensions format. On the other 

hand, several databases include only images of Caucasian subjects and just a few 

includes a large number of East-Asian samples. Finally, recent databases used to 

include video sequences instead of only static images. 

2.3.2 Facial Feature Extraction 

After detecting the facial region in the observed scene, the next step is to extract the 

most relevant information of the showing facial expression. FFE stage is the one in 

charge of this important task. In general, the way of describing the face can be 

divided into three types based on the features obtained. Appearance features 

represent the changes of the face by its texture; geometric features employs the 

shape and locations of facial components; and hybrid features combine the 

characteristics of both. The surveyed methods related with FFE stage are presented 

in the concept map of Figure 2.5. As shown in this Figure, the approaches are 

divided into the three types of representations, which are listed below. 

Appearance-based Approaches. Some algorithms are widely used to extract 

facial features in this modality, such as Gabor filters, PCA and LBP. One of the first 

algorithms to perform this task was Gabor wavelets. Bartlett et al. [41] proposed to 

use the Gabor energy filters which square and then sum the outputs of two Gabor 

filters in quadrature. In this way, the authors tried to provide robustness to lighting 

conditions and to image shifting. In a more recent approach, Gu et al. [42] propose 

to use multi-scaled Gabor filters for local patches. Then, using radial grids the 

resulted Gabor decompositions are encoded. Finally, the facial expressions are 

represented by global features obtained by using local classifiers fed by the encoded 

local features. 

The PCA approach called Eigenface was recently used by Mohammadi et al 

[43] where each learned principal component is used as the atom of the dictionary 

for sparse representation and classification of universal facial expressions. The 

Fisherface approach is a modification from Eigenface method which use PCA + 

linear discriminant analysis (LDA). Wang et al. [44] use this method to recognize 

facial expression with infrared images. A relatively recent and powerful texture 

describing method is Local Binary Patterns (LBP), Zhao and Zhang [45] propose 

to use LBP features compressed and correlated by PCA instead of the traditional 

LBP histograms. Finally, they used discriminant kernel locally linear embedding.  
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Figure 2.5. Proposed algorithms related to FFE step. 
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Geometric-based Approaches. The automatic active appearance model 

(AAM) is the most famous approach used to avoid the manual process of the 

initialization of geometric-based approaches. Xiao et al. [46] used AAM for 

tracking the head on a 3D environment. This approach also tracks nonrigid features 

in order to recover the head pose. Finally, the expressions are recognized by using 

the stabilized facial region which is matched with a common expression orientation. 

Otherwise, Cohn et al. [47] proposed person-specific AMMs to apply gradient 

descent search using facial shapes in order to detect depression from AUs.  

The approach of Pantic and Rothkrantz [30] employs a point-based model 

composed of 20 facial feature points for the frontal-view and 10 profile points for 

the side-view model. Both points are tracked to define the showing facial 

expression. Valstar and Pantic [48] proposed a landmark detector based on Gabor 

feature-based boosted classifiers. Using particle filtering with factorized 

likelihoods, 20 facial feature points are automatically localized and tracked in a 

sequence of frames. On the other hand, Majumder et al. [49] used 26 landmarks for 

describing the regions of eyes, lips and eyebrows. This, proposal employs extended 

Kohonen self-organizing map (KSOM) for defining the geometric features.  

Hybrid-based Approaches. Li et al. [50] used a hybrid method which 

employs facial component-based bag of words and Pyramid HOG (Histogram of 

Orientated Gradient) for texture and shape extraction, respectively. They obtained 

independent results from both feature-based algorithms and combined them on a 

decision level using SVM. Zhang et al. [51] proposed a method to generate the 

initial model for AAM fitting by using geometric features. This approach detects 

the facial features more accurately because generates the model in adaptively way. 

Finally, they employed appearance parameters optimized by adopting quadratic 

mutual information (QMI) in order to form hybrid feature vectors for describing the 

whole set of facial features.  

Wan and Aggarwal [52] proposed a fusion of a face shape generated by 68 

facial points, and the texture information obtained by using Gabor filters. In this 

way, they intend to describe the facial expressions based on local pixel intensity 

variations in combination with the facial shapes at a global level. Moreover, Kotsia 

et al [53] presented a FER system for video sequences based on Discriminant Non-

negative Matrix Factorization (DNMF) and deformed Candide facial grid for 

extracting appearance and geometric features respectively. Pyramidal variant of 

Kanade–Lucas–Tomasi (KLT) algorithm is used for tracing the facial points. 

Finally the fusion stage is carried out by Median Radial Basis Functions (MRBFs). 

In this way, the facial expressions and a set of AUs can be detected. 
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2.3.3 Facial Expression Classification 

The classification of facial expressions or AUs is carried out in FEC stage, which 

is the last step of conventional FER systems. In order to achieve this task, different 

classification methods have been applied. Artificial neural network (ANN), support 

vector machines (SVM), hidden Markov models (HMM) and Random Forest are 

some of the most widely used approaches. Any FER system can be divided by its 

FEC modality, which can be based on static or sequence frames of facial images. 

Static approaches use only one frame for the recognition process (in some cases the 

neutral face image can be used as baseline in the FFE step). On the other hand, 

sequence FEC employs the temporal information obtained by using several frames 

from a sequence of frames for recognizing the showing facial expression. The 

concept map of Figure 2.6 shows the methods surveyed for both FEC modalities. 

 

 
 

Figure 2.6 Proposed algorithms related to FEC step. 

 

Static FEC. Gu et al. [42] used one of the simplest classification algorithms 

for FER, they used k-nearest-neighbor with Euclidean distance for FEC. ANN 

which is one of the most widely used algorithm in pattern recognition is employed 

by Pantic and Rothkrantz [30] in combination with Fuzzy Classifiers. On the other 

hand, Wen and Huang [54] proposed a two stage classifier which first recognizes 

the neutral expression and then one of the six specified expressions. They employed 

ANN to classify neutral and non-neutral expressions. Otherwise, Gaussian mixture 

models (GMMs) is employed for classifying the remaining expressions.  
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SVM is well-known in face recognition and FER, that’s why Li et al. [50] 

used this classifier in a multiclass mode to recognize the 6 prototypical expressions 

independently from holistic and analytic approaches to finally fuse the results by 

using again SVM in a last decision stage. The algorithm of RankBoost using l1 

regularization is employed by Yang et al. in [55]. In addition, the output ranking 

scores of the six specified expressions are used to estimate the intensity of the 

showing facial expression. 

Sequences FEC. Moriyama et al. [56] presented a system which recognizes 

AUs of eyes and eyebrows in spontaneously occurring behavior. This method 

employs a rule-based classifier powered by several frames of the sequence. Even 

this proposal is not focused on FER but it recognizes blinks and non-blinks in a 

spontaneous environment. Otherwise, Bartlett et al. [41] also work in the same 

environment but they performed FER based on FACS using AdaBoost and SVM. 

Valstar and Pantic [48] applied a combination of GentleBoost, SVM, and 

hidden Markov models (HMM) to classify AUs and their temporal activation 

models based on the tracking data. On the other hand, Kotsia et al. [53] classify 

AUs from geometric- and appearance-based features using SVM. In order to detect 

the facial expression based on the set of showing AUs, many approaches were 

proposed for fusing both type of features, such as SVM (decision level) and Median 

Radial Basis Functions (MRBFs). 

Based on the Sparse Representation Classification (SRC), Mohammadi et 

al. [43] proposed an space combination of different atoms of a previously defined 

dictionary. In this way, they assumed that a facial expressive image can be linearly 

modeled. Recently, Fang et al. [57] compared Random Forest against other 5 

classification methods based on a framework which explores a parametric space of 

over 300 dimensions. 

2.4 Related Works 

As mentioned before, in spite of the proposals which support the universality of 

basic facial expressions of emotions, a certain part of the research community has 

promoted an opposite theory. Those proposals started from psychological 

viewpoint. Thus, related works are clearly divided by psychological and HCI 

viewpoints. Psychological studies try to prove the refutation of the universality 

hypothesis of facial expressions, meanwhile, those of HCI attempt to explain the 

low accuracy performance obtained by cross-cultural tests, taking the universality 

hypothesis as granted.  
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2.4.1 Psychological Approaches 

From the psychological viewpoint, Dailey et al. [10] evaluated the effect of culture-

specific facial expression interpretation by analyzing the recognition capability of 

U.S. and Japanese participants. Their work is based on a human study using a cross-

cultural dataset as stimuli. In order to explore the interaction of the assumed 

universal expressions with cultural learning, the authors proposed to reproduce the 

previously studied human behavior by using a computational model based on Gabor 

filtering, PCA and artificial neural networks. Dailey’s experiment helps to 

demonstrate how the interaction with other people in a cultural context defines the 

way of recognizing a culture-specific facial expression dialect. In summary, they 

found in-group advantages for recognizing facial expressions, since each racial 

group was better than the other at classifying facial expressions posed by members 

of the same culture.  

In a more recent study, Jack et al. [9] claimed to refute the universal 

hypothesis of facial expressions by using generative grammars and visual 

perception for analyzing the mental representations of Western and Eastern cultural 

individuals. In this proposal, facial expression representations per culture based on 

the 6 basic emotions were modeled and they found that each emotion is not 

expressed using a combination of facial movements common to both racial groups. 

Finally, the authors concluded that the 6 basic emotions can clearly represent the 

Western facial expressions, but those are inadequate to accurately represent the 

conceptual space of emotions for East Asians, demonstrating a culture-specific 

based representation of the basic emotions.  

As a summary, the mentioned cross-cultural studies have found differences 

on perceiving (decoding) facial expressions between cultures, as well as on the 

mental states related to each basic expression, concluding that facial expressions of 

emotion could be defined as culture-specific instead of universal. However, these 

findings are approached from a psychological viewpoint only, thereby did not 

consider the differences that can be found from automatic FER systems, nor the 

facial differences produced by expressing the emotions among cultures. 

2.4.2 HCI Approaches 

From the HCI viewpoint, Da Silva and Pedrini [58] proposed an analysis of 

recognition performance when a restricted out-group scenario occurs. They trained 

different FER systems using facial expression static images from one specific 

culture and tested a set of different culture, using only occidental and oriental face 
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databases. This analysis was based on 3 different standard feature extraction 

methods and 3 machine learning algorithms. For experiments they used the 

databases of CK+ and MUG as occidental dataset and only JAFFE as oriental. The 

best results obtained were achieved by in-group test, followed by those of the 

multicultural test. However, when out-group test was applied, the accuracy 

dramatically decreased. Finally, they concluded that multicultural training should 

be considered when an efficient recognition performance is needed, in addition, 

they pointed out that the six basic expressions are universal with subtle differences 

which could be influenced by lighting changes or other image problems.  

Ali et al. [59] performed a similar study, where ensemble classifier 

construction was intended to find how the classifiers will be trained to accurately 

classify multicultural databases. This proposal utilized boosted NNE (Neural 

Network Ensemble) trained with HOG filtered images and combined with Naïve 

Bayes method for cross-classifying primarily from Moroccan and Caucasian 

datasets with those of Japanese and Taiwanese. Their 3 datasets were composed by 

RAFD database for Caucasian and Moroccan; JAFFE for Japanese; TFEID for 

Taiwanese. Experimental results shown that for out-group test when RAFD or 

TFEID are used for training the JAFFE performance are noticeable low, 

nevertheless, when JAFFE is trained the TFEID test performance is slightly better 

than that of RAFD. However, the best results reported were achieved again by in-

group followed by multicultural test. Therefore, Ali et al. concluded that promising 

results are obtained when multicultural databases are used for training, even 

increasing the accuracy achieved by the cross-database experiments without regard 

of decreasing the accuracy in the same database experiments. In addition, they 

attached the problems of out-group performance not only because of the difference 

of culture but also factors such as differences in the number of samples per 

expression, facial structure and visual representation.  

In general, many FER studies have included cross-database tests, 

nevertheless most of them strongly supports the universality hypothesis [42, 58-

61]. Even when considerable differences among performance accuracy of 

multicultural and out-group tests are found, they attribute those problems to 

external factors such as algorithm robustness or image quality rather than question 

the universality of facial expressions itself. 

Based on the literature of cross-cultural studies, it is possible to summarize 

some important points which must be considered in order to develop a robust cross-

cultural analysis of FER: 

 



26 | Chapter II:  Background  

 

 

 Consistency in the size of the datasets and in the number of samples per 

expression. 

 Variety of geographic region, culture, ethnicity and race of the participants. 

 Robust facial feature extraction method (especially to illumination 

changes). 

 Review of in-group, out-group, multicultural and out-group multicultural 

cross-classification. 

 Consideration of static structure of individuals faces (neutral face 

treatment). 

 Visual representation of results and human study validation. 

 Independent facial region treatment per expression. 
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CHAPTER III 

3. FER SYSTEM BASED ON FACIAL 

REGION SEGMENTATION 

This chapter presents a facial expression recognition system based on segmentation 

of a face image into four facial regions (eyes-eyebrows, forehead, mouth and nose). 

In order to unify the different results obtained from facial region combinations, a 

modal value approach that employs the most frequent decision of the classifiers is 

proposed.  
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3.1 Introduction 

As mentioned in Section 2.2.1, many problems concern FER systems, such 

as illumination changes, pose, angle of the input camera, partial occlusion, and so 

on. Partial occlusion can be seen as a noise and could disturb the facial expression 

feature extraction or it would cause information loss in FER. There are two types 

of partial occlusion: temporary and systematic. Temporary occlusion is when a part 

of the face is obscured momentarily as a result of a person moving or an external 

factor. On the other hand, systematic occlusion results when the person wearing 

something which covers part of one’s face [62]. Therefore, to develop an algorithm 

of robust FER under occlusion conditions has become an important research topic 

[63-65]. 

The proposal presented in this chapter introduces a robust FER algorithm 

which takes into account the problem of partial occlusion. The proposal is based on 

the segmentation of a face image into several regions using the sub-block 

eigenphases in each of them, instead of working with a whole image. It uses, 

specifically, the facial regions that are not occluded. In addition, the use of facial 

region segmentation also helps to improve the performance of FER for non-

occluded faces because it allows the possibility to get several decisions from one 

facial image. Therefore, a method to unify these results is also proposed. The modal 

value approach employs the most frequent decision of the classifiers for taking the 

final decision, in this way all of the different results obtained from one image are 

unified.   

The proposed algorithm was evaluated using leave-one-subject-out method 

with 300 frames of the Cohn-Kanade database that includes face images of 97 

subjects, where each one was instructed to display the six basic facial expressions. 

In order to evaluate the effectiveness of the proposed method for facial expression 

recognition under partial occlusion four types of occlusion were adopted: half left, 

half right, mouth and eyes occlusion. The performance of the proposed method was 

tested with non-occluded faces as well as partially occluded faces and compared 

with two recent approaches which use sub-block eigenphases [66] and linear binary 

pattern (LBP) [67] respectively. 

The block diagram of the proposed system is shown in Figure 3.1. In the 

stage of facial region segmentation, the face images are segmented into 4 facial 

regions: eye-eyebrow, forehead, mouth and nose. The feature extraction stage is 

based on sub-block eigenphases algorithm, performing the algorithm independently 

for each facial region. To apply this algorithm firstly the phase spectrum of the 
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facial region is obtained, then the Principal Component Analysis (PCA) is applied 

in order to conform an individual feature vector of each facial region and finally 

conform the final feature vector concatenating the N individual feature vectors of 

facial regions. N depends on the number of the facial regions that are used in the 

process. In the classification stage SVM is applied so as to make the recognition of 

facial expressions, using the multi-class mode specifically employing 6 classes, one 

for each expression (anger, disgust, fear, happiness, sadness, and surprise) 

afterwards based on the decision from different classifiers modal value approach is 

applied. 

 

 
 

Figure 3.1. Block diagram of proposed system 

 

The baseline algorithm of sub-block eigenphase method has already been 

proposed in [66], but the original algorithm works with the whole facial image. The 

proposed method in the present chapter handles each of the facial regions 

individually and the main focus is how to combine the available facial regions to 

overcome partial occlusions as well as to achieve better FER performance for non-

occluded faces. 

3.2 Facial Region Segmentation 

As the main proposal of this system, face images are segmented into four regions 

that contain information of eyes-eyebrows, forehead, mouth and nose. This 

segmentation enables not only to exclude some facial parts in the case of partial 

occlusion, but also to evaluate the contribution that each facial region has on the 

FER, which results in a robust, modal value approach.  

The original idea for this segmentation process was proposed in [50], where 

the distance between the irises (ED) is taken as a baseline for the cropping process. 

For detecting the eyes position of a face image, they used an algorithm proposed by 

Vukadinovic et al. [68]. However, in this thesis, the Viola-Jones algorithm is used 
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for detecting the face region as well as the eyes position. Thus, we obtain a detected 

face region (defined as DFR) of size 2N , the eyes position of the face can be 

defined as RL EE , for left and right eye respectively, where DFRRL EE , . Then, in 

order to segment the facial regions for appearance features, we used the distance 

between eyes, which is defined as
RL EEED  and experimentally we found the 

relation between ED and the three specific facial regions. For instance, consider O

as the origin of the plane DFR, where 2/),( RLRL yyxxO  . Thus, the upper left 

vertex of each facial region is defined as follows, 

)5/2 ,  ( EDyEDxP OOEye  , 

)5/2 , 5/4( EDyEDxP OONos  , 

)5/4 , 5/3( EDyEDxP OOMou  , 

(3-3-1) 

where MouNosEye PPP  ,  , represent the initial positions of eyes-eyebrows, nose and 

mouth regions respectively. Finally, the size of each facial region is defined as,  

EDEDAEye 4/52  , 

EDEDANos /535/8  , 

EDEDAMou 4/55/6  , 

(3-2) 

being MouNosEye AAA  ,  , the area of the respective MouNosEye FRFRFR  ,  ,  facial regions. 

 

 

Figure 3.2. Example of facial region segmentation. 

 

This relation proposes that the top of the mouth region is 0.85ED and the 

bottom 1.5ED from the irises position. This approach is shown in Error! Reference 

ource not found. (a). Based on this issue, the bottom of the nose region is 0.85ED 

and the top 0.35ED, the bottom of the eyes-eyebrows region is 0.35ED and the top 

-0.4ED, finally the bottom of the forehead region is -0.4ED and the top -ED, where 

“-” means the distance in the upwards direction from irises position. 

Subsequently the mouth, eyes-eyebrows, nose and forehead region are 

segmented which have size of 1.2ED(width)x0.65ED(height), 2EDx0.75ED, 

1.7EDx 0.5ED and EDx0.6ED respectively as shown in Error! Reference source 
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ot found. (b), (c), (d) and (e). For this proposal, it is assumed that the segmentation 

described above is correctly achieved. 

3.3 Feature Extraction 

Each of the facial regions is further divided into sub-blocks of 2x2 pixels, and the 

phase spectrum is extracted for each segment by using the fast Fourier transform. 

The phase spectrum is employed in Eigenphases algorithm [69] because the 

Oppenheim’s study [70] proved that the most important information of an image is 

contained in the phase instead of the magnitude. In summary, the process of this 

step is: to divide the facial region in several sub-blocks, then to obtain the phase 

spectrum of each sub-block to finally get a phase spectrum matrix of the complete 

facial region [66]. 

For applying the PCA first the phase spectrum matrix has to be converted 

into a column vector, and subsequently the column vectors of all training images 

will form a matrix in order to calculate the covariance matrix to finally get the 

matrix of principal characteristics (PM). It is important to notice that in contrast to 

the original Sub-block Eigenphases algorithm [66] which yields only one principal 

matrix from one face image, in this thesis four principal matrices from one face 

image were calculated, one matrix from each of the 4 facial regions, respectively. 

3.3.1 Feature Vector Estimation 

The feature vectors are the product of the principal matrix by each column vector 

of the training images. Similarly to the previous stage this process is applied to each 

facial region independently. Thus, the final step is to concatenate the individual 

feature vectors in order to create the final feature vector that represents the entire 

face.  

As shown in Figure 3.3, (a), (b), (c) and (d) represent the process to get the 

individual feature vector related to eyes-eyebrows, forehead, mouth and nose 

respectively, finally (e) represents the concatenation of the four individual feature 

vectors which results in the final feature vector. The final feature vector depends on 

the number of facial regions used; up to four feature vectors from one facial image 

are concatenated, although in the case of occlusions, the number could be less than 

four. To show the contribution of each facial region, all possible combinations of 

the four facial regions are presented in the experimental results section 
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Figure 3.3. Example of feature vector conformation.  

3.4 Modal Value Approach 

For the classification stage, a multi-class Support Vector Machine (SVM) [71] 

employing RBF kernels were used in order to classify the six basic facial 

expressions. In this work the library LIBSVM [72] is employed to achieve this task. 

SVM has to be used in two different modalities: training and testing. For training, 

the equal number of feature vectors should be introduced to the SVM as training 

images. Accordingly, six templates are obtained, which are linked to the facial 

expressions of anger, disgust, fear, happiness, sadness, and surprise (6 classes). 

Afterwards on the testing mode, in broad outlines the SVM compares the test 

feature vector with all templates to decide from which class it belongs to. It is 

important to mention that this decision depends on the facial region combination 

gotten by previous stage. Therefore if many combinations are used, more than one 

decision can be taken from the same facial image. In addition, the SVM output 

values provide similarity scores for each class whose range is 0.0 and 1.0, denoting 

1.0 the exact match.  

The proposed feature extraction method is capable of producing several 

feature representations from one facial image, because several combinations are 

possible by concatenating up to four facial regions. For each feature representation 
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a SVM was trained individually, so that several independent decisions from one 

face image can be obtained. Thus, in order to improve the average recognition rate 

from each facial region and based on the fact that more than one result can be 

obtained from each frame tested, a modal value approach to unify these results is 

proposed, which helps to improve the recognition performance. 

Modal value approach consists in selecting as a final decision the most 

frequently (modal value) class gotten from the classifiers associated with the final 

feature vector which depends on the combinations of facial regions as described in 

Section 3.3.1. 

 

 
 

Figure 3.4. Diagram of modal value approach. 

 

Figure 3.4 shows the procedure to apply the modal value approach, where 

it is possible to see that more than one SVM is associated by one frame and N 

depends on the number of classifiers used in the approach (it depends on 

combinations of facial regions used in feature vector conformation), modal value is 

selected from the decision of these classifiers in order to take the final decision. It 

is important to mention that in order to apply this approach at least 3 classifiers are 

necessary, because with only two decisions it is not possible to calculate correctly 

the modal value.  

Error! Reference source not found. shows an example of modal value 

pproach using 4 sample faces. In this example two frames are displaying the 

expression of anger and the other two of fear. None of the 3 classifiers used here, 

SVM1, SVM2, and SVM3 produced the perfect results; the recognition accuracies 

are 3/4, 3/4 and 2/4 respectively. However, unifying the decisions from these 

classifiers by taking the modal values leads to 100% of accuracy, as shown in the 

bottom row of this Table. 

Table 3.2 presents a special situation that can be occurred when applying 

the modal value approach. When two or more classes have the same number of 
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positive decisions, the output values of such classifiers are averaged and taking as 

the final decision the result with the highest numerical value. In this example the 

decision of the classifiers SVM1 and SVM2 was anger while the decision of SVM3 

and SVM4 was fear. However taking into account the average among them the 

highest value was provided by the average obtained from SVM1 and SVM2 

therefore the final decision was anger.  It is important to mention that this procedure 

can also be applied when it is working with only two classifiers. Thus, this process 

represents an alternative of the modal value approach when only two classifiers are 

employed. 

 

Table 3.1. Example of modal value approach. 

Sample 1 2 3 4 Result 

Exp. Anger Anger Fear Fear -- 

Frame 

    

-- 

SVM1 Anger Disg Fear Fear 3/4 

SVM2 Anger Anger Fear Disg 3/4 

SVM3 Fear Anger Happy Fear 2/4 

Modal Anger Anger Fear Fear 4/4 

 

Table 3.2. Special case of modal value approach when two or more classes have the same 

decision. 

Expression Anger 

Frame 

 
SVM1 Anger 0.82 mean 

0.855 SVM2 Anger 0.89 

SVM3 Fear 0.75 mean 

0.775 SVM4 Fear 0.80 

Final Decision Anger 

3.5 Database 

300 peak expressive frames of the Cohn-Kanade database [37] were used for the 

experiments presented in this chapter. The database contains face images of 97 

subjects ranging in age from 18 to 30 years old, 65 percent were female and 45 
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male. The images were taken under a controlled environment and digitized into 

640x480 pixels in grayscale values. For the experiments the face part was cropped 

at 280x280 pixels. 

Table 3.3 shows the number of frames by each expression used in this work, 

based on the six basic expressions: anger, disgust, fear, happiness, sadness and 

surprise.  

Table 3.3. Frame numbers of each expression. 

Expression Ang Disg Fear Happ Sad Surp 

No. of images 30 34 47 70 54 65 

 

In order to evaluate the effectiveness of the proposed method under partial 

occlusion four different types of occlusion were used, accordingly this section is 

divided into following two subsections. 

There is not public available facial expression database that contains 

different types, position or size of partial occlusion. Therefore, four different types 

of partial occlusion were simulated in this work: occluded half left, occluded half 

right, occluded eyes and occluded mouth. The motivation for applying partial 

occlusions on these regions comes from real situations of daily life. For example, 

sunglasses often occlude the two eyes and in some cases also the eyebrows, scarves 

and medical masks often occlude the mouth, and when some people is smiling they 

put one hand or an object to cover one’s mouth. Figure 3.5 shows the four different 

occlusions applied to one subject who displays the 6 basic expressions.  

As shown in Figure 3.5 the four different types of partial occlusion were 

simulated by superimposing graphically black mask regions on the non-occluded 

300 frames selected from Cohn-Kanade database. It is worth nothing that the 

occlusions introduced in the face images are more critical than real life occlusions. 

For example in the left and right side occlusions, which emulate occlusion due to 

hair styles and shadows, half of the face is completely occluded with a black mask 

which does not happen in the situations mention above. Also to emulate the use of 

sunglasses, a black mask completely occludes the eyes-eyebrows part of the face 

which is larger than the real life occlusion. Finally the mouth occlusion used is 

similar to the occlusion produced by scarves or medical masks. These kinds of 

occlusions, shown in Figure 3.5, which are more critical than real life ones were 

used because several real life occlusions due to sunglasses and shadows are 

efficiently solved by sub-block eigenphases algorithm [66]. Then if the proposed 

algorithm is able to solve those occlusions, it can expected that it will be able to 

perform fairly well with real life occlusions. 
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Figure 3.5. Example of partial occlusion simulation of database. From top to bottom: no 

occlusion, half left, half right, eyes and mouth occlusion. 

 

For the specific case of half left/right face occlusions, the proposed method 

is not applicable directly because facial regions used in the method depend on both 

sides of the face. Therefore, the proposal to solve this problem is to generate a 

mirror image based on the half side not occluded in order to work with a whole face 

instead of a half. Hence, it is possible to obtain a better recognition rate against to 

holistic methods. 

The mirror images are possible to obtain due to the occlusion is exactly half 

of the face image. Thus, a mirror image is composed by half not occluded side 

concatenated with its inverted image (mirror). Error! Reference source not found. 

hows two subjects of the database with half left/right occlusion and its consequent 

mirror images. It is important to mention that also this process is applied to all 

database used in this work. 

3.6 Experimental Results 

For the experimental results the cropped images are automatically resized to 80x80 

pixels. The recognition accuracy was measured using a derivation of leave-one-
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subject-out which consists in to exclude the test sample of the training stage. The 

average recognition rates and the confusion matrices have been presented to show 

the accuracy of facial expression recognition. Confusion matrices for FER show a 

6x6 matrix with information about the correct basic expressions in its rows and the 

predictive classification results in its columns. Thus, diagonal entries represent the 

correct classification of the system, meanwhile the off-diagonal entries correspond 

to misclassification problems.  

 

 
 

Figure 3.6. Example of half occluded and mirror images. From top to bottom: half left 

occlusion, mirror right, half right occlusion, and mirror left. 

 

It is important to mention that for all experiments the training was performed 

with non-occluded database. This section is divided in 3 subsections: experiments 

with different number of facial regions, experiments despite partial occlusion and 

effect of partial occlusion on each facial expression. 

3.6.1 Individual Facial Regions and its Combinations 

Since the proposed method is based on facial region segmentation into 4 

regions and the combination of the features individually obtained from those 

regions, all possible combinations of the 4 facial regions had been analyzed. The 

proposed system was also compared with two basic methods for reference that uses 

the whole face image at once to extract a feature vector, without facial region 

segmentation. For the case of reference methods, the whole image is used for 
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calculating one principal matrix (PM), and that matrix was used to obtain a feature 

vector that describes the entire face. In this case, recognition was performed with 

only one classifier, since there are not multiple facial regions.  

Table 3.4 presents the average recognition rate of the combinations divided 

in one, two, three, and all facial regions, compared with the result of reference 

methods, sub-block eigenphases (SBE) [66] and LBP method (LBP) [67]. The best 

result is achieved using 3 regions, by Eyes-Mouth-Nose (EMN) with 87.7% which 

is better than employing the 4 facial regions (All) with 86.7%. EMN case also 

outperformes by about 9% the recognition rate obtained using the SBE (with 

78.3%) and by about 13% the result provided by the LBP (with 74.3%). Moreover, 

it can be noticed that Mouth (M) with 79.3% and Eyes-Mouth (EM) with 86% are 

the best result achieved by using 1 and 2 regions respectively.  

Another important point that it is possible to see from Table 3.4 is that the 

combinations which use mouths region provide the highest average recognition rate 

independently of the number of facial regions used in the process. Meanwhile, when 

the mouth region is not employed, the combinations of other regions do not provide 

competing recognition rates. 

 

Table 3.4. Average recognition rate of individual facial regions and its possible combinations 

compared with methods from the literature. 

Abbreviation Combinations Result (%) 

E Eyes-eyebrows 53.33 

F Forehead 28.67 

M Mouth 79.33 

N Nose 61.00 

EF Eyes-Forehead 56.67 

EM Eyes-Mouth 86.00 

EN Eyes-Nose 69.33 

FM Forehead-Mouth 79.33 

FN Forehead-Nose 61.67 

MN Mouth-Nose 83.00 

EFM Eyes-Forehead-Mouth 85.00 

EFN Eyes- Forehead-Nose 70.33 

EMN Eyes-Mouth-Nose 87.67 

FMN Forehead-Mouth-Nose 82.67 

All All regions 86.67 

SBE Sub-block eigenphases [50] 78.33 

LBP LBP method [51] 74.33 
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Next, all possible combinations using modal value approach described in 

Section 3.4 were tested. In this approach, several SVMs associated with different 

combinations of facial regions were executed in parallel, obtaining a recognition 

result from each classifier, and taking the modal value to unify the recognition 

results. The number of classifiers used in this test was 16, 15 from the combinations 

of 4 sub-regions and one from the whole image (which is SBE). It is important to 

mention that for the results obtained, at least 3 classifiers were required to find the 

modal value. 

 

Table 3.5. Average recognition rate of the best results using modal value approach. 

No. SVMs Combinations Result (%) 

4 EM – FM – All – SBE 92.00 

4 M – FM – EMN – All 91.67 

6 M – N – EM – FM – EMN – All 90.00 

4 M – EM – EMN – All 89.33 

3 FM – EMN – SBE 88.00 

 

Average recognition rates from the best results using modal value approach 

are shown in Table 3.5. It is possible to see that the best result obtained by modal 

value approach achieves 92% of average recognition rate using 4 classifiers, the 

combinations used in this case were: Eyes-Mouth (EM), Forehead-Mouth (FM), the 

four regions (All) and without region segmentation (SBE). This result provides the 

highest recognition rate obtained in this chapter, outperforming by almost 15% the 

average recognition rate of the SBE and by almost 19% when LBP is used. On the 

other hand around 5% is the improvement compared with the best result obtained 

when only one classifier is used (EMN).  

 

 Table 3.6.  Confusion matrix of the best result. 

 Ang Disg Fear Happ Sad Surp 

Ang 83.3 0.0 3.3 3.3 10.0 0.0 

Disg 0.0 88.2 5.9 2.9 0.0 2.9 

Fear 0.0 0.0 76.6 17.0 6.4 0.0 

Happ 0.0 0.0 2.9 97.1 0.0 0.0 

Sad 0.0 0.0 0.0 1.9 98.1 0.0 

Surp 0.0 0.0 1.5 0.0 0.0 98.5 
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Table 3.6 shows the confusion matrix of the best result obtained by the 

proposed system (EM-FM-All-SBE). It can be noticed that for the proposed method 

surprise, sadness, happiness and disgust expressions are easy to recognize, while 

anger and fear expressions are not. Also, it is possible to see that the average 

recognition rate of surprise is the highest and fear is the lowest with 98.5% and 

76.6% respectively. The problem to recognize fear is related with happiness, 

because in 17% of the cases the proposed system misrecognizes fear expression 

with happiness. 

3.6.2 Despite Partial Occlusion 

The proposed algorithm was evaluated using four types of partial occlusion: 

occluded half left, occluded half right occluded eyes-eyebrows and occluded 

mouth, which are described in Section 3.5 and shown in Figure 3.5. To solve these 

occlusions, in addition to the 4 regions shown in Error! Reference source not found., 

our additional regions were included in order to have more possible combinations 

when modal value approach is used, such as: left eye, right eye, half left face and 

half right face. Here left/right eye is the half part of eyes-eyebrows region shown in 

Figure 2(c) and half left/right face is the half part of the whole image shown in 

Figure 2(a). To determine the contribution of these additional regions to the facial 

expression recognition each of them are used independently and the evaluation 

results are shown in Table 3.7.  

 

 Table 3.7. Average recognition rate of additional regions. 

Region Result (%) 

Left Eye (LE) 61.00 

Right Eye (RE) 50.33 

Half Left Face (LF) 75.00 

Half Right Face (RF) 79.33 

 

For each type of partial occlusion a different solution is proposed. For the 

specific case of occluded half face a solution using mirror images is employed in 

which the reconstructed image is segmented into 8 regions (E, F, M, N, LE, RE, LF 

and RF) described above, which are used together with the whole mirror image in 

the modal value approach. Otherwise the problem of eyes-eyebrows occlusion is 

overcome using the facial regions which are not occluded: forehead, mouth and 

nose. The same solution is employed for mouth occlusion using only eyes-

eyebrows, left eye, right eye, forehead and nose regions. 
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Table 3.8. Average recognition rate of the best results from each type of partial occlusion. 

Occluded Region Best Solution Result (%) 

Half Left EMN – All – LF – RF  87.00 

Half Right EMN – All – LF – RF 83.33 

Eyes-Eyebrows M – FM – MN – FMN 87.67 

Mouth N – EN – FN – EFN 75.33 

 

The recognition rates of the best results obtained from each type of partial 

occlusion are shown in Table 3.8. Note that hyphens “-” indicates that the modal 

value approach was adopted to unify the outputs of multiple classifiers. Therefore, 

the best solutions for the partial occlusion problems were obtained using 4 

classifiers.  

In order to compare the results of the proposed system despite occlusion, 

recognition was performed without mirroring nor facial region segmentation, using 

only whole image (SBE). The comparison is shown in Figure 3.7, where none 

occluded recognition serving as baseline is also presented. In all cases the proposed 

method improves the results of the approach using whole image. The maximum 

improvement is obtained for half left occlusion, thus proposed method using modal 

value approach improves around 55% the average recognition rate of SBE approach 

that provides only 33%.  

Moreover it is possible to see that the results among half left/right occlusion 

provide almost the same recognition rate, and the recognition rate with occluded 

eyes is higher than the result when the mouth is occluded. 

 

 

Figure 3.7. Comparison between approach using whole image (SBE) and proposed methods 

without and with 4 different partial occlusions. 
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Figure 3.8 and Figure 3.9 show, by each facial expression, the recognition 

performance despite the four types of partial occlusion employing SBE and the 

proposed method respectively. From both images it can be clearly seen that the 

effect of partial occlusion differs for different expressions.  

Figure 3.8 presents interesting results for half left/right occlusion. For 

example, when half left is occluded, the expressions of disgust, fear and surprise 

dramatically decrease. On the other hand, when half right is occluded, anger and 

sadness present several problems. Figure 3.9 instead presents higher recognition 

rates and different response of the partial occlusions. For example, the performance 

of the system for fear degrades when mouth is occluded while for happiness the 

system performs fairly well with any kind of occlusion. 

 

 

Figure 3.8. Effect of four types of partial occlusion by each facial expression using the SBE 

method. 

 

 

Figure 3.9. Effect of four types of partial occlusion by each facial expression using the 

proposed method. 

3.7 Conclusion 

The proposal presented in this chapter introduces a facial expression recognition 

algorithm based on face image segmentation into four facial regions. Several 

combinations of facial regions are possible in this approach, resulting in different 
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classifiers corresponding to the combination.  In order to unify the results obtained 

from different classifiers, a modal value approach was also proposed in this chapter. 

Based on the experimental results, it is possible to conclude that the use of facial 

region segmentation improves the average recognition rate compared to the 

approaches which uses the whole image all together (SBE and LBP). Being the best 

result that obtained by the combination of by Eyes-Mouth-Nose (EMN). In 

addition, analyzing the performance of individual facial regions and its 

combinations, it can be concluded that the mouth is the most important part of the 

face for developing facial expression recognition. This is because all of the results 

that include this region perform better than the rest. 

As a conclusion, it is possible to notice that the best result obtained in the 

experimental results of this chapter was provided by EM-FM-All-SBE combination 

in the modal value approach which achieves 92% of average recognition rate. 

Therefore, the use of modal value approach improves the performance of FER 

systems when those are built on different facial regions of the same facial image. 

Another advantage of the proposed method is that even with only one part 

of the face it is possible to make the facial expression recognition, achieving almost 

80% of average recognition rate if the mouth region is available. This fact becomes 

very important when several regions of the face are invisible in the case of partial 

occlusion. If the left or right half of the face is occluded, mirroring images of the 

non-occluded part can be used. Thus, it is possible to improve the recognition result 

using facial region segmentation.  

Finally, based on the analysis of the effect of partial occlusions on each 

facial expression, it is clearly noted that fear, anger and disgust are the most difficult 

expressions to recognize in almost all types of partial occlusion, sadness is not very 

difficult to recognize for the system especially when the eyes-eyebrows region is 

occluded. Moreover, happiness and surprise are the expressions that the system can 

easily recognize despite all types of partial occlusion presented in the Section 3.5. 
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CHAPTER IV 

4. FER SYSTEM BASED ON HYBRID 

FEATURES 

This chapter presents a facial expression recognition system based on hybrid 

features which considers the effect of the static structure of the faces. Appearance 

and geometric information of specific facial regions are extracted by applying the 

Discrete Fourier Transform (DFT). In order to decrease the individual differences, 

this proposal subtracts the static structure from the expressive faces.  
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4.1 Introduction 

As mentioned before, FER systems based on its feature extraction process can be 

divided in two groups: appearance- and geometric-based methods. Appearance 

features represent the skin texture of the face and its changes (wrinkles and creases), 

meanwhile geometric features represent the shape of the face by using specific 

feature points from different facial parts. In addition, there is a special type of 

feature extraction method called hybrid-based that merges both kind of facial 

features [5]. Hybrid approach represents a FER system which employs appearance 

and geometric features for describing facial expressions. The process of features 

fusion can be applied in the step of feature extraction as well as in that of 

classification [50, 73-75].  

Among the algorithms used for feature extraction, the Discrete Fourier 

Transform (DFT) has been successfully applied for facial recognition. For example, 

in [76] three different Fourier feature domains were fused for face recognition, and 

in [66] phase spectrums of non-overlapped sub-blocks using PCA. However, those 

approaches were applied using only appearance features. 

The proposal presented in this chapter introduces a fully automated FER 

system based local Fourier coefficients (appearance features) and facial Fourier 

descriptors (geometric features), finally both features are merged using PCA 

(Principal Component Analysis) in the feature extraction step. In order to overcome 

the problem of individual differences presented in any FER system, the static 

structure of faces was considered. To this end, the neutral faces are subtracted from 

expressive faces. It is important to mention that this subtraction is also included in 

the feature extraction process. In order to locally analyze the changes that may 

appear on the face while showing facial expressions, this proposal is based on 51 

facial points (geometric features) and three specific facial regions: eyes-eyebrows, 

nose and mouth (appearance features). Furthermore, this proposal is extended to the 

combinations that can be formed by each independent region. Finally, facial 

expressions are recognized using Support Vector Machines (SVMs). 

The proposed system was evaluated using leave-one-subject-out method 

with four standard databases: the extended Cohn-Kanade (CK+), MUG and TFEID 

database. In order to evaluate the effectiveness of the fusion using Fourier 

coefficients, the system was tested without applying the Fourier Transform and 

obtaining individual feature vectors for appearance and geometric features, this 

preliminary evaluation was carried out using a subset of the CK+ database. In 

addition, studies of local Fourier coefficients with different size of sub-blocks and 
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facial Fourier descriptors with a different number of fiducial points are also 

presented. Finally, the performance of the proposed method is compared with 

different methods from the literature, which use hybrid features and the same 

databases. 

 

 

Figure 4.1 General framework of the proposed system using hybrid features. 

 

Figure 4.1 presents the general framework of the proposed method. The 

system is based on the face detection using Viola-Jones algorithm, following by the 

feature extraction process which is divided into four phases: appearance features 

extraction, geometric features extraction, hybrid fusion and the consideration of the 

static structure of faces. Finally in the classification stage SVM is applied so as to 

make the recognition of facial expressions, using the multi-class mode specifically 

employing 6 classes, one for each expression (anger, disgust, fear, happiness, 

sadness, and surprise).  

 

 
 

 Figure 4.2. Example of the facial region segmentation based on appearance and geometric 

features. 
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As mentioned before, the system is based on three different facial regions. 

Thus, the facial region segmentation is included in each feature-based extraction 

individually. An example of this region segmentation of both feature-based 

methods is shown in Figure 4.2. 

4.2 Appearance Features 

Appearance features are individually obtained from three independent facial 

regions. Thus, for each facial region the proposed feature extraction method was 

independently applied. The first step of this process is facial region segmentation 

which is based on the distance between irises and its relation with the rest facial 

regions as explained in Section 3.2.  

It is important to mention that the proposed method is based on the sub-

block analysis of Eigenphases algorithm presented in [66] which concludes that for 

face recognition, the ideal size of a sub-block for facing illumination problems is 

the smallest possible. However since the previous analysis of the ideal sub-block 

size of eigenphases algorithm found that it is equal to 2x2 pixels, and due to the 

complex part of the Fourier transform being equal to zero in this particular case. 

Rather than using the phase spectrum for the feature extraction process as in [66], 

in this thesis the use Local Fourier Coefficients (LFC) was proposed. 

4.2.1 Local Fourier Coefficients 

Appearance feature extraction is carried out by using LFC which builds on the 2-D 

DFT. This process consists of dividing the input image into several sub-blocks to 

locally extract Fourier coefficients. For instance, the 2-D DFT is defined as:  
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where ),( yxf is a digital image of size NM  and it must be evaluated for values of 

the discrete variables u  and v in the ranges 1,,2,1,0  Mu  and 1,,2,1,0  Nv  .  

For instance, consider roiFR as the roi-th facial region image of size NM  , 

and for convenience, FR represents any of the three facial regions which have to be 

divided into sub-blocks of size LL  . Then, the local 2-D DFT of the current facial 

region is given by a modification of the Equation (4-1): 
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where Lvu <,0  , and ),(, yxqpFR represents the ),( qp -th sub-block of the facial 

region .FR  Since the minimum sub-block size is 2L , the imaginary component of 

complex Fourier coefficients is equal to zero so that 

  ),(0),(,, vujvuvuf qp ImRe  , (4-3) 

where ),( vuRe  and ),( vuIm  are the real and imaginary components of  vuf qp ,,    

respectively. The ideal size of L has been analyzed in [66], however this analysis is 

focused only on the phase component of the Fourier transform. Therefore, an 

analysis of the ideal sub-block size for real components of LFC is presented in 

Section 4.5.2.  

Thus, the local Fourier coefficient matrix is given by: 
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where lfc has the same dimensions as FR. In summary, lfc matrix represents the 

real components of frequency features obtained locally by each sub-block of size

LL . 

4.2.2 Feature Vector Estimation 

In order to have correlated information with the set of training images and for 

dimensionality reduction, the PCA was applied. To this end, the lfc matrix is 

converted into a column vector, so that 

 ),( vec nmlfc lfcV  , (4-5) 

where lfcV
is the column vector of lfc for NMnm ,<,0  . Next, LFC vectors of the 

training set have to be concatenated to form the matrix Φ : 
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where P is the total number of images used for training and lfc μ  is given by: 
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Next, the eigenvalues of the covariance matrix: 

lfc

T

lfclfc ΦΦΩ  , (4-8) 

are estimated which has up to P eigenvectors associated with non-zero eigenvalues, 

where NMP  . Those eigenvectors are then stored in a descendent order 

according to the corresponding eigenvalues. The sorted eigenvectors of the 
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covariance matrix determine the subspace lfcΨ associated to the current facial 

region, which is defined by: 

 T
H

TT
lfc 110  ,  , ,  VVVΨ  , (4-9) 

where V0 is the eigenvector associated with the largest eigenvalue, V1 is the 

eigenvector associated with the second largest eigenvalue and so on, and H is the 

number of eigenvectors used for the further projections. It is worth noting that this 

process is applied so that 90% of the variance of training Fourier coefficient vectors 

is retained. Finally, the reduced space feature vector of appearance features lfcY  is 

given by: 

 lfclfc

T

lfclfc  μVΨY  , (4-10) 

where lfcΨ is the facial region subspace and lfc μ is the mean vector of all training 

images..  

4.3 Geometric Features 

As mentioned before, the geometric features are also focused on three independent 

regions of the face. However, they define the shape of the specific facial regions 

instead of texture information. The process of facial landmark localization comes 

after the face detection applied by using Viola-Jones algorithm. For this approach, 

51 facial points were used for describing the shapes of eyes-eyebrows, nose and 

lips. To this end, a deformable face tracking model [77] trained by employing a 

cascade of linear regression functions was employed, which was performed by 

detecting the face in the first frame and then applying facial landmark localization 

at each consecutive frame using fitting results of the previous frame as initialization. 

This algorithm has been tested for working under controlled environments as well 

as “in-the-wild” [78]. An example of the facial landmark localization process is 

illustrated in Figure 4.3 which shows the face detected by Viola-Jones, the 

initialization of the deformable face model and the shape represented by the final 

fitting facial points. 

As well as the previous method, the proposal of geometric features is based 

on the Fourier transform. However, the application of DFT in this particular case is 

known as Fourier Descriptor (FD), which is a contour-based shape descriptor 

widely used for content-based image retrieval (CBIR) [79]. Moreover, FD has been 

used a few times for face recognition [80], and as far as the author knows, it has not 

been applied to FER. For that reason, the application Facial Fourier Descriptors 

(FFD) was proposed as a feature extraction method for these kind of features. 
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Figure 4.3. Example of the process of facial landmark localization. 

4.3.1 Facial Fourier Descriptors 

FFD represents a digital boundary of 1D Fourier coefficients estimated by a 

sequence of coordinate pairs transformed by applying the DFT. To this end, each 

facial region shape is considered as K-point coordinate pairs, K being the number 

of facial feature points of the shape. An analysis of the effect of different number 

of K is presented in Section 4.5.2.  

In order to apply the FFD process, suppose that a specific shape of the FR-

th facial region is represented as a sequence of coordinates, so that: 

 )(),()( FRFRFR kykxks 
, (4-11) 

where 1,,2,1,0  Kk  . From one of the four facial regions, complex numbers have 

to be generated from each coordinate pairs, as in  

   cc ykyjxkxks  )()()(
, (4-12) 

where ),( cc yx represents the centroid of the shape, which is the average of the 

coordinate pairs so that 
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Subsequently, the FFD of )(ks is given by 
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for 1,  ,2, 1 , 0  Ku  , where )(uffd represents the Fourier Descriptors of the facial 

region shape, which have to be projected into the current facial region subspace 

similarly to the process of LFC.  
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4.3.2 Feature Vector Estimation 

Same as the appearance feature vector estimation, all FFD vectors of the training 

set have to be concatenated to form the matrix Φ : 

 Ge

P
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110

 , (4-15) 

where P is the total number of images used for training and Ge  is given by: 
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Next, the eigenvalues of the covariance matrix: 

Ge

T

GeGe ΦΦ , (4-17) 

are estimated which has up to P eigenvectors associated with non-zero eigenvalues, 

where 1 KP . These eigenvectors are then stored in a descendent order according 

to the corresponding eigenvalues. The sorted eigenvectors are given by: 

 T
K

TT
Ge VVV 110   . (4-18) 

It is important to mention that rather than the appearance-based method, this process 

is applied so that 99% of the variance of training Fourier coefficient vectors is 

retained. Thus, the reduced space feature vector of appearance features GeY is 

defined by: 

 GeGe
T
GeGe F Y , (4-19) 

where Ap is the facial region subspace and Ap
is the mean vector of all training 

images obtained by using geometric features. 

4.4 Hybrid Feature Vector Estimation 

The combination of geometric and appearance features has been successfully 

applied for FER [3, 4, 11]. Some approaches perform the fusion at classification 

level but better results are obtained when the combination is done at the feature 

extraction phase [11]. From the literature it is possible to see that feature extraction 

methods based on hybrid features are focused on appearance features and improves 

the final feature vector by adding facial landmarks. In this way, the characteristics 

of both type of features are different and the final feature vector could be directly 

affected by the individual problems of one kind of features. Therefore, the fusion 

process of the proposed method is based on the application of PCA for correlating 

the information of both types of features. In addition, the proposed feature 

extraction method employs the same principle based on the DFT. Thus, the 

appearance features are extracted by LFC and the geometric features by FFD. It is 
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worth noting that in order to efficiently correlate the features, PCA process has to 

be applied individually before the fusion.  

The framework of the complete feature extraction process is shown in 

Figure 4.4. The first step is related to the face detection followed by the individual 

process of feature vector estimation of appearance- and geometric-based 

approaches. For appearance features, the region segmentation into three facial 

regions has to be applied. Next, the LFC is applied for each sub-block size of LxL 

pixels, and finally the feature vector is obtained by applying PCA to the whole 

training set. On the other hand, for geometric features the first step is to localize the 

K facial landmarks which define the three facial region shapes. Subsequently, the 

FFD are obtained, and finally the PCA is applied same as the appearance-based 

method. In this way, feature vectors from two different type of features were 

described using the same representation provided by DFT. Thus, the final step is 

the fusion of both individual feature vectors by correlating the training information 

and projected into a common Eigenspace. 

 

 

Figure 4.4. Framework of the fusion process of hybrid Fourier features. 
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After the calculation of individual feature vectors of appearance and 

geometric features, as defined in Equations (4-10) and (4-19), respectively. Thus, 

the process begins with the concatenation of both feature vectors, so that 

  TT
Ap

T
Ge Y,YH  . (4-20) 

Subsequently, the PCA process should be applied with these new hybrid vectors, 

so that: 
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where P is the total number of training images and H  is given by: 
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Next, the eigenvalues of the covariance matrix: 

H

T

HH ΦΦ , (4-23) 

are estimated which has up to P eigenvectors associated with non-zero eigenvalues, 

where P is smaller than the combined length of vectors ApF and GeF . These 

eigenvectors are then stored in a descendent order according to the corresponding 

eigenvalues. Sorted vectors are defined by the matrix H which is given by: 

 T
K
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H VVV 110   . (4-24) 

Similar the geometric-based method, this process is applied so that 99% of the 

variance of training vectors is retained. Thus, the final hybrid feature vector of a 

specific facial region is defined by: 

 H
T
HH H Y , (4-25) 

where HY
 can be seen as a projection of the hybrid vector H into the eigenspace 

H
 of the current facial region, and H refers to the mean hybrid vector of all 

training images. It is worth noting that HY only represents the feature vector of an 

individual facial region. Therefore, a feature vector based on all possible 

combinations of the three specific facial regions is defined as: 

3,2,1),(YY
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where HY
 represents an individual hybrid feature vector based on a specific facial 

region and Y the concatenation of them. Thus, Y can be conformed up to three 

individual facial regions. 

 

 

 



Chapter IV: FER System based on Hybrid Features  | 55 

 

 

4.4.1 Consideration of Static Structure of Faces 

An important problem attainted to FER is the difference in appearance of 

individual’s face, such as texture, color, and shape but must important are the 

differences in the way to express the facial expressions. These differences are 

related to frequency of peak expressions, degree of facial plasticity, individual 

morphology and neutral face state. In general, these characteristics can be refer to 

the static structure of individual faces. 

In order to design a FER system robust to the static structure of individual 

faces, some works assumed that facial expressions can be represented as a linear 

combination of expressive and neutral face images of the same subject [43, 80]. It 

is well known that the structural characteristics and texture information which 

define a specific expression appear when the face images change from neutral to 

expressive, hence the difference image may represent those changes and it can 

reduce the dependency on the subject’s identity as well. Therefore, difference 

images may also reduce the physical differences among faces from different races 

and be focused only in the way to constitute the facial expressions. For that reason, 

the subtraction of both feature vectors was proposed in contrast of using only 

expressive images. Figure 4.5 illustrates the framework of this proposal which has 

to be applied after the PCA process. Thus, projections of expressive and neutral 

eigenspaces have to be calculated individually in order to obtain the definitive 

feature vector by subtracting neutral from expressive individual’s projected vectors.  

 

 
 

Figure 4.5. Framework of the consideration of static structure of the face for feature 

extraction process. 

 

For the proposed method, the treatment of the static structure of the face is 

based on individual facial regions and its combinations as detailed in Equation 

(4-26). Therefore, the definitive feature vector is defined by:  

)(Y)(Y)( lll NeuExp  , (4-27) 

for 1Q,,2,1,0  l , where Q is the total number of expressive images in the dataset, 

ExpY and NeuY represents the final feature vectors of expressive and neutral facial 
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image, and Z the difference vector which is the definitive feature vector used in this 

proposal. It is important to mention that for this process, the information of neutral 

images must be considered each time the PCA process is applied, so that each 

matrixΦ  defined in Equations (4-10), (4-19) and (4-25) must consider neutral 

images in the training set of images. 

As a visual example of the effect of mentioned subtraction, Figure 4.6 

shows two difference images of subjects from different gender and races showing 

the same facial expression. As can be observed, the expressive images in the first 

column present physical changes based on the static structure of each individual’s 

face. These noticeable differences between images of the same expression may 

affect the classification process. On the other hand, the difference images illustrated 

in the third column, present clear similarities based on the facial actions produced 

by the expression rather than physical differences. 

 

  
Figure 4.6. Example of two difference images reconstructed from its feature vectors. (a) 

Expressive images from ExpY ; (b) Neutral images from NeuY ; (c) difference images from  . 

4.5 Experimental Results 

Similar to the proposed system presented in Chapter 3, feature vectors of the six 

basic expressions were classified by multi-class SVMs with RBF kernels [72]. The 

system was evaluated following a widely used protocol in FER, this is leave-one-

subject-out (LOSO) cross-validation. This method consists of dividing the database 

according to the number of subjects, such as each sub-group consists of only images 
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from the same subject. Then, one of these sub-groups has to be picked out for testing 

and the remaining are used for training. This procedure has to be repeated the same 

number of times as the number of subjects in the database. Finally, the recognition 

accuracy is averaged over all trials. In addition to the average recognition rate of 

LOSO, confusion matrices are also presented for evaluation results. The diagonal 

entries of the confusion matrices represent the accuracy of the facial expressions 

correctly classified, whereas the off-diagonal rates the misclassification problems 

4.5.1 Databases 

The database employed for the preliminary test is a subset selected from the 

Extended Cohn-Kanade database (CK+) [37], which includes expressive and 

neutral faces of 90 subjects. 240 peak expressive frames (40 per basic expression) 

and 90 neutral frames (from each subject) form the total number of images of this 

subset. Essentially, this subset was selected taking the same number of samples per 

expression in order to avoid misinterpretations of the results for the preliminary test. 

The fully automated system was evaluated using the complete version of the 

CK+ database [37], the Multimedia Understanding Group Facial Expression 

Database (MUG) [81], and the Taiwanese Facial Expression Image Database 

(TFEID) [82]. Table 4.1 shows the number of subjects and frames per expression 

of each database, where 362 expressive frames comprise the CK+, 304 the MUG 

and 229 the TFEID. It is important to mention that for CK+ data set, the number of 

images from the expressions of fear and sadness was increased by selecting two 

expressive frames from each sequence (not only peak frames). Thus, the original 

number of sequences of these expressions are 25 and 28 respectively.  

 

Table 4.1. Number of frames and subject of each database. 

Database Subjects Ang Disg Fear Happ Sad Surp 

CK+ 116 45 59 50 69 56 83 

MUG 52 52 51 48 52 49 52 

TFEID 40 34 40 40 40 39 36 

4.5.2 Preliminary Results 

The results presented in this section includes the analysis of sub-block sizes for 

LFC, the analysis of the number of fiducial points for FFD, and the classification 

performance of feature extraction vectors obtained without using the proposals 

based on DFT.  
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Thus, feature vectors based on appearance, geometric and hybrid features 

were obtained using only PCA on the segmented regions presented in Sections 4.2 

and 4.3. In addition, it is important to mention that based on the results presented 

in Section 3.6.1 the forehead region is not included in these tests. This is due the 

use of the mentioned facial region rather than improve, it reduces the recognition 

rate of FER systems.  

 

  
Figure 4.7. Examples of sub-block segmentation of non-square regions. 

 

By adopting the analysis bias of [66] we test the LFC method with four 

square sizes (L=2, L=4, L=6 and L=12). In addition, three non-square windows are 

proposed: L=M∙N/2, L=M/3 and L=N/3, which represent the segmentation of the 

facial region into four and three equal size parts (horizontal and vertical 

possibilities). Finally, the whole input facial region (L=M∙N) without local 

segmentation is also tested. Figure 4.7 illustrates an example of sub-block region 

segmentation of the described non-square windows applied to the mouth facial 

region. In summary, the following analysis presents the performance of LFC when 

eight different sizes of L in Equation (4-4) are used for feature vector calculation. 

  
 

Figure 4.8. Results of LFC with different sub-block sizes using Eyes-Eyebrows, Nose, Mouth 

and All facial regions for feature extraction process. 
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 The results of the eight different sub-block sizes are shown in Figure 4.8. 

From this graph we can easily see that the best recognition performance is obtained 

using the combination of all facial regions in the feature extraction process. In 

addition, the average recognition rate increases when the size of the sub-block 

decreases. Thus, the best results are obtained by using L=2 which represents the 

minimum square window of just 2x2 pixels. Finally, we can highlight that the best 

performance of LFC is reached when the sub-block size is equal to 2x2 pixels 

 

  
Figure 4.9. Examples of facial shapes represented by different number of fiducial points (K). 

 

 Choosing the number of landmarks that defines the facial shape is an 

important issue for every FER system based on geometric features. Therefore, a test 

for FFD using eight different number of fiducial points (K=31, 41, 51, 64, 81, 93, 

115 and 123) is presented in this section. The test consists of analyzing FER 

performance based on different shape representations by changing the number of 

landmarks used in Equation (4-11). It is important to mention that for this particular 

test, the landmark estimation was manually annotated for all images of the CK+ 

subset. The main differences between the eight shape representations reside on the 

location and the number of facial landmarks of each facial region. For example, for 

K=31 the number of landmarks representing the nose region is 7 whereas for K=123 

the same region is represented by 29 landmarks. Figure 4.9 shows three examples 

of these different shape representations, i.e. K=31, K=51, and K=123. 

Results of the eight K values for FFD are shown in Figure 4.10. This figure 

presents individual performance of eyes-eyebrows, nose lips and the combination 

of all of them. As expected, we can see that the results improve when the number 

of landmarks increases, thus K=123 presents the best performance for FFD. 

However, the improvement is not significant for some tests. For example, when all 

regions are used for feature extraction (All) the average recognition rates of K=51 

and K=123 are 93.8% and 95.9% respectively, just 2% of improvement. Moreover, 

even when the nose region presents a remarkable improvement of accuracy, this is 

not reflected when all the regions are used for the feature extraction. Therefore, we 
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decided to use the number of landmarks provided by [77] which conveniently is 

K=51.  

  
 

Figure 4.10. Results of FFD with different number of fiducial points using Eyes-Eyebrows, 

Nose, Mouth and All facial regions for feature extraction process. 

 

Finally, the last test performed with the subset of CK+ is a comparison of 

the PCA baseline and the DFT-based proposals which results are shown in Table 

4.2. The results are divided by the type of feature extraction process employed: 

appearance-, geometric- and hybrid-based. From this Table it can be seen that the 

proposal of hybrid features using DFT overcomes the average recognition rate of 

the rest of the tests, including that of PCA using the same hybrid method. However, 

the improvement is 0.83% which represents just 2 images from the database. Thus, 

the main improvement of the system is related to the proposed hybrid procedure. It 

is important to mention that the proposed hybrid method shows better performance 

than the other two feature-based methods from each combination of facial region. 

 

Table 4.2. Average recognition rate of individual facial regions and its combinations 

obtained using the proposal and baseline methods. 

 Appearance Geometric Hybrid 

Region DFT PCA DFT PCA DFT PCA 

Eyes-eyebrows 67.08 66.67 68.33 65.83 71.67 69.17 

Nose 67.08 66.25 72.92 72.08 75.83 75.00 

Mouth 85.42 82.50 90.00 89.58 90.83 90.42 

Eyes-Nose 76.25 75.42 73.75 73.33 78.75 77.50 

Eyes-Mouth 90.42 90.42 92.08 90.83 94.17 93.75 

Nose-Mouth 88.75 86.67 90.83 90.42 93.33 92.92 

All regions 92.08 91.67 92.50 91.67 95.83 95.00 
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 From Table 4.2 it is possible to notice that the highest performance is 

reached by the combination of the three facial regions. Following by the 

combinations of Eyes-Mouth and Nose-Mouth. In addition, the best result provided 

by using only one facial region is obtained by using the mouth region, reaching 

more than 90% of accuracy. DFT and PCA approaches have similar recognition 

rates in almost all of the facial region combinations. However, in order to deeply 

analyze its performance, it is necessary to know the accuracy reached by each facial 

expression. To this end, Figure 4.11 presents the confusion matrices of the 

proposed and baseline methods using hybrid features. Feature vectors used for 

obtaining these results are based on the combination of the three facial regions.  

 

 

 
 

Figure 4.11. Confusion matrices of hybrid features using all regions. (a) DFT proposed 

method. (b) PCA baseline. 

 

From this Figure 4.11 it can be noticed that the misrecognition errors are 

almost identical, except for the extra mistakes of the PCA method, which are related 

to the expressions of surprise and fear misrecognized with fear and happiness 

respectively.   

 

 

 
 

Figure 4.12. Confusion matrices of the proposed method using all regions. (a) Appearance-

based features. (b) Geometric-based features. 

 

 On the other hand, even the performance of the proposed method using 

appearance and geometric features are similar too, these results present different 

Ang Dis Fea Hap Sad Sur Ang Dis Fea Hap Sad Sur

Ang 36 1 0 0 3 0 Ang 36 1 0 0 3 0

Dis 1 38 0 1 0 0 Dis 1 38 0 1 0 0

Fea 0 1 39 0 0 0 Fea 0 1 38 1 0 0

Hap 0 0 1 39 0 0 Hap 0 0 1 39 0 0

Sad 2 0 0 0 38 0 Sad 2 0 0 0 38 0

Sur 0 0 0 0 0 40 Sur 0 0 1 0 0 39

Ang Dis Fea Hap Sad Sur Ang Dis Fea Hap Sad Sur

Ang 34 2 0 0 3 1 Ang 36 0 0 0 4 0

Dis 1 37 0 0 2 0 Dis 3 35 2 0 0 0

Fea 0 1 36 2 1 0 Fea 0 0 38 1 1 0

Hap 0 0 3 37 0 0 Hap 0 0 1 39 0 0

Sad 1 0 0 0 39 0 Sad 3 0 2 0 35 0

Sur 0 1 0 0 1 38 Sur 0 0 0 0 1 39

(a) 

 

(b) 

 

(a) 

 

(b) 
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recognition accuracy by facial expression. Figure 4.12 presents the confusion 

matrices of the appearance- and geometric-based methods which applied the DFT 

approach on the combination of all regions. Thus, geometric-based method presents 

better results for surprise, happiness and fear expressions, meanwhile appearance-

based for sadness, surprise and disgust.  

 

 
 

Figure 4.13. Example of mistakes of the proposed method using different kind of features.  

(a) Appearance-based: face labeled as happiness and misrecognized with fear.  

(b) Geometric-based: face labeled as sadness and misrecognized with fear. 

 

The differences on the easiness for recognizing certain facial expressions 

are straight linked to the features used for the description of the facial image. That 

is why geometric-based method misrecognizes sadness with anger and fear. As well 

as, appearance-based misrecognizes fear with happiness. In order to appreciate 

these differences, Figure 4.13 illustrates some examples of the misclassification 

errors generated by each feature-based methods. 

 

 
 

Figure 4.14. Example of a mistake of the proposed method using hybrid features. Face 

labeled as sadness and misrecognized with anger. 

(a) 

 

(b) 
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From Figure 4.13 it is possible to see that the problem of the appearance-

based may be associated with the mouth region. This is because the mouth presents 

certain similitudes with that of fear, i.e. both are open and showing the teeth. On 

the other hand, the problem of the geometric-based is related with the facial 

landmark localization of the mouth region. The shape detected by the algorithm 

shows an open mouth, meanwhile the truth is a clearly closed and sadly shaped 

mouth. Thus, the misrecognition problem of this particular example is due to the 

automatic detection instead of the feature extraction process. It is important to 

mention that the mistakes presented in Figure 4.13 are exclusive of the mentioned 

feature-based methods, such that the face from (a) is well recognized by using 

geometric features and the opposite situation is presented in (b). In addition, Figure 

4.14 illustrates an example of a recurrent misrecognition problem. That sample is 

misrecognized with anger by the three types of feature-based methods. In this case, 

the landmarks are well detected but the problem seems to be in the subject’s way 

of showing the sadness expression. 

4.5.3 Results with Full Databases 

As mentioned before, the fully automated system was evaluated using three 

standard databases: CK+, MUG and TFEID. Table 4.3 shows the results of each 

databases divided by individual facial regions and its combinations.  

 

Table 4.3. Average recognition rate of individual facial regions and its combinations by each 

database. 

Region CK+ MUG TFEID 

Eyes-eyebrows 78.7 81.1 77.8 

Nose 86.2 80.2 74.7 

Mouth 87.7 85.7 80.4 

Eyes-Nose 89.8 88.5 86.7 

Eyes-Mouth 96.4 94.0 93.0 

Nose-Mouth 94.0 89.9 88.0 

All regions 97.9 95.9 94.9 

 

From Table 4.3, we can see that the best performance among all data sets 

is reached by using all regions for feature extraction (All region). Moreover, the 

best results using two and one facial regions are based on Eyes-Eyebrows-Mouth 

and Mouth respectively, for all data sets. Indeed, the performance of using only 

two facial regions is highly competitive, only approximately 1% of accuracy is 

decreased compared with “All regions”. On the other hand, the results with CK+ 
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presents a wider gap of the average recognition rate (10%) between Mouth and 

Eyes-Eyebrows regions. Furthermore, the TFEID test presents a significant 

decrease of performance when less than two regions are used for feature 

extraction. In other words, it is more difficult to recognize the six basic 

expressions using only one facial region with TFEID data set. In summary, the 

best performance reached by our proposal is based on all regions for feature 

extraction and the mouth seems to be the facial region which can better represent 

the six basic expressions. 

A comparison with other approaches evaluated with same data sets is 

shown in this section. CK+ is one of the most used data sets for FER, therefore 

Table 4.4 presents just some of many approaches which have employed it. From 

this table, we can see that our proposal overcomes all previous approaches. 

However, works [43, 83, 84] also present an average recognition rate higher than 

97%. It is worth noting that two of these approaches used a combination of 

appearances and geometric features. In general, it can be noticed that the 

approaches based on both kinds of features reach higher performance. In 

addition, our proposal also overcomes results obtained by approaches based on 

Deep Neural Networks [61, 83], which provide semantic features of expressive 

faces. 

Table 4.4 Comparison with different approaches with CK+. 

Ref. Year Method Classifier Data Features Protocol Accuracy 

[80] ‘14 
FPDRC + 

CARC + SDEP 
NN Image Both - 88.70 

[85] ‘16 Weighted Feats. SVM Image Geo. 2-fold 93.00 

[60] ‘09 Boosted LBP SVM Image App. 10-fold 95.10 

[74] ‘11 PCA LDCRF Sequence Geo. 4-fold 95.79 

[86] ‘15 DVNP RF Sequence Geo. 10-fold 96.38 

[61] ‘17 CNN LR Image App. 8-fold 96.76 

[43] ‘14 PCA Dictionary SRC Image App. LOSO 97.19 

[84] ‘16 LBP + NCM SVM Image Both 5-fold 97.25 

[83] ‘15 CNN + DNN Joint F-N Sequence Both 10-fold 97.25 

Proposed LFC + FFD SVM Image Both LOSO 97.90 

 

Tables 4.5 – 4.6 present the comparison of performance of different 

approaches with MUG and TFEID respectively. In both cases, our proposal obtains 

the highest recognition accuracy. This occurs, even when some approaches don’t 

use the complete data set of MUG, like [87], and the process is based on sequence 

of frames, as in [88]. It is worth noting that the TFEID data set presents a bigger 

challenge for FER because instead of CK+ and MUG, the facial expressions are 
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shown only by Taiwanese people. Therefore, the face structure and some facial 

expressions may be affected by cultural differences. 

 

Table 4.5. Comparison with different approaches with MUG. 

Ref. Year Method Classifier Data Features Protocol Accuracy 

[58] ‘15 Gabor + PCA NN Image App. 2-fold 89.29 

[89] ‘16 Landmark Dist. SVM Image Geo. 2-fold 90.50 

[87] ‘13 LFDA kNN Image App. LOSO 95.24 

[88] ‘17 Triangle Land. SVM Sequence Geo. 10-fold 95.50 

Proposed LFC + FFD SVM Image Both LOSO 95.85 

 

Table 4.6. Comparison with different approaches with TFEID. 

Ref. Year Method Classifier Data Features Protocol Accuracy 

[90] ‘17 Haar Wavelet LR Image App. 10-fold 89.58 

[91] ‘14 LBP + MPC SVM Image App. 10-fold 92.54 

[92] ‘17 Pyramid Feat. SVM Image App. LOSO 93.38 

[93] ‘15 DSNGE kNN Image App. LOSO 93.89 

Proposed LFC + FFD SVM Image Both LOSO 94.94 

 

The last comparison with different approaches is focused on the capability 

to handle the partial occlusion problem. Methods [42, 85, 94, 95] proposed different 

approaches for solving this problem. Our potential solution consists of excluding 

the occluded facial region in the feature extraction process. For example, for eyes-

eyebrows occlusion, our system only uses the regions of mouth and nose for feature 

vector estimation. Tables 4.7 compares the results of methods under the occlusion 

of a specific facial region. In this situation, our proposal presents competitive results 

with other approaches. However, those are based on CK data set which is a previous 

version of CK+ known to be limited in size and lacked of spontaneous and non-

exaggerated expression. On the other hand, Table 4.8 presents an opposite 

situation, i.e. when only one part of the face is available because of occlusion 

problems. This extreme case is approached for only a few methods, such as [94] 

and [85]. From this table we can see that our proposal presents higher recognition 

rates for each extreme situation. In addition, it can be noticed that the recognition 

performance is higher when the mouth is available. Therefore, the most difficult 

scenario related to partial occlusion is when the mouth region is occluded. In this 

situation, our system can reach 89.8% of accuracy if eyes-eyebrows and nose 

regions are available. 
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Table 4.7. Comparison with different approaches under partial occlusion of specific facial 

regions. 

    Occluded Part (%) 

Ref. Year Data Set Method Classifier Eyes Mouth NO 

[94] ‘14 CK Eigenphases SVM 87.7 75.3 92.0 

[95] ‘12 CK Random Gabor Filters SVM 90.5 82.9 91.5 

[42] ‘14 CK Radial Gabor Filters LDA+kNN 95.1 90.8 95.3 

Proposed CK+ LFC + FFD SVM 94.0 89.8 97.9 

 

Table 4.8. Comparison with different approaches which present results with only one facial 

region. 

    One Region Test (%) 

Ref. Year Data Set Method Features Eyes Nose Mouth 

[85] ‘16 CK+ Weighted Feats. Geo. 41.9 25.5 60.4 

[94] ‘14 CK Eigenphases App. 53.3 61.0 79.3 

Proposed CK+ LFC + FFD Both 78.7 86.2 87.7 

4.6 Conclusion 

This chapter presented a fully automated FER system based on the combination of 

two novel feature extraction methods: LFC and FFD, which are focused on 

appearance and geometric features obtained from individual facial regions of eyes-

eyebrows, nose and mouth. Therefore, our proposal is robust to common FER 

problems such as illumination changes, image rotation and dimensionality 

reduction. In addition, different than the reviewed state-of-the-art approaches, our 

proposal could work well even when fiducial points are not accurately detected. 

This is possible because the appearance feature extraction does not depend on the 

extraction of geometric features. Thus, this proposal just depends on face and eyes 

detection, carried out by the robust algorithm of Viola-Jones, which achieved 100% 

of recognition with all data sets tested. Evaluation results also show that the 

proposed system can handle problems of partial occlusion without heavily 

decreasing its accuracy performance. 

The best results obtained in this chapter were provided by the combination 

of all facial regions (eyes-eyebrows, nose and mouth), trend that appears when 

testing the three standard databases. In general, results obtained with the proposed 

algorithm overcome most of the previous works. In addition, compared with 

recently famous methods such as CNN and DNN, our system shows better 

performance with CK+, MUG and TFEID data sets, reaching 98%, 96% and 95% 

respectively. 
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In addition, the use of individual facial regions and its combinations enables 

to attack the problem of partial occlusion. Finally, analyzing the performance of the 

feature-based methods presented in this chapter, it can be noted that each kind of 

features are capable for recognizing specific facial expressions that are difficult for 

being done for its counterpart. Therefore, as a general conclusion, the fusion of both 

features is a valuable alternative for improving the recognition performance of FER 

systems. 
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CHAPTER V 

5. ANALYSIS OF WSN AND ASN 

FACIAL EXPRESSIONS 

This chapter presents a methodical analysis of Western-Caucasian and East-Asian 

prototypic expressions based on specific facial regions. This analysis is composed 

by facial expression recognition and visual analysis of expressive images. In 

addition, a cross-cultural human study applied to 40 subjects is presented as a 

baseline. Finally, two possible solutions for working with multicultural 

environments are also proposed in this chapter. 
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5.1 Introduction 

As mentioned in Chapter 1, Charles Darwin stated that facial expressions are 

innate and invariant for human beings and some mammals [1]. With this basis, 

many psychologists have agreed on the fact that facial expressions are straight 

linked with the six basic internal emotional states. This proposal defines the 

prototypic basic expressions of anger, disgust, fear, happiness, sadness and surprise 

which are recognized across all different races and cultures [2]. However, some 

cross-cultural studies have questioned and in some degree refuted this assumed 

cultural universality of facial expressions [8-10]. On the other hand, from the 

viewpoint of the human-computer interaction (HCI), the cultural universality of 

emotions is taken for granted [4, 11]. Therefore, most of the automatic facial 

expression recognition systems are based on the assumption that facial expressions 

are the same for all human beings. Besides some recent approaches reach a highly 

average recognition rate, none of them are considering the cultural specificity that 

some subjects could present on their facial expressions. Thus, in order to attain a 

complex HCI, FER systems have to take into account the differences which may 

appear between facial expressions from different races and cultures. 

This chapter presents a methodical analysis of cultural specificity of facial 

expression recognition based on Western-Caucasian and East-Asian expressive 

faces using different feature extraction methods. This analysis is focused on in- and 

out-group performance as well as on specific differences presented for certain facial 

regions on the six basic expressions of each racial group. The proposed analysis is 

composed by facial expression recognition and visual analysis of facial expression 

images selected from four standard databases which are divided in three datasets of 

different cultural and ethnic regions: Western-Caucasian (WSN), East-Asian (ASN) 

and multicultural (MUL). As a baseline, we present a human study applied to 40 

subjects composed by 20 Westerns and 20 East-Asians. The same datasets 

employed for the FER algorithms are used as stimulus in the human study. 

The FER analysis is conducted by extracting appearance, geometric and 

hybrid features from expressive faces based on the regions of eyes-eyebrows, 

mouth, nose, forehead and face outline. To this end, the algorithms of feature 

extraction proposed in Chapters 3 and 4 are used in this analysis. It is important to 

mention that, in order to precisely analyze facial expression differences between 

two racial groups, the total number of feature points per facial region is larger than 

that presented in Section 4.3, and those were manually obtained from each facial 

image. Finally, the visual analysis is based on two independent representations: 
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reconstructed images using PCA as in the Eigenfaces algorithm for appearance 

features; and caricature faces obtained from individual shapes of facial regions for 

geometric features. In this way, the facial differences of the six basic expressions 

that may appear among both cultural groups can be identified. 

5.2 Datasets 

FER analysis was evaluated using a total of 1,167 facial images. Specifically, 905 

expressive faces from 262 subjects, which were selected from five standard 

datasets. This whole set, from now called multicultural dataset (MUL), was divided 

into two racial groups: Western-Caucasian dataset (WSN) and East-Asian (ASN) 

dataset. 

WSN dataset is comprised of 552 expressive images from 165 different 

subjects selected from the extended Cohn-Kanade dataset (CK+) [37], which in turn 

is composed of 327 facial image sequences from 123 subjects performing the 6 

basic emotions plus the neutral state; and the Multimedia Understanding Group 

Facial Expression Database (MUG) [81], which contains 1,462 sequence of frames 

from 52 subjects. It is worth noting that only Western-Caucasian subjects were 

selected from CK+, so that WSN includes 113 Euro-American subjects from CK+ 

and 52 Caucasians from MUG. Figure 5.1 shows an example of the six basic 

expressions of WSN dataset, from left to right corresponds to the expressions of 

anger, disgust, fear, happiness, sadness and surprise. 

 

 
 

Figure 5.1. Example of images included in WSN dataset.  

 

ASN dataset contains 353 expressive images displayed by 97 subjects 

selected from three different datasets: Japanese Female Facial Expression (JAFFE) 

dataset [36], which comprises 213 images of 10 Japanese female models; Japanese 

and Caucasian Facial Expression of Emotion (JACFEE) dataset [96], which 

contains 56 images from different individuals including 28 Japanese and 28 

Caucasian subjects; and Taiwanese Facial Expression Image Database (TFEID) 

[82], which includes 336 images from 40 Taiwanese models. In this way, ASN 

dataset is mainly formed with subjects from Japan and Taiwan. Figure 5.2 

illustrates some faces of the six basic expressions included in this dataset, from left 
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to right corresponds to the expressions of anger, disgust, fear, happiness, sadness 

and surprise. Not shown are the images selected from JACFFE (Japanese people 

only) which cannot be reprinted due to copyright restrictions. 

 

 
 

Figure 5.2. Example of images included in ASN dataset.  

 

MUL dataset is a combination of WSN and ASN. Thus the number of 

images per facial expression is not equitable. Table 5.1 presents detailed 

information about the number of images from each cultural dataset, where we can 

see that the minimum number of images per expression is 117, more than common 

multicultural works from the literature. 

 

Table 5.1. Number of frames and subject of each cultural dataset. 

Database Subjects Ang Disg Fear Happ Sad Surp 

WSN 165 84 93 68 116 64 127 

ASN 97 57 65 57 69 53 52 

MUL 262 141 158 125 185 117 179 

 

Finally, the visual analysis and the human study were evaluated using sub-

sets of the WSN and ASN datasets. Therefore, the number of images per facial 

expression is equitable among each cultural dataset, being 40 images per expression 

so that 240 expressive images correspond to WSN and ASN sub-sets respectively. 

It is worth noting that neutral images are not required for these analyses, thus a total 

of 480 expressive images were employed. 

5.3 FER Analysis 

The FER analysis is based on a conventional FER framework tested with different 

feature extraction methods and classified applying some particular cross-cultural 

modalities which enables a deep analysis of the cultural-specific differences on 

recognizing the six basic expressions. Basically, three different feature extraction 

methods were used in this analysis (next section describes them). Besides, 

classification stage was independently performed by SVM based on the cross-
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cultural recognition modalities of: in-group, out-group, multicultural and out-group 

multicultural.  

 In-group classification represents the FER performance when the same 

cultural-specific dataset is used for training and testing. The counterpart situation is 

presented by the out-group classification, because this modality performs the 

training phase whit a different dataset used for testing. Multicultural classification 

occur when the training and testing is conducted using a dataset comprised with a 

variety of cultures. Finally, out-group multicultural classification take place when 

the system is trained with a multicultural dataset but it is tested using a cultural-

specific dataset.  

Three feature extraction methods built on DFT are presented in this analysis: 

appearance-, geometric- and hybrid-based. These methods are based on facial 

region segmentation and facial landmark localization same as described in 

Chapters 4. It is worth noting that the hybrid-based method combines individual 

feature vectors from appearance and geometric features, and each facial part is 

fused with the same facial region of its counterpart kind of features. Finally, all of 

the feature extraction methods includes the consideration of the static structure of 

the face as reviewed in Section 4.4.1.  

 

 

Figure 5.3. Average projected image of happiness from ASN dataset represented by using 

appearance and geometric features. 

5.4 Visual Analysis 

In order to make a robust analysis of facial expressions, visual changes 

presented in the face must be taken into account. Therefore, two methods for 

visually analyzing the differences which may appear among both racial groups are 

presented in this section. Those methods are based on the type of features employed 
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for the analysis: appearance- and geometric-based. Figure 5.3 shows an example 

of the visual representation of the average happy expression from both feature-

based approaches using the ASN dataset.  

5.4.1 Appearance-Based 

The visual representation of appearance features is based on the well-known 

algorithm of Eigenfaces. The ability of this method for reconstructing images from 

projected vectors of a previously defined Eigenspace has been successfully applied 

for analyzing facial expressions [97]. Therefore, using reconstructed images from 

feature vectors gives the opportunity to analyze the differences and similarities 

which may appear among the basic expressions of different cultures in detail. To 

this end, average projected vectors by each expression have to be obtained, which 

can be calculated from a cultural-specific or multicultural dataset. These average 

vectors are given by: 
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for 5,,2,1,0 r which represents the number of basic expressions and P(r) the 

number of images per expression, so that rPQ . As mentioned before, in order to 

have a better analysis of facial expressions the number of frames per expression 

should be equal, then 6Q)( rP . Finally, reconstructed images are the reshaped 

matrix of reconstructed average projected vectors given by: 

  )(W )(R rr
, (5-2) 

for 5,,2,1,0 r , where W is the subspace where the Z projections were made, and 

µ is the mean feature vector of all training images.  

Figure 5.4 and Figure 5.5 shows the visual representation of the average 

expressions of both datasets obtained from appearance. The expressions 

represented by each row from left to right are: anger, disgust, fear, happiness, 

sadness and surprise. It is easy to notice the same distinctive patterns to differentiate 

some specific expressions. For instance, disgust expression look different. 

Disgusted faces from WSN fulfill the necessary AUs to be classified as disgust 

(AU9, AU15, AU16). However, the same average face from ASN presents an extra 

AU22 and AU23 which are known to appear in anger expression.  
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Figure 5.4. Visual representation of average expressions from WSN datasets using 

appearance features.  

 

 

Figure 5.5. Visual representation of average expressions from ASN datasets using 

appearance features.  

5.4.2 Geometric-Based 

In order to precisely analyze the facial expression among both cultures, extremely 

attention has to be put on the landmark localization. Due to the subtle differences 

among specific facial regions, this process is crucial for the accuracy of feature 

extraction settling the analysis efficiency. Therefore, facial landmarks for this 

visual analysis were manually obtained. Thus, a total of 163 feature points for 

defining the whole facial shape was obtained by using the FaceFit software [98], 

which is a GUI-based system based on a manual operation to pick up each feature 

point from the face. Figure 5.6 shows an example of the wire frame obtained by 

FaceFit and the 163 feature points extracted to form the whole facial shape. 

 

 

Figure 5.6. Example of the facial landmark localization using FaceFit software.  

 

The raw data of geometric-based methods are easier to visualize than those 

of appearance-based. However, their projections made by PCA are more difficult 

to be visually analyzed. Therefore, in order to accurately analyze the geometric 

features, the DrawFace tool [99] was employed. This tool draws caricatures based 
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on the Eigenfaces process, hence this tool requires to input individual eigenspaces 

of facial regions and the mean facial shape as initialization setup.  

Figure 5.7 presents the general framework of DrawFace tool. Similar to the 

PCA process, the mean face of the complete dataset has to be subtracted from the 

input, but the eigenspaces are calculated individually for each facial region and the 

placement of them. Thus, the final caricature is drawn by integrating the projections 

of the input features into its respective eigenspace. In this way, these caricatures 

can be considered as a result of a projected feature vector into a subspace made by 

a set of specific facial shapes.  

 

 

Figure 5.7. Framework of DrawFace tool [99] for developing facial caricatures. 

 

Figure 5.8 and Figure 5.9 shows the visual representation of the average 

expressions of both datasets obtained from geometric features. The expressions 

represented by each row from left to right are: anger, disgust, fear, happiness, 

sadness and surprise. It is easy to notice some distinctive patterns to differentiate 

specific expressions. For instance, disgust and fear expressions look different. The 

differences of disgusted faces present the same patterns found in appearance-based 

visualization described in the previous section. However, the average face of fear 

from WSN again covers the EMFACS for fear expression (AU1, AUN2, AU4, 

AU5, AU7, AU20, AU26). However, that of ASN lacks AU4 and AU20, given the 

impression of surprised in the eyes region and the mouth is not well defined. 
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Figure 5.8. Visual representation of average expressions from WSN datasets using geometric 

features.  

 

 

Figure 5.9. Visual representation of average expressions from ASN datasets using geometric 

features.  

5.5 Human Study 

As a baseline for the experimental results, a cross-cultural human study based on a 

survey applied to subjects from a different race and culture is presented. Forced-

choice facial expression classification from each participant was collected by using 

the same datasets employed for the proposed experiments as stimuli. Relevant 

information about this study is presented as follows. 

 Participants. The experiment was applied to 40 students of the University 

of Electro-Communications in Tokyo Japan. Participants were divided into two 

groups: 20 East-Asians that include Japanese, Taiwanese and Chinese students 

(50% males); and 20 Western-Caucasians that include German, Swedish, American 

and Mexican students (50% males). Their ages ranged from 20 to 26 years old 

(mean 22). It is important to mention that the Western-Caucasians are currently 

exchange students and had newly arrived in an Asian country for the first time with 

a residence time no longer than 3 months on average 

 Stimuli. The expressive faces of the WSN and ASN datasets presented in 

Section 5.2 were used as stimuli for all of the participants. Thus, the complete 

stimuli set comprises 480 images displaying expressive faces of Western-Caucasian 

and East-Asian people. 

 Procedure. A GUI-based script for collecting and presenting the survey was 

developed in MATLAB. After a brief explanation of the experiment by the 

software, the stimuli were automatically presented one by one. The instructions of 

the experiment were presented in Japanese and Chinese for East-Asian participants 

and in English for Westerns. Each stimulus appeared in the central visual field and 
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remained visible just for 3 seconds, followed by a 6-way forced choice decision 

question related to the 6 basic expressions. The question presented was “What is 

the expression of the face?” and the participant has to choose one answer before 

clicking the button “Next” for the following stimulus. We randomized trials within 

each participant and all of them have to recognize the 240 stimuli of each dataset, 

which have been presented by groups of 30 images with breaks of 30 seconds 

between them. Figure 5.10 presents two screenshots of the application software 

used for this study.  

 

 
 

Figure 5.10. Screenshots of the software application used for the human study. 

5.6 Solutions for Multicultural FER 

Even after finding cultural differences on recognizing and expressing some basic 

facial expressions, there are still some applications that have to work under 

multicultural environments. Therefore, taking into account the differences 

previously found, in this section, two possible solutions for working with this 

special situation are proposed. Specifically, trying to recognize the six basic facial 

expressions of emotion when Western-Caucasian and East-Asian subjects are 

involved in the process. 

5.6.1 Early Ethnicity Detection 

The first proposal builds its process on a logical solution, an early ethnicity 

detection. For this solution, the categorization of Western-Caucasian (WSN) and 

East-Asian (ASN) subjects is proposed as preprocessing stage. The general 
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framework of FER employing this proposal is shown in Figure 5.11, highlighted 

you can see the steps which differ from traditional FER frameworks. In this process, 

culture-specific models obtained from WSN and ASN datasets are required for 

predicting the expression of a new face image, which has to be previously classified 

into one of the two possible racial groups, thus the decision is made based on the 

detected ethnicity of the input subject.  

 

 

Figure 5.11. FER framework using an early ethnicity detection. 

 

The ethnicity detection process is based on three different features obtained 

from the detected face of the input image, which are defined as color, texture and 

shape features. LFC and FFD processes are employed for extracting the texture and 

shape features, methods detailed in Section 4.2.1 and 4.3.1 respectively. On the 

other hand, the color feature extraction is based on a proposed modification of the 

Dominant Color Correlogram Descriptor (DCCD), method which is used for 

content-based image retrieval [100]. After obtaining the different features, these are 

combined and classified by PCA and SVM respectively. The complete process of 

this proposal is shown in Figure 5.12.  

 

 

Figure 5.12. Ethnicity detection process. 
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For the color feature extraction process, the facial region should be first 

converted from RGB to HSV color space, subsequently the HSV is quantified so 

that only 72 different skin colors are considered. Finally, the histogram calculated 

from the skin colors of the face image is taken as color feature vector.  

The HSV quantization is based on the fact that all possible skin tones of the 

different human races are part of a sub-set color from elements of HSV [101]. In 

addition, many studies have found that the skin tone related to the hue component 

of HSV falls into to sub-group of H that 300° ≤ H ≤ 60° [102-104]. Therefore, non-

interval quantization of the HSV color space is employed, so that H components 

are divided into eight shares, taking into account only the sub-group which includes 

the skin colors. Thus, 
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where h is the value of hue component of certain pixel of the face image, and H is 

the new quantized value. Subsequently, the S and V components are divided into 

three shares respectively, as given by 
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where s and v represent values of saturation and “value” (from HSV hexcone 

model) respectively, whereas S and V their quantized values. The final step of the 

quantization is to obtain the combination of the three individual values, which is 

defined by: 

VSHC   3 9 ,   (5-5) 

where C represents one of the 72 possible colors of human skin. 

Finally, from the new matrix obtained by all pixels evaluated with Equation 

(5-5), the histogram which calculates the most recurrent colors from the face image 

is used as color feature vector. 
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5.6.2 Consideration of Culture-specific Expressions 

Based on the two specific facial expressions that have found to be different between 

Western-Caucasians and East-Asians (see Section 5.4), the second proposal is 

focused on the different ways to training the system.  Thus, the training step takes 

special attention on the expressions of disgust and fear. It is worth noting that these 

expressions not only show visual differences but also present difficulties for being 

accurately recognized by observers from out-cultural-groups (in-group advantage, 

Section 2.1). Figure 5.13 shows the proposed FER framework, where WSN and 

ASN datasets are needed in order to apply special training methods for considering 

the cultural-specific differences of disgust and fear. In this way, the multicultural 

models obtained after the training dismiss the need of information about the 

ethnicity of the input face. 

 

 

Figure 5.13. FER framework based on multicultural training for taking into account the 

differences on specific facial expressions. 

 

 

 
 

Figure 5.14. Two training methods based on cultural-specific groups (WSN and ASN). 

 

For instance, consider the two possible training methods for working with 

individual cultural groups such as WSN and ASN (Figure 5.14). In each case, the 
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models related to the six basic facial expressions are based only on expressive 

images from their respective cultural groups. Thus, two different training rounds 

have to be done for classifying culture-specific expressions of WSN and ASN. In 

other words, with this training method, only culture-specific models are obtained. 

Therefore, information about the ethnicity of the input subject is required in order 

to have an accurately multicultural recognition. 

An alternative to have just one training round is proposed in this section. 

Consider the three different diagrams illustrated in Figure 5.15, each of them 

presents a possible solution that covers the main cultural differences of disgust and 

fear expressions. For instance, test A obtains multicultural models for anger, 

happiness, sadness and surprise (merging expressive faces from WSN and ASN), 

whereas specific-cultural sub-models are trained for disgust and fear. In other 

words, the multicultural models of each of these two facial expressions are 

calculated by dividing expressive faces form WSN and ASN. It is worth noting that 

this division is made only in the training. Thus, the classification stage just 

considers six multicultural models related to each basic facial expression of 

emotion. On the other hand, test B and C follow the same protocol but employing 

only one specific-cultural sub-model, either related to disgust or fear. Results from 

each of these three tests are presented in the next section. 

 

 
 

Figure 5.15. Three possible training options for working with multicultural databases. 

5.7 Experimental Results 

The six basic expressions of all feature extraction methods and cross-

cultural classification modalities were classified by multi-class SVMs with RBF 

kernels [72], and evaluated by leave one subject out cross-validation. Average 

recognition rates and confusion matrices are presented to show the accuracy of each 

trial. It is important to mention that all facial images were pre-processed in order to 
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have the same inter-ocular distance and eye position as well as cropped with 

280x280 pixels. For the appearance-based approach, facial regions of forehead, 

eyes-eyebrows, mouth and nose their sizes were normalized at 100x70, 200x80, 

140x80 and 175x50 pixels respectively. In addition, the results obtained by the 

human study are also presented in this section. 

 

Table 5.2. Average recognition rate of individual facial regions and its combinations 

obtained by each feature extraction method using sub-sets of WSN and ASN. 

Feature-based: Appearance Geometric Hybrid 

Dataset: WSN ASN WSN ASN WSN ASN 

Eyes-eyebrows 67.1 66.7 65.8 71.7 75.0 71.3 

Nose 67.1 50.8 78.3 58.8 81.7 63.8 

Mouth 85.4 72.5 91.3 81.3 95.4 84.2 

Eyes-Nose 76.3 70.0 76.3 79.2 81.7 80.4 

Eyes-Mouth 90.4 89.6 95.0 92.9 98.3 94.6 

Nose-Mouth 88.8 78.8 94.6 87.1 94.6 86.3 

All regions 92.1 90.8 97.9 94.2 98.8 95.0 

 

In general, in-group analysis represents the performance of FER when the people 

from the same race attempt to recognize facial expressions from their own racial 

group. In terms of FER systems, this happens when the training and testing sets 

correspond to the same dataset. Table 5.2 shows the results of different facial 

regions using the three feature extraction methods divided by the dataset employed 

for the evaluation. FrOt refers to the forehead region, the outline shape or the fusion 

of both as it may apply. From this Table it can be noticed that the best results are 

provided by the proposed hybrid method. In addition, the WSN test reaches higher 

accuracy than the ASN for all feature extraction methods and facial regions. 

Since the best performance was achieved by employing hybrid features, the 

rest of the analysis is made using only this feature extraction method. Thus, Table 

5.3 shows all results obtained by this proposed method and the human study. The 

results of in-group, out-group, multicultural and out-group multicultural are 

presented from left to right in this order. 

From Table 5.3 a trend of the results can be observed. This trend follows 

the order from top to bottom the accuracy obtained by the tests of in-group, out-

multicultural, multicultural and out-group. Thus, the best result is reached by the 

in-group test of WSN (WSNvsWSN), followed by the out-multicultural test of the 

same dataset (MULvsWSN) and the third place is for the multicultural test 

(MULvsMUL). This trend is also followed by the human study, showing that the 

WSN dataset is easier for classifying the prototypic expressions.  
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Table 5.3. Average recognition rate of individual facial regions and its combinations 

obtained using the proposal and baseline methods. 

Training Dataset: WSN ASN ASN WSN MUL MUL MUL 

Testing Dataset: WSN ASN WSN ASN MUL WSN ASN 

Eyes-eyebrows 75.0 71.3 54.2 50.4 68.5 68.3 68.8 

Nose 81.7 63.8 46.7 60.8 72.1 80.0 64.2 

Mouth 95.4 84.2 68.3 78.8 89.4 94.6 84.2 

Eyes-Nose 81.7 80.4 54.6 55.8 80.2 82.9 77.5 

Eyes-Mouth 98.3 94.6 72.5 82.5 94.4 95.8 92.9 

Nose-Mouth 94.6 86.3 68.3 81.7 92.1 94.6 89.6 

All regions 98.8 95.0 72.1 85.0 95.0 95.4 94.6 

Human Study 76.8 71.7 66.7 67.2 - - - 

 

The analysis per facial region combinations shows that the combination of 

E-N-M performs better in most of the training combinations. On the other hand, the 

best single region for FER is the mouth, followed by the nose. However, the eyes 

region present interesting results, especially for the out-group and out-multicultural 

analysis, where this region seems to define the expressions of ASN better. In order 

to analyze the performance per expression of those results,  

Table 5.4 and Table 5.5 show the accuracy of the mouth region and E-N-

M combination. In these tables, we can notice that the mentioned trend is not 

followed by all the expressions. For example, the out-multicultural test of the mouth 

shows better accuracy when anger is tested using ASN dataset rather than WSN. In 

summary, it is confirmed that the clearer difference between cultures is presented 

in the out-group test. 

 

Table 5.4. Classification accuracy per expression using the region of Mouth. 

Training Dataset: WSN ASN ASN WSN MUL MUL MUL 

Testing Dataset: WSN ASN WSN ASN MUL WSN ASN 

Anger 95.0 90.0 85.0 72.5 92.5 95.0 90.0 

Disgust 90.0 72.5 32.5 60.0 81.3 90.0 72.5 

Fear 95.0 72.5 80.0 72.5 87.5 97.5 77.5 

Happiness 95.0 85.0 70.0 92.5 88.8 95.0 82.5 

Sadness 100.0 87.5 60.0 85.0 88.8 92.5 85.0 

Surprise 97.5 97.5 82.5 90.0 97.5 97.5 97.5 

Average 95.4 84.2 68.3 78.8 89.4 94.6 84.2 
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Table 5.5. Classification accuracy per expression using the “all” combination. 

Training Dataset: WSN ASN ASN WSN MUL MUL MUL 

Testing Dataset: WSN ASN WSN ASN MUL WSN ASN 

Anger 100.0 92.5 82.5 97.5 93.8 95.0 92.5 

Disgust 97.5 92.5 40.0 87.5 92.5 92.5 92.5 

Fear 95.0 92.5 72.5 50.0 93.8 90.0 97.5 

Happiness 100.0 97.5 60.0 100.0 92.5 100.0 85.0 

Sadness 100.0 97.5 90.0 80.0 97.5 95.0 100.0 

Surprise 100.0 97.5 87.5 95.0 100.0 100.0 100.0 

Average 98.8 95.0 72.1 85.0 95.0 95.4 94.6 

 

Another way to analyze the distinctive properties of average projected 

vectors is simply by plotting them. In this way, it can be visualized the behavior of 

each feature vector and the capability of discrimination of the six basic expressions 

based on them. Figure 5.16 shows the six average expression vectors of each 

dataset. It is easy to see that the six vectors of WSN present better distinctiveness 

among themselves rather than those of ASN, which have problems especially for 

the expressions of fear, disgust and anger. 

 

 

 
 

Figure 5.16. Average projected vectors of six expressions, (a) from ASN and (b) from WSN.  

 

Thanks to the visual analysis, the misrecognition problems that appear 

among the six basic expressions can be deeply studied. Figure 5.17 and Figure 

5.18 show the confusion matrices for WSN and ASN of Mouth and Eyes region, 

respectively. Note that these matrices present a gray scale color map for simplifying 

the visualization, showing higher results in black and lower in white. The confusion 

matrices represent the true expression on the vertical axis and the decision made by 

(a) 

 

(b) 
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the classifier is presented on the horizontal axis so that each row of the matrix 

indicates the level of confusion of each expression with its counterparts.  

 

 

 
 

Figure 5.17. Confusion matrices of mouth region for out-group test. (a) ASNvsWSN (b) 

WSNvsASN. 

 

 

 
 

Figure 5.18. Confusion matrices of eyes region for out-group test. (a) ASNvsWSN (b) 

WSNvsASN. 

 

 

 
 

Figure 5.19. Examples of misclassification. (a) sample from ASN dataset showing anger 

misrecognized with sadness. (b) sample from WSN dataset showing fear misrecognized with 

disgust. 

 

(a) 

 

(b) 

 

(a) 

 

(b) 

 

(a) 

 

(b) 
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From these confusion matrices, it can be noticed that the misclassification 

problems mainly reside in the expressions of fear and disgust for both facial regions. 

Some examples of the faces misrecognized even for the human study are presented 

in Figure 5.19, which shows the original expressive facial image, its feature vector 

extracted using E-M-N combination and the visual representation using appearance 

features (difference image). 

As mentioned in Section 5.6, there are some applications that require the 

recognition of the six basic expressions of emotion based on multicultural datasets. 

This problem is usually solved by training the system with multicultural datasets, 

however as seen in Table 5.5, this solution decreases the recognition accuracy, 

especially for WSN subjects. Therefore, two possible solutions to this problem are 

presented in this work, the first one includes a preprocessing stage based on 

ethnicity detection (Section 5.6.1), and the second is focused on the two expressions 

that present more visual differences among cultures (Section 5.6.2). The 

comparison between these proposals and the traditional solution that just employs 

multicultural datasets are presented in Table 5.6. In this table “Multi.” refers to the 

test based on the traditional solution; “Ethnic” to the proposal based on an extra 

preprocessing stage; “Test A” to the test that calculates specific-cultural sub-models 

of both expressions, disgust and fear; whereas “Test B” and “Test C” to the tests 

that only calculates it for disgust and fear respectively. 

From Table 5.6 we can see that the best solution for the multicultural 

scenario is the one that includes the early ethnic detection (97%). Indeed, just tests 

Ethnic and B overcome the average recognition rate of the traditional solution. In 

this way, it is possible to confirm that multicultural problems are related to the 

cultural differences of a few facial expressions, specifically disgust. However, the 

best solution still is based on the individual training for each cultural group. It is 

worth noting that none of this results overcome the recognition accuracy obtained 

by the in-group test of WSN (98.8 %). 

 

Table 5.6. Average recognition rate of individual facial regions and its combinations 

obtained using multicultural datasets only. 

Test: Multi. Ethnic Test A Test B Test C 

Eyes-eyebrows 68.5 73.2 68.4 69.6 68.2 

Nose 72.1 72.8 72.0 73.3 71.8 

Mouth 89.4 89.9 89.2 90.8 89.0 

Eyes-Nose 80.2 81.1 80.0 81.5 79.9 

Eyes-Mouth 94.4 96.5 94.2 95.9 94.0 

Nose-Mouth 92.1 90.5 91.9 93.6 91.7 

All regions 95.0 97.0 94.8 96.5 94.6 
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Finally, Table 5.7 presents a comparison of the results obtained with those 

found in the literature. A few studies have analyzed the cross-cultural recognition 

capabilities of their proposals. Nevertheless, none of them have covered the out-

group multicultural analysis. Even though the recognition accuracy is vastly ranged, 

the same trend is found, the results of in-group tests are better than those of out-

group and WSN datasets achieve higher accuracy than ASN. Trend that still 

happens when using the two proposals for achieving the multicultural scenario 

problem. 

 

Table 5.7. Classification accuracy of the proposed method and previous works with cross-

cultural tests. 

Training Dataset: WSN ASN ASN WSN MUL MUL MUL 

Testing Dataset: WSN ASN WSN ASN MUL WSN ASN 

Gabor [42] 91.5 89.7 54.1 55.9 - - - 

LBP+SVM [60] 91.4 81.0 - 41.3 - - - 

HOG+NNE [59] - -   55.9 63.6 93.8 - - 

CNN [61] 98.9 86.7 - 79.6 - - - 

HOG+SVM [58] 93.5 88.6 39.9 42.3 84.7 - - 

Human Study 76.8 71.7 66.7 67.2 - - - 

Proposed 98.8 95.0 72.5 85.0 97.0 97.8 96.4 

 

It is worth noting that the results of related works presented in Table 5.7 

widely range from those obtained by the proposed method, mainly because of some 

specific reasons: the inconsistency on the number of samples per expression for 

training (some expressions used more than 200% of samples than others); the 

algorithms used for feature extraction (all of them only used appearance features 

for this task); and the null consideration of the static structure of individual faces 

for the analysis (some of the studies consider the neutral face as an extra class for 

the recognition task but not for the analysis itself). As an extra reference from the 

setup of mentioned works, Table 5.8 shows the datasets used for defining the 

datasets of WSN and ASN. 

 

Table 5.8. Datasets included in each cultural group of previous cross-cultural studies. 

Dataset: WSN ASN 

Gabor [42] CK JAFFE 

LBP+SVM [60] CK JAFFE 

HOG+NNE [59] RAFD JAFFE, TFEID 

CNN [61] CK+ JAFFE 

HOG+SVM [58] CK+, MUG JAFFE 

Proposed CK+ JAFFE, JACFEE, TFEID 
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5.8 Conclusion 

This chapter presented a methodical analysis of Western-Caucasian and East-Asian 

basic expressions focused on four facial regions. Based on the literature and from a 

psychological viewpoint, it is known that there exist in-group advantages for 

recognizing facial expressions when using cross-cultural datasets and Western-

Caucasian facial expressions are closer related to the six basic emotions than those 

of East-Asian. Moreover, from an HCI viewpoint it is known that multicultural 

training is necessary for increasing the accuracy of FER systems. Following these 

findings, the cross-cultural tests analyzed in this paper present the same trend about 

the design of the training phase which suggests that WSN basic expressions are 

easier to recognize than those of ASN.  

In addition, as indicated by previous works, strong cross-cultural similarities 

on the expressions of happiness and surprise were found in the analyzed datasets. 

On the other hand, two possible solutions were proposed for the multicultural 

problem and even though one of them reached higher accuracy, the proposed 

analysis of out-group multicultural test follows the same trend by exposing 

difficulties for recognizing ASN expressions. This issue points out the culture-

specific differences that can be found on showing the six basic expressions. To this 

end, and thanks to the facial region segmentation presented in this paper, it was 

possible to fully analyze the cross-cultural recognition performance of individual 

facial regions and its combinations. In this way, the presented analysis also 

contributes to identifying the differences between WSN and ASN expressive faces 

which are primarily found in the regions of mouth and eyes-eyebrows, specifically 

for expressions of disgust and fear. In summary and as a general conclusion, it is 

better to set up specific training for each cultural group when working with 

multicultural datasets for FER. Based on the presented results, this issue could be 

pointed out by including an extra pre-processing stage for ethnicity recognition.  
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CHAPTER VI 

6. CONCLUSIONS 

This chapter presents the general conclusions reached after the culmination of this 

research work. In addition, some of the possible continuation lines related to the 

main topics of this thesis are also presented. 
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6.1 Conclusion 

This thesis presented a methodical analysis of the prototypic facial expressions of 

Western-Caucasians and East-Asians for Facial Expression Recognition from a 

composite perspective of HCI and psychology. The analysis was built on the fact 

that rather than the debate related to the specificity of facial expressions, HCI 

approaches take the cultural universality of six basic expressions for granted. The 

proposed analysis was based on FER and visual analysis, and in general the 

conclusions of this thesis can be divided as follows. 

 

1) About the techniques proposed for FER systems 

In order to achieve the main goal of this thesis, some solutions for the 

problems attached to FER systems have been developed. Firstly, working with 

different facial regions represents an advantage for overcoming the problem of 

partial occlusion. The proposal based on the facial region segmentation of forehead, 

eyes-eyebrows, nose and mouth achieves high accuracy recognition when working 

with sub-block eigenphases algorithm, and even better when the static structure of 

the faces altogether with the 2D-DFT procedure were applied, reaching 92% and 

95.8% of average recognition rate respectively. The best combination of individual 

feature vectors was obtained by using the regions of eyes-eyebrows, nose and 

mouth. In this way, it is possible to conclude that the forehead region is dispensable 

when trying to recognize facial expressions. Finally, as a result of employing the 

facial region segmentation and because of the proposal of DFT+PCA for the fusion 

of appearance and geometric features, the proposed hybrid-based method presented 

the highest accuracy performance. Reaching almost 99% of accuracy when enough 

facial landmarks are employed in the feature extraction. Once more, this 

performance was obtained by the combination of Eyes-Nose-Mouth. Hence, an 

extra conclusion based on the analysis of individual facial regions and its 

combinations, it was demonstrated that the mouth is the most important part of the 

face for developing facial expression recognition.  

 

2) About the culture-based analysis of facial expressions 

Taking advantage of the feature extraction methods proposed in the way to 

fulfill the aim of this thesis, the analysis of Western-Caucasian and East-Asian 

expressive faces were performed with many variations. However, all of the FER 

systems tested using the methodical analysis produced the same trend: WSN 

reached higher accuracy than ASN. Thus, the best results are obtained by in-group 
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modality followed by out-multicultural, multicultural and at bottom the out-group. 

In this way, it was proved that there exist differences in the cross-cultural 

recognition of the six basic expressions even for three different FER systems (based 

on appearance- geometric- and hybrid-features). In addition, it can be seen that 

WSN facial expressions fit better for the prototypic expressions than those of ASN. 

An interesting finding observed when using out-group performance is that WSN 

recognizes the expressions of ASN better than ASN handles those of WSN, just 

exactly as human beings. Finally, thanks to the visual analysis and the confusion 

matrices, it was confirmed that the way of showing certain facial expressions differs 

between both racial groups, especially for the expressions of disgust and fear in the 

regions of mouth and eyes-eyebrows respectively. Hence, by identifying the 

differences between WSN and ASN expressive faces, two possible solutions for the 

multicultural problem were proposed. Even though these proposals overcome the 

traditional solution, the out-multicultural results cannot reach the accuracy of the 

in-group test. Therefore, we can conclude that the differences of showing facial 

expressions among cultures straightly affect the performance of automatic FER 

systems. 

 

 In summary and based on the experimental results presented in this thesis, 

it can be concluded that it is better to set up specific training for each cultural group 

when working with multicultural datasets for FER. This issue could be pointed out 

by including an extra pre-processing stage for ethnicity recognition when the 

situation warrants it. In addition, the culture-specific training strongly depends on 

the application of the FER system due to the cross-cultural similarities found on the 

called positive expressions. Therefore, looking back to the question formulated in 

Chapter 1 and based on the findings obtained in this thesis, the correct answer for 

that question is: “companion robots and digital avatars should be adapted to express 

cultural-specific emotions”.  

On the other hand, it has to be admitted that the proposed analysis deals with 

the problem of reliability of the datasets. Hence, most of the standard datasets are 

taken under controlled environments and expressions are shown by professional 

actors which sometimes exaggerate and break the spontaneity of a true facial 

expression. However, despite the limitations of the datasets, the proposed analysis 

helps to find cultural differences of specific facial expressions and introduces a 

methodical process for analyzing the cross-cultural capabilities of any FER 

systems. 
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6.2 Future Works 

As a future work, it is possible to expand the limited size of the datasets by including 

databases from different countries of specific cultures (e.g. China and Korea for 

East-Asian) and by adding extra cultures (e.g. African, Latino, Indian, etc.). In 

addition, it is also necessary to analyze the facial expressions shown under non-

controlled environments, situation known as “in-the-wild”. Hence, the conclusions 

reached in this thesis could be covered. 

Another option for contributing to the cultural specificity theory of facial 

expressions, is to analyze the categorization capability of the six prototypic 

expressions among different racial groups by applying unsupervised classification 

methods to each cultural dataset, thus it will enable the possibility to measure the 

cultural-specificity of the assumed basic expressions and the hypothesis of less than 

six basic expressions could be supported. 

Finally, another alternative for the analysis is to employ semantic features 

in order to describe the facial expression of specific cultural groups. Hence, 

developing methods based on CNN or other deep learning algorithms, could 

provide results different than those obtained by the conventional methods. 
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