
Studies on Modulation

Classification in Cognitive Radios

using Machine Learning

Xu Zhu

Department of Communication Engineering and Informatics

The University of Electro-Communications

A thesis submitted for the degree of

Doctor of Philosophy in Engineering

2017 September



Chairperson: Professor Takeo Fujii

1. Member: Professor Xi Zhang

2. Member: Professor Yasushi Yamao

3. Member: Professor Koji Ishibashi

4. Member: Professor Toshiharu Kojima

Day of the Pre-defense: 8th May, 2017

Day of the Final defense: 31st July, 2017

ii



 

 

© Copyright by Xu Zhu 

Defense Date: 31st July, 2017 

All Rights Reserved 



概要 

周波数資源の逼迫により現在の無線周波数の割り当てでは、将来の無線通信の需要を満足
できないことが懸念されており、その解決策として、無線環境の認識結果に従って、送信
電力、利用周波数、変調方式などの通信パラメータを適応的に利用することで、周波数利
用効率の改善を目指すコグニティブ無線技術に注目が集まっている。コグニティブ無線で
は、スペクトラムセンシングによりプライマリシステムを検出し、周辺の無線環境を把握
することで複数システムが相互干渉なく周波数を共用することが期待されている。このよ
うな高度な周波数共用システムの実現には、環境のセンシングや送信に高度な戦略が必要
であり、二次利用ユーザにおける信号処理に対する期待が大きくなっている。中でも、ス
ペクトラムセンシングの性能改善は全体の周波数利用効率改善に大きく寄与する。その改
善法の一つとして、変調方式の識別を行った上で、プライマリシステムとセカンダリシス
テムの判定を行う手法がある。例えば、一次システムと二次システムが混在する環境では、
二次システムが一次システムの変調を認識することで、干渉の正確な推定が可能となる。
また、一次システムの変調の選択状況に応じて、二次システムの送信電力の調整が可能と
なるなどその活用法は多様である。加えて、信号と雑音の識別も変調方式識別で実現可能
であるため、センシングが不可能な環境において信号検出することも可能である。 

そこで、本論文では、変調方式識別に注目し、機械学習を活用することでその性能を向上
させる手法について検討を行う。1 つ目の研究として、教師あり学習による変調方式識別
手法の検討を第 4 章で述べる。ここでは、特徴量として雑音に耐性のある高次キュムラン
トを用いることとし、ニューラルネットワークを拡張した Stacked Denoising Autoencoder
を識別手法として選択する。層構造を持つ事前学習は局所解への収束を回避し、Denoising
機能は雑音耐性を高めることが可能となる。提案手法の有効性を確認するため識別性能と
実行速度に関して従来手法と比較をしている。次に、2 つ目の研究として、教師なし機械
学習を用いた変調方式識別アルゴリズムの検討を第 5 章で述べる。ここでは、時間周波数
分布の特徴量を活用することとし、事前にクラスタ数が決定可能な、Density-based spatial 
clustering of applications with noise (DBSCAN)を識別手法として利用する。シミュレーショ
ンにより、本手法が従来手法より、正確な識別ができることを確認している。加えて、本
手法が事前学習を必要としないことから、教師あり学習に比べて汎用性が高いことを示
す。最後に第 6 章で提案する 2 つの方式を比較し、利点欠点を明らかにする。 

今後の課題として、計算ハードウェアの制約の基での、アルゴリズムの最適化があり、そ
の発展策として GPU 計算機を利用した教師あり学習の活用がある。また、あらかじめ準
備した変調方式の種類に応じて、ネットワーク構造を再設計する方法についても検討が望
まれる。また、教師なし学習については、キャリア周波数オフセットにいかに対応するか
が、課題となっている。 



Abstract

The current spectrum allocation cannot satisfy the demand for future

wireless communications, which prompts extensive studies in search

of feasible solutions for the spectrum scarcity. The burden in terms

of the spectral efficiency on the radio frequency terminal is intended

to be small by cognitive radio (CR) systems that prefer low power

transmission, changeable carrier frequencies, and diverse modulation

schemes. However, the recent surge in the application of the CR

has been accompanied by an indispensable component: the spectrum

sensing, to avoid interference towards the primary user. This require-

ment leads to a complex strategy for sensing and transmission and an

increased demand for signal processing at the secondary user. How-

ever, the performance of the spectrum sensing can be extended by a

robust modulation classification (MC) scheme to distinguish between

a primary user and a secondary user along with the interference iden-

tification. For instance, the underlying paradigm that enables a con-

current transmission of the primary and secondary links may need a

precise measure of the interference that the secondary users cause to

the primary users. An adjustment to the transmission power should

be made, if there is a change in the modulation of the primary users,

implying a noise floor excess at the primary user location; else, the

primary user will be subject to interference and a collision may occur.

Alternatively, the interweave paradigm that progresses the spectrum

efficiency by reusing the allocated spectrum over a temporary space,

requires a classification of the intercepted signal into primary and

secondary systems. Moreover, a distinction between noise and inter-

ference can be accomplished by modulation classification, if spectrum



sensing is impossible. Therefore, modulation classification has been a

fruitful area of study for over three decades.

In this thesis, the modulation classification algorithms using machine

learning are investigated while new methods are proposed. Firstly,

a supervised machine learning based modulation classification algo-

rithm is proposed. The higher-order cumulants are selected as fea-

tures, due to its robustness to noise. Stacked denoising autoencoders,

which is an extended edition of the neural network, is chosen as the

classifier. On one hand stacked pre-train overcomes the shortcoming

of local optimization, on the other, denoising function further en-

hances the anti-noise performance. The performance of this method

is compared with the conventional methods in terms of the classifi-

cation accuracy and execution speed. Secondly, an unsupervised ma-

chine learning based modulation classification algorithm is proposed.

The features from time-frequency distribution are extracted. Density-

based spatial clustering of applications with noise (DBSCAN) is used

as the classifier because it is impossible to decide the number of clus-

ters in advance. The simulation reveals that this method has higher

classification accuracy than the conventional methods. Moreover, the

training phase is unnecessary for this method. Therefore, it has higher

workability then supervised method. Finally, the advantages and dis-

advantages of them are summarized.

For the future work, algorithm optimization is still a challenging task,

because the computation capability of hardware is limited. On one

hand, for the supervised machine learning, GPU computation is a

potential solution for supervised machine learning, to reduce the ex-

ecution cost. Altering the modulation pool, the network structure

has to be redesigned as well. On the other hand, for the unsuper-

vised machine learning, that shifting the symbols to carrier frequency

consumes extra computing resources.
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𝐶𝐶(𝑥𝑥) network inputs 

j index of layer 

F activation function 
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Chapter 1

Introduction

In this chapter, an introduction to the research on modulation scheme recogni-

tion in cognitive radio systems is presented. This chapter is organized as follow.

Firstly, the background of the study and related applications in cognitive ra-

dio system technologies are reviewed in Section 1.1. Then, in Section 1.2, the

motivation and the problems of applying the modulation classification in a thus

environment are explained. Section 1.3 describes the contributions and novelties

of this thesis. Scope and objectives of the study are shown in Section 1.4. Finally,

the organization of the thesis along with the overview of each chapter is given in

Section 1.5.

1.1 Background

Spectrum is a spontaneously limited resource for the conventional radio spectrum

in the wireless communication systems. In order to support plentiful and vari-

ous applications and services in a noninterference environment, a fixed spectrum

access policy is used by spectrum regulators, which allows them to allocate each

bandwidth of current spectrum to one or even more dedicated users. According

to the stipulation of the policy, theoretically only the assigned (licensed) users, as

known as primary users (PUs) have the right to exploit and utilize the spectrum,

while other users, as known as secondary users (SUs) have no permission to use

it, even though the PU is not using the spectrum. In the wake of the develop-

ment of wireless communication services in recent decades, for multiple countries
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1. INTRODUCTION

and areas, the majority of the spectrum has been fully assigned, resulting in

spectrum scarcity problem. Furthermore, recent researches about the actual uti-

lization of allocated spectrum have revealed that, in most of the time, allocated

spectrum is underutilized [1, 2, 3]. Moreover, these researches provide evidence

that shows this inflexible and inefficient allocation policy would intensely bring

in the scarcity, sometimes, even worse than the basic physical insufficient of the

spectrum. To continue the expansion of the wireless communication industry, a

revolution enhancement is necessary to further exploit spectrum resource.

Dynamic spectrum access, therefore, is proposed to meet such challenge as a

selective policy to improve the utilization of the allocated spectrum [4, 5].

For the dynamic spectrum access, the available spectrum is still assigned

to one or more PUs as in fixed spectrum access. However, these pieces of the

spectrum are no longer exclusively dedicated to PUs. Although PUs have the

priority of the spectrum utilization, SUs could access to this spectrum temporally

whenever PUs are absent or even share this frequency bands with PUs under the

controllable interference. Restricted by the dynamic spectrum access policy, PUs

could apply the recycle of the radio spectrum under opportunism or share them

continually, which could severely contribute to the improvement of the spectrum

efficiency.

To support such advanced policy, SUs have to be equipped with the capability

of sensing and cognizing the spectrum environment, and such SUs devices are as

known as cognitive radio (CR) [4, 5] or cognitive radio users. Various CRs devices

with various spectrum sensing capacity are built for different kinds of purposes.

For instance, a cognitive radio device should sense whether the signal transmitted

from PU exists or not [6], or even be able to calculate its own interference level

towards PU at the receiver (Rx) end. For some particular situations, intelligence

CR devices are allowed to obtain some unclassified information about the PU

from the PU transmitter (Tx). However, it may cost CR users great calculation

and processing time for implementing, sensing, and cooperation etc.

According to different objects, CR users could utilize or access the allocated

spectrum in two basic schemes of cognitive spectrum access models. One is

called the opportunistic spectrum access model, as we can see in Figure 1.1,

which realizes the spectrum sensing by detecting the holes in the spectrum. It

2
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Figure 1.1: Opportunistic spectrum access model for cognitive radio.

reveals that SUs can use the spectrum hole if PUs are absent. Meanwhile, SUs

may be required to reset their own carrier frequency or modulation to fit such

transmission parameters. In order to realize the implementation, the CR uses

need to supervise related spectrum frequently and be capable to evacuate the

spectrum as soon as PU reappears. The other CR implementation policy is

called the concurrent spectrum access model, as we can see in Figure 1.2. From

the figure, one can notice that the CR users are existing while PUs are staying

and applying their licensed spectrum. The CR users are demanded to control

their interference power of the transmitting towards PU Rx and ascertain the

interference being less than the thresholds which are the limitation of interference

that PUs can tolerate. Therefore, the CRs applying concurrent spectrum access

model needs to have the capability of calculating the interference power at some

specific space point.

In an actually cognitive radio system, multiple CR users coexist, which makes

it similar to the general wireless communication system. Moreover, the cognitive

radio networks stay in two classes that including basic infrastructure network

and ad hoc network [7]. A cognitive radio network system can be described as

an intelligent network of various coexisting or non-coexisting single layer network

of CR user overlaying together. Establishing a fully functional cognitive radio

3
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Figure 1.2: Concurrent spectrum access model for cognitive radio.

network could be a very challenge work, on account of melting all the various

network of cognitive radio users. Because it is necessary to fulfill the demand for

the signal and algorithm processing of physical (PHY) layer, spectrum manage-

ment and controlling of medium access control (MAC) layer as well as network

layer routing and statistical control. Even more, all the managing, calculating

and controlling systems cause the complicated influence on each other, which

needs more care to design cross layer or frameworks of controlling.

As we can see in Figure 1.3, it shows the relationship between PHY layer,

MAC layer and network layer in a cognitive radio system. For a physical layer,

the main task is to realize the spectrum sensing, which needs to detect spectrum

holes and collect more information about channel condition and channel gain af-

ter sensing the transmission environment. According to the obtained information

after spectrum sensing, the cognitive MAC layer is applied to optimize and re-

constitute the network between the transmitter and receiver, which contains the

tasks of spectrum aware access control. A CR user has to be able to look after the

tradeoff between the access opportunity and the cognitive sensing requirement.

The operator of these two functions is called sensing access coordinator. Regard-

ing the network layer, the main three tasks are the quality of service, network

tomography, and spectrum aware routing [8]. Overall, the PHY layer, MAC layer,

and network layer are linked together to give an accurate access to the spectrum

holes dynamically and efficiently. The model that I described above, however, is

not the only model for the cognitive radio network. [7] offers more CR models.
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Figure 1.3: Main functions of the PHY, MAC and network layers for cognitive

radio system.

1.2 Motivation and Problem

As the description above, spectrum hole means that the spectrum allocated to

the primary user is underutilized at this moment or this location. For some

particular spectrum bands, such as TV band, the TV programs are broad-casted

strictly according to the timetable. It implies that in some regions, the utilization

of spectrum band could be predicted by the secondary users with some helpful

solutions, i.e. database. If the SUs are unable to reach out such information or the

PU utilizes the spectrum prospectively, the spectrum sensing [9, 10, 11, 12] could

greatly enable the CR users to recognize the idle spectrum in order to protect the

interests of PU, as we can see in Figure 1.4. According to the figure, the primary

transmitter is using the assigned spectrum band to communicate with the certain

receiver while the CR users need to access to this band for communication. To

avoid the interference towards PU, the SUs have to sense the spectrum to find out

the idle spectrum. In addition, the idle spectrum can be detected directly after

finding out the primary user receiver which is called direct spectrum sensing.

The performance of the spectrum sensing can be extended by a robust mod-
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Figure 1.4: Implementation of spectrum sensing.

ulation classification (MC) scheme to distinguish between a primary user and a

secondary user along with the interference identification. For instance, the un-

derlying paradigm that enables a concurrent transmission of the primary and

secondary links may need a precise measure of the interference that the sec-

ondary users cause to the primary users. There should establish a supervision

of the transmission power, and if there is a change in the modulation of the pri-

mary users, implying a noise floor excess at the primary user location; else, the

detection performance of primary user will be severely deviation due to inter-

ference which may cause collision. Alternatively, the interweave paradigm that

progresses the spectrum recycling by utilizing the allocated spectrum over a tem-

porary space, requires a classification towards the intercepted signal into primary

and secondary systems. Moreover, when spectrum sensing fails, modulation clas-

sification could accomplish classification between the noise and the interference.

Therefore, there is a recent surge in the application of CR accompanied by the

MC. As a flexible implementation of a specific task is used by the CR, the mod-

ulation scheme that appeared less flexible becomes a resourceful process. This

requirement calls for modulation classification as an intermediate step before the

demodulation in CR networks [13]. Modulation classification has been a fruit-
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ful area of study for over three decades [14] is due to its applicability to several

practical problems. The general relationship among the signal classification, the

signal detection, and the common demodulation is given shown in Figure 1.5.

The classification is the intermediate steps between detection and demodulation.

The more information one needs for the processing, the more they will give after

the processing. For instance, only the approximate frequency and spectrum band

are required for the energy detection, but the exact center frequency, spectrum

band, utilized modulation and the parameters of modulation are required for de-

modulation. Therefore, the modulation classification could be moderate for the

received signal processing.

Figure 1.5: Relationship among modulation classification, energy detection and

demodulation of the signal.

The classifiers of the MC in literature can be broadly categorized into two

categories [15]: likelihood-based (LB) method and feature-based (FB) methods.

The LB transforms the MC into a hypothesis testing and compares the likelihood

probability with a threshold. In order to obtain the likelihood probability, all

channel parameters have to be known. It can be seen from most likelihood-based

papers that the LB methods require an estimation of parameters [16, 17, 18, 19]

such as for e.g., the form of the distribution function and mean value, the variance

as well as the signal-to-noise ratio (SNR) level. The advantage of the LB method

is not only to guarantee the best classification results under the Bayes minimum

miscalculation cost criteria theoretically but also able to obtain the classification
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performance curve through theoretical analysis. The LB method classification

performance would be the upper limit in theory which could be used to testify the

performance of the modulation classification of feature-based methods. However,

due to the requirement of the prior information, it leads to considerable difficulty

in determining the decision threshold, often with an ideal probability of false

alarm. Moreover, as the cost of such an estimation is prohibitive, it makes the

finding of an optimal solution using an exhaustive search infeasible.

Feature-based methods, conversely, doesn’t need an estimation of parameters

[20, 21]. Therefore, they are usually less complicated and easy to utilize, in spite

they may be sub-optimal. However, an optimal performance can be achieved

with a proper design. As we can see in Figure 1.6, it shows a flow path of an

FB classification implementation flow. To provide the assembly of the classifica-

tion models of demand, first, one has to select the features of classification and

the rules of classifiers, then extract the parameter information from the signal

samples of known modulation types. The information of feature is used to train

the classifier until the output of the classifier satisfies the error requirement, or

directly set the threshold and classification function of the classifier based on the

statistical analysis, i.e. mean value and variance. For the testing phase, the clas-

sification performance is based on the successful classification probability using

the feature extracted from another set of communication signal samples. The FB

can be generally decomposed into two moves: feature extraction that is normally

implemented in the time-domain or frequency domain and a classifier that can

be supervised or unsupervised [22].
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Figure 1.6: Implementation flow of modulation classification based on FB.
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1.3 Contributions and Novelty

The contributions and novelties of the thesis are considered from two main as-

pects. The modulation classification approaches we used here includes the unsu-

pervised processing and the supervised training.

For the supervised approach, the contributions and novelties are as follow:

• A rapid classification scenario is considered here. So far, there is few of

paper that mentions this scenario, although the processing time is the pri-

ority and classification accuracy can be compromised in special conditions.

Performance evaluation shows a significant speed advantage over the con-

ventional maximum likelihood (ML) method.

• In a rapid classification scenario, expert features are not necessary. There-

fore, feature extraction that is compulsory in most conventional methods

is omitted. It simplifies the procedure of the modulation classification and

renders rapid classification more achievable.

• A high accuracy classification scenario is also considered in the thesis. Al-

though expert features are utilized as network inputs, the stacked denois-

ing autoencoder as the classifier improves the noise resistance performance.

Performance evaluation shows an accuracy advantage over the conventional

ML method and the feature-based method.

• So far, there is few deep networks based literature that exhibits the influ-

ence of the signal sampling synchronization over the classification ability,

although it is a significant issue in the modulation classification field. The

influence of the timing offset over the classification accuracy are investi-

gated in both the scenarios. This ensures a comprehensive evaluation to

understand the ability of this method. In the high accuracy scenario, the

proposed method is robust to the timing offset.

• Not only a ready network structure but also the selection methods of the

network structure are presented.

9
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• The performance of the proposed approach is also investigated on different

individual modulations. This gives insights into the classification ability of

this method.

For the unsupervised method, the contributions and novelties are as follows:

• It has better performance with respect to its noise resistance which is based

on the proposed new features using time-frequency distribution. These

features show good robustness to noise. The performance evaluation shows

an accuracy advantage over the conventional ML method [19] and K-Nearest

Neighbors (KNN) method [23]. The novel method is robust to phase offsets,

which always degrade the performance of likelihood-based methods [19] and

KNN method [23] in the classification of phase shift keying (PSK) and

quadrature amplitude modulation (QAM) modulation schemes.

• To date, there are few reports in the literature that exhibit the influence of

the signal sampling synchronization over the classification ability, although

it is a significant issue in the field of modulation classification. The thesis

investigated the influence of the timing offset on the classification accuracy.

This ensures a comprehensive evaluation to understand the capabilities of

this method. This method shows good robustness to timing offsets for m-

ary phase shift keying (M PSK).

• It investigates the clustering validation against SNR and showed that density-

based spatial clustering of applications with noise (DBSCAN) is valid for

this method.

• DBSCAN does not require the time-consuming training of the classifier.

This is a significant advantage over supervised classifiers when rapid pro-

cessing is expected.

• In addition, it is simple to obtain the parameters of this method. On

the contrary, the cumulant-based approach needs a complicated process to

determine its decision rules [20].
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1.4 Scope

Although, the cognitive radio system contains various aspects of communication

technologies, such as the physical layer, the medium access layer, the network

layer routing and statistical control. The modulation classification in this thesis

is the technology for the physical layer.

In this thesis, as a hierarchical classification system, the modulation classes

have to be identified, after which the modulation order can be determined. In

a CR system, some fundamental information about the primary user is often

accessible. Moreover, because digital modulation has better immunity to noise,

binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 8PSK,

16QAM, as well as 64QAM are widely used in CR systems. Therefore, they are

mostly discussed in literature pertaining to modulation classification. Through-

out this thesis, I assume that there is a single carrier-transmitted signal, whose

possible modulation type includes BPSK, QPSK, 8PSK, 16QAM, and 64QAM,

and the goal is to classify the modulation type that it is using. For particular

classifier of the deep learning network, the complex symbols rather than pulse

shaped complex signals as the network input are proposed, simplifying the net-

work topology and reducing the calculation overhead. This can be easily verified if

our network structure is compared with other convolutional neural network-based

methods [24] and conventional neural network-based methods.

To date, there is little literature that reports the influence of the signal-

sampling synchronization over the classification ability, although it is a significant

issue in the modulation classification field. The influence of the timing offset is

investigated over the classification accuracy as well as the phase offset.

1.5 Organization of the Thesis

This thesis gives the summarization of the research on the both the supervised and

unsupervised modulation classification for a transmission signal from PU received

at the CR user received ends. This thesis consists of 6 chapters as follows.

• Chapter 1 introduces the background, the motivation, the objection, the

contributions, the novelty, and the scope of the studies.

11
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• Chapter 2 explains the signal models and system models of the research.

Mainly, this research is concerned about classifications in AWGN channel.

However, to better evaluate the research, phase offset, timing offset, and

ISI channel are taken into consideration.

• Chapter 3 provides an overview of modulation classifications, including like-

lihood based methods and features based methods. The purpose of this

chapter is to provide a preliminary of the following proposal chapters.

• Chapter 4 presents a supervised machine learning based modulation clas-

sification method. Higher order cumulants are used as extracted feature.

Stacked denoising autoencoder is used as the classifier. Two scenarios have

been considered in this chapter, which are rapid classification scenario and

high accuracy classification scenario.

• Chapter 5 presents an unsupervised machine learning based modulation

classification method. Time-frequency analysis is used for feature extrac-

tions. Density-based spatial clustering of applications with noise is used

as the classifier. The proposed method here shows a stronger ability of

classification than conventional methods.

• Chapter 6 concludes this thesis, and summarize the contributions of the

proposals in chapter 4 and 5. Future work is discussed in this chapter as

well.

12



Chapter 2

Signal Model

In this chapter, the expression form of modulated signal is first discussed, such as

QAM and PSK, because this research mainly focuses on classifications of these

two modulations. The difference is compared between their expressions to en-

hance the features that could be utilized for classifications. Signal models are

the fundamental link to all kinds of modulation solutions. Most of the likelihood

based methods rely on a certain signal model for decision making. Moreover,

although some of the feature-based methods doesn’t need a signal model hypoth-

esis, a known signal mode is still able to provide assistance in parameter selections

for classifiers. Therefore, signal models in additive white Gaussian noise (AWGN)

and fading channel were presented.

This chapter is organized as follow. Section 2.1 describes the signal models.

Concretely, the expressions of modulated signal are given in section 2.1.1. Then

the signal model in AWGN channel and fading channel are discussed. In section

2.2, problem statement and system assumptions are discussed. The system model

in section 2.2 is briefly introduced as well.

2.1 Signal Models

2.1.1 Modulated Signal

A general model for the signal and the definitions of the relevant modulations

are first considered. Over one symbol interval, Ts, the transmitted signal can be

13



2. SIGNAL MODEL

written in a quadrature form as follows:

s(t) = sI cos(2πfct)− sQ sin(2πfct), (2.1)

where sI and sQ are the in-phase and quadrature components, respectively, of

the baseband.

For an M PSK, where M is the order, all the information is carried by the

phase of the signal and the minimum phase shift between two adjacent symbols

is 2π/M . Considering this, an M PSK modulated signal is given by:

PSK(t) =
∑
i

g(t− iTs) cos(2πfct+ (2m+ 1)
π

M
), (2.2)

where the initial phase is assumed to be zero with 0 ≤ m ≤ (M − 1).

For the m-ary quadrature amplitude modulation (M QAM), the information

is carried by both the amplitude and the phase of the signal. In a quadrature

form, the following equations can be established for M QAM modulated signals:

QAM(t) = sI cos(2πfct) + sQ sin(2πfct), (2.3)

sI =
∑
i

Aig(t− iTs),

sQ =
∑
i

Big(t− iTs),
(2.4)

where Ai and Bi take values of (2i − 1 − L)d with i = 1, 2, ..., L. L is the

modulation order and d is the constellation distance.

In order to give the M QAM a specific contrast with the M PSK, it will be

beneficial to rewrite (2.3) as:

QAM(t) =
∑
i

g(t− iTs)Ci cos(2πfct+ ϕi), (2.5)

where Ci =
√
A2
i +B2

i and ϕi = arctan(Bi/Ai).
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2.1.2 Signal Model in AWGN Channel

In most of the literature, AWGN is considered as noise model for the performance

evaluation in modulation classifications. Based on this assumption, noise is the

only limitation of accurate classification. In order to evaluate the performance

of the proposed methods justly, AWGN is considered as noise model as well.

However, to better reveal the performance of this methods, the performance is

still presented in the case of timing offset and phase offset at the end of chapter

4 and chapter 5.

A general expression for a signal in AWGN channel is given by:

r(t) = s(t) + ω(t), (2.6)

where s(t) and ω(t) represents signal and noise, respectively.

For complex signal and corresponding complex noise, the probability density

function (PDF) of noise is given in (2.7):

fω(x) =
1

2π
√∑e

− |x|
2

2
√∑

, (2.7)

where,
∑

is the covariance of noise.

In some literature, in-phase component and quadrature component are con-

sidered separately. Therefore, it is necessary to discuss the noise PDF of in-phase

component and quadrature component, respectively. The covariance of in-phase

component and quadrature component is given by:∑
=

[
σ2
I ρσIσQ

ρσIσQ σ2
Q

]
=

[
σ2 0
0 σ2

]
, (2.8)

where, σI and σQ are variance of in-phase component and quadrature component,

respectively. This equation reveals that the variance of in-phase component and

quadrature component can be replaced by σ, a identical variance. This is because

in-phase component and quadrature component are orthonormal to each other.

The projection of noise being independent is obtained.

The PDFs of in-phase component and quadrature component are given by:

fI(ω)(x) = fQ(ω)(x) =
1

σ
√

2π
e−
|x|2

2σ2 . (2.9)

The constellations of 4QAM in AWGN are given in Figure 2.1, where SNRs

are 0dB and 10dB, respectively.
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Figure 2.1: The constellations of 4QAM in AWGN.

2.1.3 Signal Model in Fading Channel
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Figure 2.2: The constellations of 4QAM with phase offset.

In wireless communication, the fading channel is an unavoidable issue. More-
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over, academics have proposed a variety of fading channel models, in order to

quantify the effect of fading. However, till date, there are few methods aiming

at the specific fading model. Therefore, instead model-related derivations, this

research concentrates on the consequences of fading channel, such as phase offset.

A general expression for a signal in fading channel is given by:

r(t) = αe
jθ0s(t) + ω(t), (2.10)

where, α is the factor of amplitude attenuation, and θ0 represents phase offset.

These two factors are considered as constant since the symbol period value is

much smaller than the rate of change in most cases.

The constellations of 4QAM with phase offset are given in Figure 2.2, where

phase offset are 5◦ and 15◦, respectively. Apparently, phase offset caused rotation

of constellation upon the origin. It can be expected that phase offset affects the

performance of some methods, indeed.

2.2 Problem Statement and System Assump-

tions

Because digital modulation has better immunity to interference [25] , it is mostly

discussed in the literature regarding modulation classification. Therefore, the

research focuses on classifications of digital modulation in this thesis as well.

2.2.1 Problem Statement

In digital modulations, amplitude, phase, and frequency can carry information.

Therefore, one may have various modulation methods, such as m-ary ampli-

tude shift keying (M ASK), M PSK, m-ary frequency-shift keying(M FSK), and

M QAM. On one hand, there is an increasing need for the spectrum for IoT de-

vices, which make stringent requirements on spectrum utilizations. Therefore,

M FSK is not the focus of the discussion. On the other hand, M ASK is rarely

used because it is extremely sensitive to noise. Therefore, M ASK is not the focus

of the discussion, neither.
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Only M PSK and M QAM are taken into account in this thesis. Here, this

research assumes that there is a single carrier-transmitted signal, whose possible

modulation types include the BPSK, QPSK, 8PSK, 16QAM, and the 64QAM.

The mission is to classify the signals used by their modulation types.

2.2.2 System Assumptions

Assume that the modulation types are obtained from a set of N possible mod-

ulations, where M = M1,M2, ...,MN . Let Pc donate the probability that the

classification result is identical to the transmitted signal. Then, using the condi-

tional probability, Pc can be expressed as:

P n|n
c = P (D = Mn |Mn), (2.11)

where D = Mn represents the case, wherein, the classification result is Mn. Then,

the average probability of obtaining a correct classification is given by:

Pcc = N−1
N∑
n=1

P n|n
c . (2.12)

Pcc is utilized to evaluate the performance of all the classifications throughout

the thesis.

2.2.3 System Model

The system model is depicted in Figure 2.3. The secondary user intercepts the

signals from the primary user when a primary user is present. After a series of

preprocessing steps, the symbols for the subsequent modulation classification can

be acquired.

There are several MC methods that assume sampling synchronization, carrier

recovery, and waveform recovery has been achieved before MC. However, to better

understand the performance of the proposed method, the influence of the signal

sampling synchronization is exhibited over the classification ability.

This research emphasizes that although there are papers [26] [24] that utilize

deep networks for signal modulations, they use pulse shaped signals rather than
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modulated symbols. Therefore, more input nodes are compulsory for their net-

works, entailing a significant calculation time. This problem is avoided by using

modulated symbols in this study.
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Figure 2.3: System model of the modulation classification in cognitive radio

systems.

2.3 Chapter Summary

In this chapter, the signal models is first discussed to provide a chance of a fair

comparison with other methods. Signal models in AWGN and fading channel are

presented. Then the main problem that is concerned about has been presented.

Specifically, this research concentrates on classifications of digital modulations,

such as M PSK and M QAM. This chapter also explains the reason why this re-

search is focusing on these modulations. In addition, the system assumptions

and system models are given at the end of this chapter, to better explain poten-

tial application scenario. It should be pointed out that although this thesis is

about modulation classification in cognitive radio scene, the proposed methods

are universal for other scenarios.
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Chapter 3

Overview of Modulation

Classification in Cognitive Radios

Modulation classifications are first innovated for military applications, such as

for e.g., electronic ware. It can be utilized to jam signals through launching in-

terference with the same modulation mode. Moreover, the classification of signal

modulation is required to crack the intercepted signals. With the development

of communication technology, the adaptive modulation has been widely used by

adaptive transmitters. Specifically, adaptive transmitters can alter the modula-

tion modes according to the channel estimations.

This chapter is an overview to the fundamental principle of modulation classi-

fication. Two general classes of modulation classification are involved: likelihood-

based and feature-based methods. To better understand the proposed methods,

the two steps of the likelihood-based method are firstly introduced: likelihood

evaluation and likelihood comparison. Then, the two steps of the feature-based

method are further explained: feature extractions and classifiers, since this re-

search mainly concentrate on this class.

This chapter is organized as follow. Section 3.1 introduces the two general

classes of modulation classification. Section 3.2 presents the theory of likelihood-

based methods. Then Section 3.3 explains the structure of feature-based methods,

which contain feature extractions and classifiers. The differences between ICA

and machine learning are discussed in Section 3.4.
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3.1 General Classes of Modulation Classifica-

tion

The modulation classifications in literature can be broadly categorized into two

categories: likelihood-based and feature-based methods.

On one hand, the likelihood-based method transforms the modulation clas-

sification into a hypothesis testing and compares the likelihood ratio against a

threshold. Therefore, the likelihood-based method is supposed to be the optimal

detector in Bayesian classification. However, in order to obtain the likelihood

probability, all channel parameters have to be known. It can be seen from most

likelihood-based papers that the likelihood-based methods require the estimation

of parameters such as for e.g., the SNR level. This leads to considerable difficulty

in determining the decision threshold, often with an ideal probability of false

alarm. Moreover, as the cost of such an estimation is prohibitive, it makes the

finding of an optimal solution using an exhaustive search infeasible.

The feature-based methods, on the other, and utilize the features extracted

from raw signals and employ suitable classifiers to make a decision. Although,

the feature-based methods are not optimal in most cases, easy to implement has

always been one of many advantages, because they don’t need the estimation

of parameters. In fact, an optimal performance can be achieved with a proper

design.

3.2 Likelihood-based Methods

As one of widely used classification methods, likelihood-based methods is famous

for its classification accuracy if all required information of channel is known [17].

The likelihood-based method includes two steps: likelihood evaluation and

likelihood comparison. In the step of likelihood evaluation, the likelihood is

derived for every modulation, according to the samples of intercepted signals.

Specifically, a signal model has to be made in advance, then likelihood value can

be derived. In general, the computation complexity of this step is nonnegligi-

ble, which includes a lot of execution cost. An optimization of a signal model
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can reduce the computation complexity, which is a hot spot for likelihood-based

methods [17, 25].

In the step of likelihood comparison, the likelihood value of different modu-

lations is compared. Early likelihood-based methods are identical to binary hy-

pothesizes, where the likelihood value of different modulations is compared with

a ratio. The optimization of the threshold can further improve the classification

accuracy, although it is not effortless to select the threshold. An intuitive way

of making a decision is to select the hypothesize that has the largest likelihood

as the classification result. Apparently, it is an easier solution for implementa-

tion. There have been many studies that proposed valid approaches to improve

the classification accuracy and simplify the calculation complexity. In this the-

sis, maximum likelihood method is chosen as a representative of likelihood-based

methods. The principle of maximum likelihood method is presented and applied

to compare the proposed methods with this method in chapter 4 and chapter 5.

3.2.1 Maximum Likelihood Method

Maximum likelihood method selects the hypothesize that has the largest likeli-

hood as the classification result. All parameters have to be known in advance, in-

cluding channel knowledge, although this seems to be a less practical assumption.

Firstly, this section is started with likelihood function of the AWGN channel.

For a modulated sample s[n], the likelihood function L(s[n] | M,σ) corre-

sponding to modulation M can be presented in terms of a conditional probability

in equation:

L(s[n] |M,σ) = p(s[n] |M,σ), (3.1)

where σ is the noise variance. Moreover, the conditional probability in AWGN

channel can be further expressed by the PDF. Therefore, (3.1) can be expressed

by:

L(s[n] |M,σ) =
M∑
i=1

1

M

1

2πσ2
e−
|s[n]−Ai|2

2σ2 , (3.2)

where Ai is the modulated symbol. Regarding a series of intercepted samples,

using all intercepted samples, the joint likelihood is calculated by multiplying all
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individual likelihood of each sample, which is given in:

L(s[n] |M,σ) =
N∏
n=1

M∑
i=1

1

M

1

2πσ2
e−
|s[n]−Ai|2

2σ2 , (3.3)

here, N is sample length. In most case, the absolute value of the likelihood

function is relatively small. Therefore, likelihood functions are generally given in

logarithmic form. Then equation (3.3) can be rewritten in terms of logarithmic

expression:

logL(s[n]|M,σ) = log(
N∏
n=1

M∑
i=1

1

M

1

2πσ2
e−
|s[n]−Ai|2

2σ2 )

=
N∑
n=1

log(
M∑
i=1

1

M

1

2πσ2
e−
|s[n]−Ai|2

2σ2 ). (3.4)

Specifically, the likelihood is identical to PDF of samples. And the PDF can

be derived from different aspects of samples, such as amplitude and phase. Here,

PDF of phase is taken as an example. In AWGN channel, the likelihood function

of the signal phase can be found in:

Lθ(s)(s[n] | Ai) =
e−
|Ai|2
2σ2

2π
+

|Ai| cos(θ(s[n])− θ(Ai))
2σ
√

2π
[1 + E]e−

|Ai|2
2σ2

sin2(θ(s[n])−θ(Ai)), (3.5)

where, E is defined by:

E = erf(|Ai| cos(θ(s[n])− θ(Ai))). (3.6)

Here, erf is the error function. θ(Ai) is the phase of symbol Ai.

On one hand, signal phase is an intuitive information, which can be imple-

mented within M PSK classification and M QAM classification [27]. Moreover,

signal phase is more robust to noise than amplitude information, which makes it

widely used by lots of literature. However, as mentioned above, all parameters

and channel information are necessary for likelihood methods, which is hard to

fulfill in practice. For instance, phase offset is a common condition which cannot
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be ignored. Therefore, likelihood methods are significantly affected by the phase

offset.

Due to the high complexity of the likelihood function, a lot of simplified

methods are presented. For example, the PDF calculation method using Von

Mises distribution is a typical simplified solution, which can be used for phase

likelihood in equation:

Lθ(s)(s[n] |M,σ) =
N∏
n=1

M∑
i=1

1

M

e(|Ai|2 /σ2)cos(θ(s[n])− θ(Ai))
2πI0(|Ai|2 /σ2)

, (3.7)

where, I0 denotes the modified Bessel function of order zero. It must be noted

that the PDF calculation method using Von Mises distribution deviates from the

real PDF if signal is heavily noised.

On the other hand, the amplitude information can be relied within M QAM

classification and multiple pulse amplitude modulation (M PAM) classification

[28]. Moreover, the amplitude information is robust to phase offset and carrier

offset, which is an important advantage over phase information. This can be

easily expected because phase offset only cause the constellation to rotate. the

amplitude likelihood can be expressed in equation:

L|r|(r) =
N∏
n=1

M∑
i=1

1

M

|Ai|
σ2

e−(r
2+|Ai|2)/2σ2

I0(
r |Ai|
σ2

). (3.8)

3.3 Feature-based Methods

The FB can be generally decomposed into two moves: feature extraction that

is normally implemented in the time-domain or frequency domain and a clas-

sifier that can be supervised or unsupervised. After the detailed analyzation

and discussion of the property of modulation implementation, its not difficult to

find out the crucial features for modulated signal which applying some particular

modulation mode.

In this section, part of the easily identified features for MC are listed. In

the front parts, the spectrum-based features that develop the spectrum features

for various signal components are investigated here. At the same time, the high-

order statistics-based features are exploited for modulations of various orders and
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models of signals. The cyclostationary analysis-based features according to the

cyclic spectrum features are also discussed. In addition, some main feature-based

classifiers are given at the end of the section.

3.3.1 Time-domain Features and Frequency-domain Fea-

tures

The classification methods for the basic analog as well as the digital modulations

applying some spectrum-based features are presented by Azzouz and Nandi [28] at

the end of the 20th century. They summarize and improve the previous research

of Fabrizi, Lopes and Lockhart, Chan and Cadbois, etc [29]. They investigate

unique features of three main behaviors of the amplitude, phase, and frequency

of various modulations. These three behaviors could show different features for

each type of modulation, after building a perfectly full collection pool of wanted

modulations, the most valid features could help distinguish them. The decision-

making tree is utilized to give an implementation flow for classification processing.

The maximum value of the spectral power density of the centered instanta-

neous and normalized amplitude is expressed as:

γmax =
max |DFT (Acn)|2

N
, (3.9)

where, N stands for the number of samples of received signal, Acn stands for the

centered instantaneous and normalized amplitude of the signal, and DFT is short

for discrete Fourier transform. At this point, the centered instantaneous and

normalized amplitude which is denoted to be the compensation of the unknown

channel transmission attenuation, is expressed as:

Acn [n] = An [n]− 1, (3.10)

where, An [n] = A [n] /µA, and µA stands for the mean value of instantaneous

amplitude of one piece of the signal, according to the expression of:

µA =
1

N

N∑
n=1

A [n] . (3.11)
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The standard deviation of the absolute value of the instantaneous phase,

namely σap, can be expressed by:

σap =

√√√√√ 1

Nc

 ∑
An[n]>At

φ2
NL [n]

−
 1

Nc

∑
An[n]>At

|φNL[n]|

2

, (3.12)

where, Nc is the number of the samples of received signal under the condition:

An[n] > At. At is set to be the threshold that would eliminate low amplitude

samples of signal due to its high sensitivity towards the noise, and φNL[n] is the

instantaneous phase non-linear component.

The standard deviation of the direct instantaneous phase non-linear compo-

nent is expressed by:

σdp =

√√√√√ 1

Nc

 ∑
An[n]>At

φ2
NL [n]

−
 1

Nc

∑
An[n]>At

φNL[n]

2

, (3.13)

where, all the parameters stay the same to the equation for σap.

The evaluation of the spectrum symmetry , namely P , is expressed by:

P =
PL − PU
PL + PU

, (3.14)

where, the PL and PU are denoted by:

PL =

fcn∑
n=1

|Xc[n]|2 , PU =

fcn∑
n=1

|Xc[n+ fcn + 1]|2 , (3.15)

where, Xc[n] is the expression of the Fourier transform of the signal xc[n], fc and

fs are set to be the carrier frequency and sampling rate. Then, fcn refers to,

fcn =
fcN

fs
− 1. (3.16)

The standard deviation of the absolute value of normalized and centered in-

stantaneous amplitude is expressed by:

σaa =

√√√√ 1

N

(
N∑
n=1

A2
cn[n]

)
−

(
1

N

N∑
n=1

|Acn[n]|

)2

. (3.17)
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The standard deviation of the absolute value of the normalized and centered

instantaneous frequency is expressed by:

σaf =

√√√√√ 1

Nc

 ∑
An[n]>At

f 2
N [n]

−
 1

Nc

∑
An[n]>At

|fN [n]|

2

, (3.18)

where, the centered instantaneous frequency fm is the normalization of the fN

by the sampling frequency fs according to,

fN [n] = fm[n]/fs. (3.19)

At this point, the referred centered instantaneous frequency fm is denoted by the

mean value of the frequency. It is given by the expression of:

fm[n] = f [n]− µf , µf =
1

N

N∑
n=1

f [n]. (3.20)

The standard deviation of the normalized and centered instantaneous ampli-

tude is given by the equation of:

σa =

√√√√√ 1

Nc

 ∑
An[n]>At

a2cn[n]

−
 1

Nc

∑
An[n]>At

acn[n]

2

. (3.21)

The kurtosis of the normalized and centered instantaneous amplitude of the

received signal, is expressed by:

µa42 =
E {A4

cn[n]}
{E {A2

cn[n]}}2
. (3.22)

The kurtosis of the normalized and centered instantaneous frequency, is ex-

pressed by:

µf42 =
E {f 4

N [n]}
{E {f 2

N [n]}}2
. (3.23)

Till now, we have presented several time-domain features and transformation

based features proposed in many studies. Apparently, there is exclusive usage for

each individual feature.
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The feature γmax represents the variations in signal amplitude. On one hand,

for amplitude-oriented modulations, such as QAM and amplitude-shift keying

(ASK), the value of γmax should be non-zero. On the other hand, for phase-

oriented modulations and frequency-oriented modulations, such as PSK and fre-

quency shift keying (FSK), the value of γmax should be zero. Therefore, this

feature can be used for classifications between amplitude-oriented modulations

and non-amplitude-oriented modulations.

The feature σaa and σa reveal the variation of signal amplitude, which func-

tions the function of γmax as well. However, these features are gifted with the

capability to classify the order of ASK.

The feature σap and σdp represent the variations in signal phase. They are

very useful in identifying the modulation order of PSK. Specifically, σap is able to

classify BPSK from M PSK, because there are only two possible phases in BPSK.

The feature σaf represents the variations in signal frequency. Therefore, it is

gifted to indicate the order of FSK and to classify PSK from FSK.

The feature P is mostly used to classify modulations with a symmetrical

spectrum from modulations with asymmetrical spectrum. For instance, AM

and double-sideband modulations (DSB) have symmetrical spectrums. The spec-

trums of vestigial sideband (VSB), lower sideband modulation (LSB) and upper

sideband modulation (USB), on the contrary, are asymmetrical. Apparently, this

feature is useful in analog modulations.

The feature µa42 and µf42 represent the distribution of the amplitude and the

frequency, respectively. The feature µa42 is used to classify AM from ASK. More-

over, it is able to classify FSK/PSK from ASK/QAM. The feature µf42 is used

to classify FM from PSK, because the frequency distribution of FM is looser,

compared with FSK.

3.3.2 High-order Statistics-based Features

In 1992, applying and developing the third order moment in signal amplitude, a

feature based modulation classification is proposed by Hipp, Soliman and Hsue

[30]. They researched the high order moments of signal phase for M PSK classifi-

cation known as common moments of modulation classification. The kth moment
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of received signal phase in theory over the additive white Gaussian noise channel

is investigated by Soliman and Hsue, which appears to be a monotonically in-

creasing function concerning the order of M PSK modulation. Therefore, M PSK

modulation for high order may give higher moment values, which makes it possi-

ble to classify M PSK modulation within different orders. Hence, the conclusion

of effective classification for M PSK modulation with a higher order demanding

with the higher order moment value is proposed. The expression of kth order

moment of the received signal phased is given by:

Momentk(r) =
1

N

N∑
n=1

θk(n), (3.24)

where θ(n) stands for the phase of the nth sample of received signal.

The calculation of various kth moment of received signal r = r[1], r[2], ..., r[N ]

of complex valued is expressed by:

Momentxy(r) =
1

N

N∑
n=1

rx[n] · r∗y[n], (3.25)

where, x+ y = k as well as r∗[n] stands for the complex conjugate of r[n].

Thereafter, a feature of the fourth order cumulant of the complex valued signal

is investigated by Swami and Sadler as a solution to classify the modulation of

M PAM, M PSK and M QAM. For instance, the second order cumulant can be

designed in two different equation of:

C20 = E
{
r2[n]

}
, C21 = E

{
|r[n]|2

}
. (3.26)

Equally, the fourth order cumulants could be defined in three definitions after

applying different placements of conjugation of:

C40 = cum(r[n], r[n], r[n], r[n]),

C41 = cum(r[n], r[n], r[n], r∗[n]),

C42 = cum(r[n], r[n], r∗[n], r∗[n]),

(3.27)

where, cum(·) stands for the cumulant function. Then the joint cumulant function

is expressed by:

cum(w, x, y, z) = E(wxyz)−E(wx)E(yz)−E(wy)E(xz)−E(wz)E(xy). (3.28)
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In the mean time, second cumulants and fourth cumulants can be calculated by

the expressions of:

Ĉ20 =
1

N

N∑
n=1

r2[n],

Ĉ21 =
1

N

N∑
n=1

|r[n]|2 ,

Ĉ40 =
1

N

N∑
n=1

r4[n]− 3Ĉ20,

Ĉ41 =
1

N

N∑
n=1

r3[n]r∗[n]− 3Ĉ20Ĉ21,

Ĉ42 =
1

N

N∑
n=1

|r[n]|4 −
∣∣∣Ĉ20

∣∣∣2 − 2Ĉ2
21.

(3.29)

3.3.3 Cyclostationary Analysis-based Features

Features investigating the periodic characteristics for a cyclostationary process,

namely the cyclostationary analysis of received signal is first discovered by Gard-

ner in 1994. Based on that, Spooner, cooperating with Gardner, started to apply

the cyclostationary analysis for modulation classification, while working on ana-

lyze the diversity among the spectrum appearance of different modulation types.

Then, a summarization of implementation is given by Ramkuman about the cyclic

feature modulation classification detection, in 2009.

For a common signal x(t) of sinusoidal function, one could say it is of a

cyclostationary feature or a second order periodicity if it could show its cyclic

autocorrelation that is expressed in the equation of:

Rα
x(τ) = lim

T→∞

1

T

∫ T/2

−T/2
x
(
t+

τ

2

)
x
(
t− τ

2

)
e−i2παt, (3.30)

where, frequency α 6= 0. Also, the Fourier transform of the cyclic autocorrelation

is then defined by:

Sαx (f) =

∫ ∞
−∞

Rα
x(τ)e−i2πftdτ. (3.31)
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Further, the cyclic spectrum could also refers to a spectral correlation function

(SCF) as the definition in:

Sαx (f) = lim
T→∞

lim
4τ→∞

1

T 4 t

∫ 4t/2
−4t/2

XT (t, f + α/2)X∗T (t, f − α/2)dt, (3.32)

where, contains the definition of:

XT (t, ν) =

∫ t+T/2

t−T/2
x(u)e−j2πνudu. (3.33)

3.3.4 Classifier

Having defined mainstream modulation features, the mainstream classifiers in

modulation classification will be presented, although, some of the classification

can be achieved by hierarchical decision trees. The optimization of decision

thresholds is hard to implement. Therefore, machine learning has been employed

for modulation classifications in the literature. On the one hand, machine learning

is useful in figuring out better thresholds for decisions. Hence, machine learning

based classifications can achieve higher classification rate in low SNR. On the

other hand, machine learning can compress the feature space.

In this section, I briefly introduce 3 mainstream machine learning classifiers,

namely artificial neural networks (ANN), support vector machines (SVM), and

k-nearest neighbor (KNN).
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Figure 3.1: A typical multi-layer network of ANN.

• Artificial Neural Networks

Mapping features to a high-dimensional space, the neural network constructs a

high-dimensional decision surface to achieve non-linear classifications. For a one-

layer neural network, the output of network is identical to a linear representation

of inputs, which can be given by:

y = W · c(x) + b1. (3.34)

Here, b1 is the bias parameters of the input layer. W represents the weight

parameter of each node. c(x) represents network inputs.

For a multi-layer neural network, the output of j-th layer can be derived by

a feed-forward algorithm, given by:

yj = F (W j · cj(yj−1) + bj), (3.35)

where, bj is the bias parameters of the j-th layer. F is called the activation func-

tion. The nature of the neural network is a high dimensional nonlinear transfor-

mation. More nodes are equivalent to higher feature dimensions. More layers are

equivalent to more non-linear transformations. A typical multi-layer network is

shown in Figure 3.1.
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As a supervised machine learning structure, the neural network needs a train-

ing phase to minimize classification error. The back propagation (BP) is widely

used for this phase by calculating the change of weight and updating weight.

For more information on the principles of the neural network, please refer to the

Network Tutorial of Stanford University: UFLDL Tutorial.

• Support Vector Machine

In contrast to the neural network, support vector machine is achieved by reduc-

ing the dimension of the high-dimensional features. Specifically, support vector

machine is useful in classification by building a hyperplane and maximizing its

distance to the binary classes on each side of the hyperplane.

Hyperplane

Class B

Class A

Figure 3.2: A typical two-class classification with SVM.

The linear kernels of SVM are defined by:

K(x,w) = xTw, (3.36)

where, x is the input vector, and w is the weight vector. Then the separation

hyperplane is given in:

g(x) = xTw + w0, (3.37)
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where, w0 is a bias value. w can be optimized by training phase. A typical

two-class classification with support vector machine is shown in Figure 3.2. The

specific training details can be found in [31].

Although ANN and its extensions are widely used for all kinds of classification

tasks, deficiency in training phase reduces its classification rate. On the contrary,

SVM shows superiority when the number of samples is insufficient because SVM

can avoid over fitting or local minimum by dimension reduction. In general,

binary SVM is mostly used in two classes of classifications. However, if more

than two classes are involved in classification, SVM can be used to classify the

first class from all the other classes. Then this phase should be repeated to classify

the second class, and so on.

• K-Nearest Neighbor

As a non-parametric method, K-Nearest Neighbor assigns a new sample to a class

by finding a K number of training base closest in distance to the new sample.

Specifically, it labels the new sample with the majority of the K nearest neighbors

that have same class label.

Suppose we have M reference samples for each class M(i), i = 1.2...., I. I

is the number of classes. F i(m) represents the features of each class. F is the

feature of the new sample. M̂ represents the samples after classification. In

pseudo code, the algorithm can be expressed as follows [32]:

input:

• M , F i(m) and F

output: M̂

Method:

Step 1: Traverse the distance between F and F i(m);

Step 2: Resort the distances matrix in descending order;

Step 3: Select the first K distance;

Step 4: Label all classes for all distance;

Step 5: Mark the new sample with label i′;
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Step 6: Return M̂ as modulation result;

KNN is easy to implement because of its low complexity of calculation. How-

ever, the classification rate of KNN is severely affected by feature weight. It is

necessary to standardize features before classification.

3.4 A comparison with Independent Components

Analysis (ICA)

In addition to machine learning, ICA is also widely used in the field of signal clas-

sification. For example, the ICA can be used to extract individual components

from a mixed signal. Therefore, ICA is often used in conjunction with arrayed

signal processing techniques. In the field of modulation classification, ICA is often

used for MIMO systems to obtain the signal features under the blind channel.

For the extracted features, the usage of classifiers is essential [33, 34]. There-

fore, ICA is more like a pre-processing process under a non-Gaussian channel. In

fact, ICA and the methods described herein are not contradictory. Combining

ICA with machine learning methods might effectively improve the classification

performance under the ISI and other interference. For instance, a signal can be

isolated from interference using ICA. A typical block diagram of MIMO modula-

tion classification is given in Figure 3.3.

ICA can be used to separate the MIMO signal and then extract the required

information from it. For the likelihood classifier, ICA can improve the accuracy

of parameter estimation. For feature classifiers, ICA can provide more robust

features.

3.5 Chapter Summary

In this chapter, the principle of maximum likelihood method is first presented,

which is the optimal method if all information about the channel is known. The

likelihood is given in equation (3.4). In fact, the maximum likelihood method is

used as a reference for performance comparison, to evaluate the proposed method.
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Figure 3.3: A typical block diagram of MIMO modulation classification.

Although several methods had been proposed to improve the maximum likeli-

hood, it still maintains the dominant position on performance in ideal channel

conditionals.

Hereafter, the feature-based method is introduced, which yields sub-optimal

performance for much lower computational requirements. Several classical fea-

tures are mainly presented, such as spectral-based features, high-order statistics-

based features, and cyclostationary analysis-based features. Their suitability is

analyzed for the research-related modulations. Because the high-order statistics-

based features are used for one of the research, the detail of this feature will

be discussed in subsequent chapters. Three mainstream classifiers are presented,

namely artificial neural networks, support vector machines, and k-nearest neigh-

bor, in the end.
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Chapter 4

Supervised Machine Learning

based Modulation Classification

This chapter presents a supervised machine learning based modulation classifi-

cation method. Higher order cumulants are used as extracted features. Stacked

denoising autoencoder (SDAE) is used as the classifier. Two scenarios have been

considered in this chapter, which is rapid classification scenario and high accuracy

classification scenario.

This chapter is organized as follow. Section 4.1 provides an introduction to

the proposed scheme. Section 4.2 introduces the signal preprocessing and data

constructions of this method. Section 4.3 presents the theory of stacked denoising

autoencoder (SDAE). Then Section 4.4 presents the numerical results obtained

via simulations. Section 4.5 summarizes this chapter.

4.1 Introduction

Machine learning has been used for modulation classification in many papers. [28]

proposed a method based on an artificial neural network, a supervised classifier,

by inputting features that contain the amplitude and phase information into an

ANN network. As one of the earliest papers using machine learning for modula-

tion classification, it has a drawback, wherein, the features it utilizes are unable

to identify the scheme of the QAM that is necessary for high-speed transmission.

[35] proposed a new feature to classify OFDM from QAM and BPSK, although it
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is incompetent for more complicated modulations in single carrier systems. [26]

proposed a signal recognition based on the same classifier as in this paper and it

achieved an excellent performance in the AWGN channel. However, its achieve-

ment concentrates more on the recognition between the OFDM, FSK, and a few

single carrier modulations in a simple scheme. This severely constrains its appli-

cation in sophisticated modulation schemes that are indispensable for cognitive

radio systems.

To achieve a performance improvement and QAM classification, I use a deep

network instead of the ANN to achieve modulation classification with a stacked

multi-layer structure. This improves the training performance of each layer. Ad-

ditionally, a denoising autoencoder extends its performance by reconstructing the

data from a corrupted version to extract more robust features [36]. Further, a

deep network is able to discover suitable features intelligently, although these

features may not be understandable [37]. Owing to the above advantages, in

the past year alone, preliminary interest and discussions regarding deep learning

have evolved into full-fledged conversations that have captured the attention and

imagination of researchers and engineers.

4.2 Signal Preprocessing and Input Data Con-

structions

There are several MC methods that assume sampling synchronization, carrier

recovery and waveform recovery have been achieved before the MC. However, to

better understand the performance of this method, it exhibits the influence of the

signal sampling synchronization over the classification ability.

This research emphasizes that although there are papers [26] [24] that utilize

deep networks for signal modulations, they use pulse shaped signals rather than

modulated symbols. Therefore, more input nodes are compulsory for their net-

works, entailing a significant calculation time. This method avoids this problem

using modulated symbols.

In order to extend the application of this paper, two possible scenarios are
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considered: a rapid classification scenario and a high accuracy classification sce-

nario.

4.2.1 Rapid Classification Scenario

In certain cases, the processing time is the priority and classification accuracy can

be compromised. For instance, a primary user may change its modulation from

one to another frequently. Therefore, in this research, a suppose is given that a

rapid classification response is more urgent than an accurate result in the rapid

classification scenario. This goal can be reached using two approaches. In one

approach, classifiers with low computational complexity are favored, and in the

other approach, classifiers that can utilize shorter symbol sequences are preferred.

Hence, every intercepted signal containing four symbols is assumed, although the

classification capability may benefit from a longer input. The performance with

different length of signal is not provided in this study since structure redesign

is way too time consuming. In addition, complex symbols are reassigned by

splitting the in-phase and quadrature symbols into two segments and line them

end-to-end. These reassigned symbols are used as the input of network in this

scenario.

4.2.2 High Accuracy Classification Scenario

A high accuracy classification scenario, on the contrary, ensures sufficient numbers

of symbols for the input. The classification accuracy is the prior goal for this

scenario. For better noise resistance, the higher-order cumulants are used as

an expert feature [38], instead of raw symbols as the input of network. This

is because of those cumulants, whose orders are greater than two, are zero for

Gaussian random variables. In view of this, higher order cumulants are often

used to compress the interference from Gaussian noise.

The nth-order cumulants of signal x(k) can be represented as:

Cnm = cum[x(k), x(k), ..., x(k), x∗(k), x∗(k), ..., x∗(k)], (4.1)

where n indicates the total number of x(k) and x∗(k), m stands for the num-

ber of x∗(k), and cum[·] represents cumulants operation. I is used to represent
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the set [x(k), x(k), ..., x(k), x∗(k), x∗(k), ..., x∗(k)]. Then, the nth-order cumulants

operation can be represented as [39]:

cum(I) =
∑

⋃q
p=1 Ip=I

(−1)q−1(q − 1)!

q∏
p=1

m(Ip), (4.2)

where
⋃q
p=1 Ip = I indicates an additive operation among all the division of I. I

have q = {1, 2, ..., n}, and p = {1, ..., q}. m is the mathematical expectation. Ip

is the division of the set I. Ip satisfies
⋃
p Ip = I.

The purpose of a higher-order statistic is to build a more friendly feature

space for the classifier. The normalized cumulants have been calculated for the

following modulation schemes: BPSK, QPSK, 8PSK, 16QAM, and 64QAM. The

following cumulants are used: C20, C21, C40, C41, C42, C60, C61, C62, C63, C80.

Their theoretical values are listed in Table 4.1. For any signal that the mean

is zero, the odd-order cumulant is equal to zero [30]. Therefore, considering

the potential normalization process, only the even-order cumulants are adopted.

That is, only the case where n is even is considered. The data structure of the

high accuracy scenario is depicted in Figure 4.1.

The work flow of the method is exhibited in Figure 4.2. The network is first

trained by training data, then input the reassigned symbols or the cumulants of

the intercepted signals for modulation classifications. It should be noted that

all the training data used for training are pure samples that are generated with-

out being affected by noise, timing offset or ISI channel. This research does not

specifically optimize the training data for scenarios such as timing offset or ISI,

although such optimizations will significantly improve the classification perfor-

mance. Moreover, although multiple activation functions can be used, this study

uses only the sigmoid function. This is because the network structure of this

study is not very lengthy. Therefore, the problem of gradient disappearance is

not the bottleneck of this study.
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Figure 4.1: Data structures of the two scenarios.

Rapid Classification Scenario High Accuracy Classification Scenario

The cumulants of 

intercepted signals

The reassigned symbols 

of intercepted signals

SDAE SDAETraining Data Training Data

Modulation 1,2,3… Modulation 1,2,3…

Figure 4.2: The workflow of this method.
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Table 4.1: Higher-order cumulants of the M PSK and M QAM

BPSK QPSK 8PSK 16QAM 64QAM

C20 1 0 0 0 0

C21 1 1 1 1 1

C40 -2 1 0 -0.68 -0.619

C41 -2 0 0 0 0

C42 -2 -1 -1 -0.68 -0.619

C60 16 0 0 0 0

C61 16 -4 0 2.08 1.7972

C62 16 0 0 0 0

C63 16 4 4 2.08 1.7972

C80 -272 -34 1 -13.9808 -11.5022

4.3 Stacked Denoising Autoencoder

4.3.1 SDAE Structure

In order to appreciate the advantages of the stacked denoising autoencoder (SDAE),

this section briefly reviews its structure and function. The SDAE is an extension

of the sparse autoencoder, whose activation (output value) of each layer is trans-

mitted to the next layer forward. The input layer represents the input array with

a number of input units identical to the number of input features. The hidden

layers, whose values are not observed in the training set, contain multiple layers

with parameters that are obtained by greedy layer-wise training [40]. The word

stacked indicates a different way of training that pre-trains a deep network for
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each layer in turn. Compared with a conventional neural network, the advantages

of SDAE are as follows:

• Use drop out at the input level to improve recognition accuracy.

• Layer-wise pre-training is used to avoid falling into the local minimum trap.

Therefore, SDAE can achieve higher classification accuracy.

The output layer consists of a softmax classifier that is capable of classifying

the modulation as desired. The softmax classifier is a supervised classifier that

regards its output vector as a probability distribution over candidate modulations.

It can maximize the conditional probability of a sample corresponding to its

correct class [41]. The number of output units is identical to the number of

modulation schemes that is desired to classify. The autoencoder is trained by a

reconstructed input from its corrupted version. The structure of the SDAE in

this research is displayed in Figure 4.3. The network structure is decided using

the training success rate. Specifically, the network is trained by a data base and

then, test the success rate of the training by different data. The number of nodes

is changed in the 1st hidden layer to determine the best number of nodes that

have the highest success rate of training. Then, the structure of the 1st hidden

layer is set. This process is repeated to determine the best number of nodes for

the 2nd hidden layer.

The specific mathematical explanations are given by subsequent sections.

4.3.2 SDAE Forward Propagation

The autoencoder tries to learn a function that aims at transforming its input, x,

into an output, x̂, similar to x [42]. It values its distortion by the cost function

and determines the optimized activation of each node. Let x be the original input

array of the network. According the definition of denoising autoencoder [43], the

real input array of the network is c(x). Here, c is a non-deterministic procedure

of corruption. Then the values of the hidden layer can be obtained by:

y = F (W · c(x) + b1), (4.3)
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Figure 4.3: Structure of the SDAE with two hidden layers.

and the output of the hidden layer is,

z = F (W T · y + bh). (4.4)

Here, F is called the activation function. In most cases, the activation function

is chosen to be a sigmoid function or a hyperbolic tangent function. b1 and bh

are the bias parameters of the input layer and the hidden layer. W represents

the weight parameter of each node.

A stacked architecture uses the output of a hidden layer as the input of the

next hidden layer. Let xj, yj, and zj represent the input, value, and output of a

hidden layer, j, respectively. Then, the forward propagation of the entire SDAE

can be expressed by:

yj = F (W j · cj(yj−1) + bjh). (4.5)

Let L stand for the last hidden layer of the network. Then, the final output of

SDAE with a softmax classifier can be expressed by:

yL = softmax(WL · yL−1 + bLh ). (4.6)

Here, bLh is the bias parameter of the last hidden layer.

The forward propagation decides the relations between the input and output

of the network. However, the difference between the input and output needs to
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be minimized to obtain the correct weight parameters of each nod. This goal can

be achieved by the SDAE fine-tuning.

4.3.3 SDAE Fine-tuning

A set of training examples are assumed, {x1, ..., xm}. These examples belong to K

classes. k = {1, 2, ..., K} is given here. The network outputs and the cost function

of a single training example are defined by hW,b (x) and J(W, b;x), respectively.

Then, the cost function of a single example can be given by:

J(W, b;x)=
1

2
‖hW,b (x)− x‖2 , (4.7)

where W and b represent the weight and the bias parameters of the hidden layers,

respectively. For a training set ofm examples, the average error term of the overall

cost function can be defined by:

J(W, b) =
1

m

m∑
i=1

J(W, b;x(i)), (4.8)

where m is the number of examples, x(i) represents the input vectors. To compress

the magnitude of the weights and prevent overfitting, a decay has to be applied

to the weight terms that transforms (4.7) into:

J(W,b)=
1

m

m∑
i=1

(
1

2

∥∥hW,b(x(i))−x(i)∥∥2)+λ

2

nl−1∑
l=0

sl∑
i=1

sl+1∑
j=1

(
W

(l)
ji

)2
, (4.9)

where λ is the weight decay parameter for controlling the relative weight of the

two components. nl is the number of layers. sl denotes the number of nodes in

layer l. W
(l)
ij denotes the parameter between unit j of layer l and unit i of layer

l+ 1. As the sparse autoencoder embraces a spare constraint, most of the hidden

units may retain zero, if a sigmoid activation function is applied here. Then, the

penalty term can be expressed by:

KL (ρ ‖ ρ̂j) = ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

, (4.10)

which is based on the Kullback-Leibler divergence [36], a function to measure the

difference between two distributions. ρ̂j is the average activation level of the jth
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hidden unit for all the data. ρ is the sparsity parameter and is typically a small

value around zero.

Considering this, it is apparent that the overall cost function of sparse au-

toencoder with the weighted spare penalty term is given by:

Jsparse (W, b) = J (W, b) + β

s2∑
j=1

KL (ρ ‖ ρ̂j) , (4.11)

where s2 represents the number of hidden units and β controls the weight of

the sparsity penalty term. Considering the sparse autoencoder is followed by a

softmax classifier, the final output of entire network is a vector that contains K

elements. Therefore, the final cost function of the entire network is:

J(W,b)=− 1

m

m∑
i=1

(
log

ey
(L)
ti∑SL

k=1 e
y
(L)
k

)
+
λ

2

nl−1∑
l=0

sl∑
i=1

sl+1∑
j=1

(
W

(l)
ji

)2
. (4.12)

Here, ti stands for the index corresponding to the correct label for sample i. To

optimize the activation of each layer, J(W, b) should be minimized as a function

of W and b. Changing W and b, the minimum value of J(W, b) can be found.

A typical way to figure out the minimum value of J(W, b) is to use the gradient

descent [44].

4.4 Simulation and Results

To train the classifier, a training database with 10,000 samples for each modula-

tion had to be built in advance. The activation function is a sigmoid function.

I intercepted four symbols for the rapid classification scenario and 500 symbols

for the high accuracy scenario. The parameters used for SDAE (training and

classification) are shown in Table 4.2.

4.4.1 Rapid Classification Scenario

The network structure for the rapid classification scenario is an 8-64-32-5 struc-

ture. This structure was selected by a comparison of the training error. To

determine the number of nodes to be used in each layer, the change in training
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Table 4.2: Parameters used for SDAE (training and classification)

Parameter Value

Input layer corruption 0.4

1st hidden layer corruption 0.4

1st hidden layer sparsity 0.05

2nd hidden layer sparsity 0.05

Number of training samples 10,000

Learning rate 1

Activation function sigmoid

error corresponding to different numbers of nodes in each layer are depicted, as

shown in Figure 4.4. We design the structure of SDAE layer by layer because of

the layer-wised pre-train. It is a reasonable inference that a layer-wised structure

design could improve the pre-training effect. The top plot is for the 1st hidden

layer and the bottom plot is for the 2nd hidden layer. Apparently, 64 nodes of

the 1st layer and 32 nodes of the 2nd layer achieve the highest probability of a

successful training. Therefore, an 8-64-32-5 network structure was selected.

The execution time is given in Table 4.3. Note that once the training phase is

finished, SDAE does not need to repeat this phase for each test signal realization.

Therefore, the time cost of training phase should not be included in the time cost

of the classification process.

The same hardware environment was used for both methods. Because of the

high complexity of its algorithm, ML clearly requires more time to process than

SDAE. The method has an advantage over ML with respect to running speed

(14 times faster). Moreover, the time consumed by the SNR estimation for ML
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Figure 4.4: Change in the training error corresponding to the different numbers

of nodes in each layer.

Table 4.3: Execution time comparison of proposed method with ML (10,000

iterations)

SDAE (classification

part)

ML SDAE (training

part)

Execution

Time (s)

1.001279 14.465184 32.886

cannot be ignored, because all the channel parameters have to be known by ML.

Therefore, one can conclude that the proposed method is more competent than

ML because classification speed is the priority of this scenario.

In Figure 4.5, the classification accuracy of proposed method is compared with

that of ML [19] for the rapid classification scenario. For each value of the SNR,

10,000 realizations of the test data were produced. All five modulation types were

considered simultaneously.

Because the ML classifier obtains optimal performance under ideal conditions

if expert features are not utilized, it is more accurate than my method at low

SNRs. The ML shows a Pcc of > 97% at 20 dB. The method exhibits a Pcc of
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Figure 4.5: Classification accuracy comparison of the proposed method with ML.
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Figure 4.6: Classification accuracy for different individual modulations.
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ability.
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Figure 4.8: An ISI channel with a parameter of [1 0.8 0.3] is considered.
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Figure 4.9: Classification accuracy for different individual modulations under ISI.
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Figure 4.10: An ISI channel with a parameter of [1 0.1] is considered.
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Figure 4.11: Classification accuracy for different individual modulations under

ISI.

> 97% at 29 dB. However, the system requirements of the ML method are much

stricter than those of the method. One of those requirements is that the noise

variance of the intercepted signal has to be known. In the modulation classifica-

tion field, this requirement is an impractical assumption in most cases. Therefore,

the SNR estimation has to be applied. To date, there are few SNR estimation

methods that work for modulation classification. Most SNR estimation methods

are data-aided [45], which means that a perfect knowledge or an estimate of the

transmitted sequence is necessary for the estimators. In addition, the limitation

of symbol length is another factor that cannot be ignored. Therefore, the ML

cannot practically work ideally without any performance degradation. To fairly

compare the ML method and the proposed method, the influence of SNR error

was considered. The SNR error in Figure 4.5 is 5 dB. The ML shows a Pcc of

> 97% at 24 dB with SNR error. Apparently, the accuracy gap between the ML

and the proposed method is narrowed. Moreover, the Pcc of the ML with SNR

error degrades faster than the proposed method when SNR decreases. Certainly,

the SNR error should be much smaller than 5 dB in practical use, hence the per-

formance gap between ML and proposed method could be enlarged. This setting

is only for a better insight into the potential of the ML method.

The performance for different individual modulations is given in Figure 4.6.
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It is clear that a lower SNR degrades classification accuracy for all modulations.

All of the modulations, 16QAM and 64QAM have higher classification accuracy

than M PSK. BPSK has higher classification accuracy than QPSK and 8PSK at

lower SNRs.

In Figure 4.7, the influence of the signal sampling synchronization is investi-

gated over the classification ability. Although timing offset is always time-varying

in practical use, a fixed timing error of one sample was considered. As the raised

cosine transmit filter was configured to have 20 output samples per symbol, the

timing offset was 0.05. Clearly, both methods are affected by the timing offset.

SDAE is more sensitive to timing offset because the network enlarges the dis-

tortion caused by it. Incidentally, both the methods fail when a higher timing

offset exists. Therefore, timing offset should be compensated for to obtain better

classification accuracy.

ISI channels have been considered as well. From Figure 4.8 to Figure 4.11, the

influences of ISI are investigated over the classification ability. In Figure 4.8, an

ISI channel with a parameter of [1 0.8 0.3] is considered. Apparently, proposed

method cannot function under this channel. This is expected because the second

and the third delay cannot be ignored.

The performance for different individual modulations under ISI is given in

Figure 4.9. It is clear that modulation other than 64QAM can not be correctly

classified. To be precise, all the modulation is classified as 64QAM. This is

because the ISI has caused significant interference with the amplitude of all the

modulated signals.

In Figure 4.10, an ISI channel with a parameter of [1 0.1] is considered. This

time, the proposed method still cannot accurately classify all the modulation

methods under this channel, although the second delay is relatively much smaller

than the previous scenario.

The performance for different individual modulations under this ISI is given

in Figure 4.11. It is clear that only 64QAM can be correctly classified. Moreover,

16QAM can be classified occasionally because 16QAM also contains a variety of

amplitude information.

55



4. SUPERVISED MACHINE LEARNING BASED MODULATION
CLASSIFICATION

40 60 80 100 120 140 160 180 200 220 240
Number of 1st hidden layer nodes

0.6

0.8

1

P
ro

ba
bi

lit
y 

of
 s

uc
ce

ss
fu

l t
ra

in
in

g

o

20 40 60 80 100 120 140 160
Number of 2nd hidden layer nodes

0.6

0.8

1 o

Figure 4.12: Change in the training error corresponding to the different numbers

of nodes in each layer.

4.4.2 High Accuracy Classification Scenario

The network structure for the high accuracy classification scenario is an 8-120-

80-5 structure. This structure was selected by a comparison of the training error.

To determine the number of nodes to be used in each layer, the change in the

training error corresponding to the different numbers of nodes in each layer is

depicted in Figure 4.12. The top plot is for the 1st hidden layer and the bottom

plot is for the 2nd hidden layer.

Apparently, 120 nodes of the 1st layer and 80 nodes of the 2nd layer display

the highest probability of a successful training. Therefore, an 8-120-80-5 network

Table 4.4: Execution time comparison of proposed method with ML and KNN

(10,000 iterations)

SDAE (proposed

method)

ML KNN

Execution

Time (s)

110.939827 950.636033 548.826936
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Figure 4.13: Classification accuracy comparison of our method with ML and

KNN.

structure was selected .

The execution time is given in Table 4.4. the same hardware environment

was used for all methods. ML clearly requires the most time to process than

proposed method, although processing time is not the priority in this scenario.

The proposed method has an advantage over ML with respect to running speed

(9 times faster). Moreover, the proposed method has an advantage over KNN

with respect to running speed (5 times faster). Therefore, one can conclude that

the proposed method is more efficient than ML and KNN.

The performance of proposed method is compared with the k-nearest neighbor

[23] and ML [19] methods for the high accuracy scenario in Figure 4.13. For each

value of the SNR, 10,000 realizations of the test data had been produced. The

ML shows a Pcc of > 97% at 9 dB. The proposed method shows a Pcc of > 97%

at 5 dB. The superior performance of this method is reasonable because it can be

interpreted as an integration of the higher-order cumulants, spare autoencoders,

and a softmax classifier. The higher-order cumulants suppress Gaussian noise

[38]. The autoencoder extracts feature from the higher-order cumulants [42].

Then, the softmax classifier achieves maximum likelihood classifications [46]. The

proposed method performs better than KNN, although KNN also utilizes higher-

order cumulants. The accuracy degradation of my method at 4 dB is caused

57



4. SUPERVISED MACHINE LEARNING BASED MODULATION
CLASSIFICATION

SNR (dB)
1 2 3 4 5 6 7 8 9 10

P
cc

0

0.2

0.4

0.6

0.8

1

BPSK
QPSK
8PSK
16QAM
64QAM

Figure 4.14: Classification accuracy for different individual modulations.
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Figure 4.15: Influence of the signal sampling synchronization on classification

ability.
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Figure 4.16: Influence of the ISI on classification ability.

by the BPSK. This can be observed if the performance for different individual

modulations is investigated in Figure 4.14. It is clear that a lower SNR degrades

classification accuracy for all modulations. Of all the modulations, 16QAM and

64QAM have higher classification accuracy than M PSK. BPSK has the lowest

classification accuracy at lower SNRs.

The influence of the signal sampling synchronization over the classification

ability is shown in Figure 4.15. A timing error of one sample was supposed.

The raised cosine transmit filter sampled 20 times per symbol. Therefore, the

timing offset was 0.05. The proposed method shows a Pcc of > 97% at 6 dB. The

ML exhibits a Pcc of > 97% at 10 dB. Next, a timing error of three samples is

supposed. The timing offset is 0.15. The proposed method has a Pcc of > 97%

at 7 dB. The ML cannot function under this timing offset. Clearly, the proposed

method is slightly affected by the timing offset. This robustness to timing offset is

attributable to the higher-order cumulants. On the contrary, ML cannot function

as usual when the timing offset increases. This is expected because ML requires

all channel parameters to be known. A severe timing offset leads to a mismatch

between the model used in the classifier design and the actual statistics in the

channel. Therefore, one can conclude that the proposed method is superior to

the ML when sampling is not synchronized.

ISI channels have been considered as well. In Figure 4.16, the influences of
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ISI are investigated over the classification ability. Specifically, an ISI channel

with a parameter of [1 0.8 0.3] and an ISI channel with a parameter of [1 0.1] are

considered. Apparently, the performance of proposed method has been seriously

affected by the first ISI channel. This is expected because the second and the

third delay cannot be ignored. However, the proposed method can accurately

classify all the modulation methods under the second ISI channel, because the

second delay is relatively much smaller than the previous scenario.

4.5 Chapter Summary

Table 4.5: Summary of the three methods

Rapid Classification

Scenario

High Accuracy Classification

Scenario

SDAE High execution speed

Sensitive to timing offset

High classification accuracy

Robust to timing offset

ML Low execution speed

Sensitive to timing offset

Medium classification accuracy

Sensitive to timing offset

KNN Unsuitable for this

scenario

Lowest classification accuracy

4.5.1 Rapid Classification Scenario

First, the proposed method has an advantage over ML with respect to running

speed (14 times faster). Moreover, the time consumed by the SNR estimation

for ML cannot be ignored. Although the classification accuracy degrades fast

when a timing offset exists, it is less complex to accomplish the timing offset

estimation and recovery [47] than the blind SNR estimation [48]. Therefore, one
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can conclude that the proposed method is more competent than ML because

classification speed is the priority of this scenario.

Second, the KNN cannot be used in the rapid classification scenario because

a long sequence of symbols is necessary for it to calculate the cumulants.

4.5.2 High Accuracy Classification Scenario

First, the proposed method is more accurate than ML in the high accuracy clas-

sification scenario because this method integrates the advantages of the higher-

order cumulants and SDAE. The ML shows a Pcc of > 97% at 9 dB. The proposed

method shows a Pcc of > 97% at 5 dB. This advantage is further increased if a

timing offset exists. It shows a Pcc of > 97% at 6 dB while timing offset is 0.05

symbols. The ML exhibits a Pcc of > 97% at 10 dB while timing offset is 0.05

symbols.

In addition, the proposed method obtains a higher classification accuracy than

the KNN in the high accuracy scenario. The KNN shows a Pcc of > 78% at 5

dB. The proposed method shows a Pcc of > 97% at 5 dB. It shows superiority to

KNN in both the scenarios.

4.5.3 Discussion

A summary of the advantages and disadvantages of the proposed method, ML,

and KNN is given in Table 4.5.

The performance of proposed method can be improved if more time could be

spent on the optimization process. The goal is to propose a digital modulation

classification scheme for CR systems. Therefore, an analysis of the relations

between the number of cumulants and classification accuracy was not performed.

A higher or lower number of cumulants could affect the classification accuracy.

In addition, complex symbols are used rather than pulse shaped complex sig-

nals as the network input, simplifying the network topology and reducing the

calculation overhead. This can be easily verified if our network structure is

compared with other convolution neural network-based methods [24] and con-

ventional neural network-based methods. [24] trains its network for 23 minutes
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over a 900,000-sample training set. The time it consumes for the training phase

is approximately 46 times that of the proposed method.

Drawbacks for this method are inevitable. First, the training phase may con-

sume considerable time, although it can be finished in advance. Using a platform

with higher calculation performance may solve this problem. In computer vision

research, graphics processing units have been widely used to speed up the process

of the training phase. This could be a feasible solution to the high calculation

overhead. Next, as long as the length of the input signal is changed, the network

structure has to be redesigned for a rapid classification scenario. This could be

a time-consuming portion of this method. The use of expert features could be a

feasible solution because the number of features can be decided in advance.
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Chapter 5

Unsupervised Machine Learning

based Modulation Classification

This chapter presents an unsupervised machine learning based modulation classi-

fication method. Time-frequency analysis is used for feature extractions. Density-

based spatial clustering of applications with noise is used as the classifier. The

proposed method shows a stronger ability of classification than conventional

methods.

This chapter is organized as follow. Section 5.1 provides an introduction to the

proposed scheme. Section 5.2 introduces the feature extraction of this method.

Section 5.3 presents the theory of DBSCAN and the way of parameter decisions.

The classification scheme is presented in section 5.4. Then section 5.5 presents the

numerical results obtained via simulations. Section 5.6 summarizes this chapter.

5.1 Introductions

Many studies utilized time-frequency distributions to perform modulation clas-

sification. In [49], the authors proposed a method based on the Margenau-Hill

Distribution (MHD), which is a time-frequency distribution. It uses MHD to

extract amplitude and phase features for the subsequent classifier. However, it

works only for PSK signals and 8QAM signals. Moreover, some of the parame-

ters that it uses are decided based on experience, and not scientific derivation.

Further, its performance in low signal-to-noise ratio conditions cannot satisfy the
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demand in real applications. In [50], the authors proposed a method based on

the pseudo Wigner-Ville distribution (PWVD), which is the same distribution as

that used in this paper. It utilized successive spectral slots to identify the number

of carrier frequencies. Therefore, it is able to distinguish FSK signals from PSK

signals. However, because it cannot classify signals with different orders, it has

only limited use in practice. In [35], the authors modified the method in [50] by

using the maximum power spectral density (PSD). It can classify FSK signals in

different orders, but not PSK signals with different orders.

The contributions and novelties of this method are as follows:

To better understand what can be done in the time frequency distribution

(TFD), a general model is first considered for the signal and the definitions of

the relevant modulations.

5.2 Feature Extraction

5.2.1 Feature-Extraction Tool

The Wigner-Ville distribution (WVD) is a type of TFD that analyses signals in

the time-frequency domain. The TFD is a view of a signal (taken to be a function

of time) represented over both time and frequency [51], and it is often complex-

valued over time and frequency, e.g., the short-time Fourier transform (STFT).

One form of the TFD can be formulated by multiplying a signal by its time delay.

This formulation was proposed by Eugene Wigner in 1932, and it was modified

by Ville in 1948 [52]. To suppress the interference terms, a smoothing function is

used in order to execute a convolution because interference terms are oscillatory

[53]. The pseudo-WVD (PWVD), which is a form of smoothed WVD, is defined

as

Wx(t, f) =

∫
τ

x(t− τ

2
)x∗(t+

τ

2
)h(t)e−2jπfτdτ, (5.1)

where τ is the time delay, f is the frequency and h(t) is a smoothing function.

Figure 5.1 shows a signal that contains two pulses in the time domain, and

its contour on time-frequency plane. In Figure 5.1(a), the upper figure repre-

sents a signal that contains two pulses in the time domain. Moreover, there is no
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(a) A signal that contains two pulses in time domain

auto-term

auto-term

interference-term

(b) 3D vision of signal contour on time-frequency plane

Figure 5.1: A signal that contains two symbols in time domain, its contour and

the 3D vision on time-frequency domain (PWVD).

overlap between pulses. The lower figure in Figure 5.1(a) is the contour exhibi-

tion of the time-frequency plane. Specifically, the auto-terms with red rectangles
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are produced by pulses in the time domain. Between auto-terms, a component

named interference-term appears. This component is generated by the coexis-

tence of pulses. Unlike the short-time Fourier transform, PWVD is a bilinear

time-frequency distribution. Therefore, any two independent components pro-

duce an interference-term. In most cases, scholars try as far as possible to elimi-

nate this interference-term. In this study, however, it is the key to extract phase

features. Different phase shifts lead to different initial oscillation phases, which in

turn lead to interference-term shifts along the frequency axis. The 5.1(b) shows

the 3D time-frequency distribution of the same signal. An obvious oscillation can

be found from the interference term.

According to [51], the envelop of interference-term is identical with those of

the auto-terms. The coordinate of interference-term depends on the coordinate

of auto-terms. The interference-terms oscillate along the frequency axis. In par-

ticular, the further that two signals are, the more rapid the interference-terms

oscillate. To better understand these characteristics, we turn to mathematical

derivations.

Assuming that s1(t), s2(t) are two signals, then the cross-PWVD is given by

Ws1,s2(t, f) =

∫
τ

s1(t−
τ

2
)s∗2(t+

τ

2
)h(t)e−2jπfτdτ. (5.2)

The auto-PWVD of a signal s1 is defined as

WAuto
s1

(t, f) = Ws1,s1(t, f). (5.3)

From the PWVD’s hermiticity property Ws1,s2(t, f) = W ∗
s2,s1

(t, f), one could

know that the auto-PWVD of signal s1 has real values.

Assume a pulse-shaped symbol:

xi(t) = Aig(t). (5.4)

The complex symbol and Nyquist pulse are Ai and g(t), respectively. The auto-

PWVD of a pulse shaped symbol is defined as

WAuto
xi

(t,f)=Wxi,xi(t,f)=

∫
xi(t+

τ

2
)x∗i (t−

τ

2
)h(t)e−j2πfdτ. (5.5)
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According to (5.4), (5.5) can be rewrited as

WAuto
xi

(t,f)= |Ai|2W0(t, f), (5.6)

where W0(t, f) is defined as

W0(t, f) =

∫
τ

g(t− τ

2
)g∗(t+

τ

2
)h(t)e−2jπfτdτ. (5.7)

As the modulated signal contains multiple symbols, it can be thought of as a

multi-component signal. An N-component signal s(t) is considered as,

s(t) =
N∑
i=1

xi(t). (5.8)

The auto-PWVD of the N-component signal s(t) can be expressed as

WAuto
s (t,f)=

N∑
k=1

N∑
l=1

Wxk,xl(t, f)=
N∑
k=1

W S
k (t,f) +

N∑
k=1

N∑
l=1

l>k

W I
kl(t,f), (5.9)

where

W S
k (t, f) = WAuto

xk
(t, f) (5.10)

and

W I
kl(t, f) = Wx∗k,xl

(t, f) +Wxk,x
∗
l
(t, f) = 2Re

{
Wxk,x

∗
l
(t, f)

}
(5.11)

are PWVD signal term corresponding to the k-th component and PWVD inter-

ference term corresponding to the k-th and l-th components, respectively.

5.2.2 Amplitude-Feature Extraction

To discriminate between M QAM and M PSK, one have to go back to (5.6). Every

shaped symbol is made as an input of PWVD. Let f = fc and t = Ts/2. Then,

(5.6) becomes

WAuto
i (

Ts
2
, fc) = |Ai|2W0(

Ts
2
, fc), (5.12)

where W0(Ts2/fc) can be treated as a constant. According to (5.12), it is clear

that |Ai|2 is the amplitude feature that is extracted from PWVD, which represents
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the symbol energy. For M PSK, the components of the in-phase and quadrature

are Acos(θi) and Asin(θi), respectively. θi is the polar angle of Ai. Then, the

symbol energy is A2cos2(θi) + A2sin2(θi) = A2. Alternatively, for M QAM, if

the components of the in-phase and quadrature are Ii and Qi, respectively, then

the amplitude factor of PWVD is I2i + Q2
i . As M PSK has no direct amplitude

information, M PSK generates the same symbol energy. However, because of

the difference in symbol energy, 64QAM contains more kinds of energy levels

of the symbol than 16QAM, which can be revealed by clustering the amplitude

information extracted from PWVD.

5.2.3 Phase-Feature Extraction

Let x1(t) and x2(t) represent two pulse-shaped symbols that are time shifted from

x0(t). A1 and A2 represent complex symbols.

x1(t) = A1x0(t− t1), (5.13)

x2(t) = A2x0(t− t2). (5.14)

Assume that t1 = 0. Then, t2 can be expressed by Ts, which is the symbol period.

The auto-PWVD is applied to the signal s(t) = x1(t) + x2(t). The signal term of

x1(t) can be expressed as

WAuto
1 (t, f) = |A1|2W0(t, f). (5.15)

According to the property of the time-frequency shift invariance, the signal term

of x2(t) can be expressed as

WAuto
2 (t, f) = |A2|2W0(t− Ts, f). (5.16)

Meanwhile, the interference term is given by [51]

W I
12(t,f)= 2|A1A2|W0(t−

Ts
2
,f)cos[Θ] , (5.17)

Θ = 2π(Tsf) + φ12, (5.18)
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φ12 = argA1 − argA2. (5.19)

(5.17) indicates the oscillation property of interference terms. Because A1 and

A2 are two complex symbols, the following equation can be employed for phase

extraction:

φ12 = argA1 − argA2 = θ1 − θ2 = ∆θ. (5.20)

where θ1 and θ2 are polar angles of A1 and A2, respectively. Equation (5.20) indi-

cates that the phase shift of adjacent symbols can be replaced by the oscillation

phase of interference terms.

To extract the interference term’s oscillation phase, let t = Ts. Then, (5.17)

becomes

W I
12(Ts, f)= 2|A1A2|W0(

Ts
2
,f)cos [Θ] . (5.21)

Focus on the oscillation part cos [Θ] rather than the constant part 2|A1A2| and

the envelope W0(Ts/2,f). The oscillation phase can be replaced by the coordinate

of the first local maximum of W I
12(Ts, f). Let cos [Θ] = 1, which is equivalent to

Θ = 0. Then expression is obtained as:

fcoordinate =
−φ12

2πTs
=
−∆θ

2πTs
. (5.22)

The use of (5.22) enables one to acquire a phase shift using frequency coordinates.

With respect to the modulated PSK signal, as the order increases, it will have

additional kinds of phase shifts. This phase feature is extracted from PWVD.

5.3 Classifier

While most studies focused on classical clustering tools, modern clustering al-

gorithms have an advantage over classical ones in environments that are much

more hostile. To achieve clustering without a cluster number, density-based spa-

tial clustering of applications with noise (DBSCAN) is chosen as the clustering

algorithm. More importantly, compared with other complicated classifiers, such

as SVM and ANNs, training, which is a very time-consuming step, is unnecessary

for DBSCAN.
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Figure 5.2: Four-distance plot of amplitude extraction and phase extraction.

5.3.1 DBSCAN

In pseudocode, the algorithm can be expressed as follows [54]:

input:

• the dataset objects.

• Epsilon is the radius of a neighborhood.

• MinPts specifies the density threshold of dense regions.

output: Density-based Clusters

Method:

mark all objects as unvisited;

do

randomly select an unvisited object t ;

mark t as visited;

if the Epsilon neighborhood of t has at least MinPts objects

create a new cluster C, and add t to C ;

let N be the set of objects in the Epsilon neighborhood of t ;

for each point t’ in N
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if t’ carriers the label ”unvisited”

DBSCAN marks it as visited;

if the Epsilon neighborhood of t’ has at least MinPts objects

those objects in the Epsilon neighborhood of t’ are added to N ;

if t’ is not yet a member of any cluster, add t’ to C

end for

output C ;

else mark t as noise;

until no object is unvisited;

Finish

Epsilon and MinPts have to be determined before clustering. Epsilon is a

radius that can be regarded as a minimum cluster size. It is obvious that random

values offer only an unsuitable clustering result. As a heuristic, an approach

called the k-distance plot is to watch the behavior at a distance from a point to

its k-nearest point.

5.3.2 k-distance plot

For a given value of k, a k-distance plot goes through the distances between

one point and its kth nearest point. This is a useful tool that enables one to

look at the feature within clusters. Therefore, a four-distance plot shows what

the distances are from every point to its 4th nearest point. Then, the result is

incremented to find a sharp change, called an elbow, whose coordinates represent

a suitable value of Epsilon. A small k-distance value implies groups of points that

belong to several clusters. As MinPts and epsilon are coupled, as long as MinPts

is set, the other one can be determined naturally.

Alternatively, MinPts is supposed to exceed data dimensions. If MinPts is too

small, then noise may be incorrectly labeled as clusters. On the contrary, too large

a MinPts value will improperly label the cluster as noise. In the original DBSCAN

algorithm, MinPts is set as 4, which is a reasonable value for a two-dimensional

(2D) data set [55]. Then, an elbow in the k-distance plot is determined, where

the vertical coordinate represents epsilon. Figure 5.2 exhibits the four-distance
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Figure 5.3: Workflow of the signal preprocessing.

plot amplitude extraction of M PSK and M QAM, together with the four-distance

plot for the M PSK phase extraction. The red circle marks the elbow of phase

extraction and the green circle marks the elbow of amplitude extraction.

5.4 Classification Scheme

In a CR system, some fundamental information about the primary user is often

accessible. Moreover, because digital modulation has better immunity to noise,

BPSK, QPSK, 8PSK, 16QAM, as well as 64QAM are widely used in CR systems.

Therefore, they are mostly discussed in literature pertaining to modulation clas-

sification [14][56].The workflow of this method is given by Figure 5.3.

Throughout this chapter, the assumption is established that there is a sin-

gle carrier-transmitted signal, whose possible modulation type includes BPSK,

QPSK, 8PSK, 16QAM, and 64QAM, and the goal is to classify the modulation

type that it is using. As a hierarchical classification system, the modulation class

has to be identified, after which the modulation order can be determined. Here,

the characteristic that different modulation types generate different numbers of

clusters is utilized.

In this paper, clustering plays the role of returning the number of clusters.

Because the number of clusters corresponds to the types of modulation, the best
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Table 5.1: Theoretical numbers of clusters.

BPSK QPSK 8PSK 16QAM 64QAM

amplitude clustering 1 1 1 3 9

phase clustering 3 5 9 − −

way to evaluate the validation about clustering is to use the classification perfor-

mance, rather than the clustering validation measures, which are most useful for

deciding the k parameter of k-means [57]. Unlike k-means, DBSCAN does not

assume the number of clusters. Furthermore, this research is concerned about

whether the DBSCAN can offer a correct classification, and that its focus is not

to minimize several quality numbers. However, to better understand the perfor-

mance of this method, the sum of square error (SSE) was investigated to gain

insight into the validation of DBSCAN. The theoretical number of clusters is

given in Table 5.1.

16QAM and 64QAM can be classified from M PSK owing to their multi-

amplitude feature. The amplitude-clustering result is identical to the symbol

energy. Specifically, the in-phase and quadrature components of 16QAM take

values of ±1d and ±3d, which generates three different kinds of energy level in

symbols. However, 64QAM takes values of ±1d,±3d,±5d, and ±7d, which gen-

erates nine different kinds of energy level in symbols. On the contrary, M PSK,

which has no direct envelope information, forms only one cluster. An example

of amplitude-feature clustering is illustrated in Figure 5.4, where different colors

and marks represent different clusters. The SNR is 10 dB. Those clusters are

recognized by DBSCAN. Although the amplitude feature that we extracted is

one-dimensional (1D), Figure 5.4 represents as 2D by building a plane with the

same horizontal and vertical axes; this enables more easily understanding the

clustering result.

The recognition within M PSK is achieved by phase clustering. It is clear that

8PSK generates the largest number of potential oscillation phases, while BPSK
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Figure 5.4: An example of amplitude-feature clustering (SNR = 10 dB).
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Figure 5.6: Classification workflow.
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generates the fewest. More specifically, the phase shift of BPSK takes values of

[−π, 0 , π], while the phase shift of QPSK takes values of [−π, −π/2, 0 , π/2, π].

However, the phase shift of 8PSK takes values of [−π, −3π/4, −π/2, −π/4, 0,

π/4, π/2, −3π/4, π]. Therefore, with respect to phase clustering, BPSK, QPSK,

and 8PSK generate three clusters, five clusters, and nine clusters, respectively.

An example of phase-feature clustering is given by Figure 5.5, where different

colors and marks represent different clusters. The SNR is 10 dB. Those clus-

ters are recognized by DBSCAN. The phase feature comes from the interference

terms, and these interference terms have the same envelope as the signal terms.

Therefore, the shapes of the plots above are determined by the Nyquist filter.

The classification workflow is shown in Figure 5.6.

The amplitude clustering is first used to determine whether the modulation

is amplitude-oriented (16QAM or 64QAM). The number of clusters can be used

to differentiate within each subclass. If the modulation is unrelated to amplitude

(M PSK), then phase clustering is used to distinguish within each subclass.

5.5 Simulation and Results

Table 5.2: Simulation parameters

carrier frequency

(fc)

sampling frequency

(fs)

symbol length roll-off

factor

2.4× 103Hz 1.2× 104Hz 500 1

A direct comparison cannot be made because different classifiers are designed

for specific unknown parameters, such as the carrier phase and timing offset.

Therefore, the performance of the proposed method is first compared with the

ML and KNN in the ideal scenario, where no timing offset is involved.

All parameters are shown in Table 5.2. Figure 5.7 indicates the variation

of the phase-clustering results with SNR. BPSK generates three different phase
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shifts, which results in three or fewer clusters if the noise power increases. How-

ever, QPSK and 8PSK generate five and nine clusters, respectively. The number

of clusters decreases if SNR degrades. Figure 5.8 shows the variation of the

amplitude-clustering results with SNR. 16QAM generates three different symbol

energy levels, which results in three of fewer clusters if there is a lot of noise.

However, because of its amplitude feature, 64QAM generates nine or fewer clus-

ters unless the SNR degrades seriously. M PSK, which has no direct envelope

information, forms only one cluster.

The results of Figure 5.7 and Figure 5.8 are identical to Table 5.1 and provide

an outright proof of clustering validations.

The performance of the proposed method is compared with the k-nearest

neighbor [23] and ML [19] methods in Figure 5.9. For each value of the SNR,

10,000 iterations of the test data were produced. All five modulation types are

considered simultaneously.

The ML shows a Pcc of > 95% at 8 dB, while my method shows a Pcc of

> 99% at 8 dB. The superior performance of the proposed method is, therefore,

apparent. Moreover, this method performs better than KNN, although KNN

utilizes higher-order cumulants and supervised machine learning.

The influence of the signal-sampling synchronization is investigated over the

individual modulations in Figure 5.10. First, it is clear that a lower SNR de-
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Figure 5.7: Phase-cluster number within M PSK for different SNR.
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Figure 5.8: Amplitude-cluster number within M QAM for different SNR.

SNR (dB)
2 3 4 5 6 7 8

P
c
c

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method

ML

KNN

Figure 5.9: Comparison of classification accuracy for our method with ML and

KNN.

grades the classification accuracy for all modulations. Of all the modulations,

64QAM has the lowest classification accuracy than others. M PSK has a higher

classification accuracy than M QAM at lower SNRs. In addition, the raised cosine

transmit filter is configured to has 20 output samples per symbol. The timing

error was increased from one sample to three samples. Therefore, the timing

offsets are 0.05 and 0.15, respectively. Only M QAM appears to be affected by
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Figure 5.10: Influence of the signal-sampling synchronization on individual mod-

ulations.
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Figure 5.11: Influence of the phase offset on individual modulations.

the timing offset, and the M PSK shows good robustness to timing offset.

The influence of the phase offset over the classification ability is also inves-

tigated in Figure 5.11. The proposed method shows good robustness to phase

offset for all five modulations. The performance of the proposed method was then

compared with the KNN and ML against phase offset in Figure 5.12. It is clear

that a higher phase offset degrades the classification accuracy of the ML and the
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Figure 5.12: Comparison of classification accuracy of our method with ML and

KNN against phase offset.
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Figure 5.13: Plot of sum-of-square error vs. SNR.

KNN, which indicates that ML and KNN are extremely sensitive to phase offset.

To better understand the performance of the clustering, the SSE is used to

evaluate the clustering validation in Figure 5.13, and to do this, the clustering

results are compared with real classes. The higher SNR generates the lower SSE.

The whole SSE does not exceed 10−3 if noise is absent. The trend of SSE against

SNR is convincing proof of clustering validations.
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Figure 5.15: Influence of the roll-off factors on 64QAM.

Since we use shaping pulse to process the original symbols, it is necessary to

investigate the influence of the roll-off factors over the classification ability. All of

the above results are obtained by the raised cosine FIR pulse-shaping filter with

a roll-off factor of 1. Next, the other two different roll-off factors are also taken

into account. The influence of the roll-off factors on 8PSK is shown in Figure

5.14. Obviously, under the two SNRs, the higher the roll-off factor, the better

the classification performance. The influence of the roll-off factors on 64QAM is
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Figure 5.16: Influence of the roll-off factors on classification ability.

shown in Figure 5.15. With the rise in roll-off factor, the trend of classification

performance is consistent with Figure 5.14. The influence of the roll-off factor

is investigated on 5 modulations in Figure 5.16. It can be determined that the

higher the roll-off factor, the higher the probability of successful classification.

5.6 Chapter Summary

Table 5.3: A summary of the three methods

Pcc Phase offset

Proposed method High classification accuracy Robust to phase offset

ML Medium classification accuracy Sensitive to phase offset

KNN Lowest classification accuracy Sensitive to phase offset

In this study, a classification method for specific modulation types was pro-

posed that are used for CR. A summary of the proposed method, ML, and KNN
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is given in Table 5.3.

The simulation results reveal that the proposed method is more accurate than

the ML method because the proposed method utilized the advantages of the time-

frequency features. The ML shows a Pcc of > 95% at 8 dB, while the proposed

method shows a Pcc of > 99% at 8 dB. In addition, my method achieves a higher

classification accuracy than the KNN in the ideal scenario. The KNN shows a

Pcc of > 78% at 5 dB, while the proposed method shows a Pcc of > 97% at 5

dB. The proposed method is therefore superior to KNN in terms of classification

accuracy.

To date, there is little literature that reports the influence of the signal-

sampling synchronization over the classification ability, although it is a significant

issue in the modulation classification field. The influence of the timing offset was

investigated over the classification accuracy. In the timing offset scenario, our

method shows good robustness to the timing offset for the M PSK. This signif-

icant characteristic makes the proposed method more practical. With respect

to M QAM, a degradation of accuracy is foreseeable because amplitude-oriented

features are sensitive to timing offsets. This shortcoming can be overcome if other

expert features are used instead.

The influence of the phase was also investigated offset over the classification

accuracy. My method is not sensitive to phase offset, which is proved by the

Figure 5.11. Therefore, a knowledge of the carrier phase is not required for our

proposed method. Actually, a phase offset rotates the constellation around the co-

ordinate origin, which does not affect the symbol power or the phase shift between

two symbols. Therefore, the phase information is unnecessary. On the contrary,

the ML and KNN cannot function as usual when the phase offset increases. This

is expected because ML requires all channel parameters to be known. A severe

phase offset leads to a mismatch between the model used in the classifier de-

sign and the actual statistics in the channel. Therefore, one can conclude that

the proposed method is superior to the ML and KNN when carrier phase is not

synchronized.

Finally, the clustering validation by performing the SSE test was proved,

where the higher SNR generates the low SSE, although the best way to evaluate

the validation about clustering is the classification performance. The trend of SSE
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against SNR is convincing proof of clustering validations. It is expected that the

SSE can be further reduced if noise is excluded. In addition, according to Figure

5.7 and Figure 5.8, the number of clusters is identical to the theoretical values

under high observation. This is another outright proof of clustering validation.

The drawback of this method is that to input a real signal into PWVD, the

signal has to be shifted to a carrier frequency, which imposes a higher require-

ment for sampling. Fortunately, there are no strict requirements on the carrier

frequency.
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Chapter 6

Conclusion

This chapter concludes the research work on the study of the supervised machine

learning based modulation classifications and the unsupervised machine learning

based modulation classifications in Cognitive Radio (CR) systems. The compari-

son between supervised classification and unsupervised classification is given first.

Then, the contribution and advantages of the proposed methods are described.

The future research direction is discussed at the end of this chapter.

6.1 Methods Comparisons

A comparison between supervised classification and unsupervised classification

is given in Table 6.1. The ML and KNN are included as well. The symbol

”−” represents that the performance has not been tested in this aspect. Only

high accuracy scenario is discussed here. The first thing to emphasize is that

ML is always the optimal method when the same features are used and all prior

information is known. However, the ML method has not yet been proposed based

on expert features.

One can see that the proposed methods by this thesis show higher classifica-

tion accuracy than classical methods. On the one hand, the supervised method

is the most outstanding among the others in classification ability. On the other

hand, the unsupervised method provides a trade-off between easy implementation

and high accuracy, since training is unnecessary for it. In addition, the super-

vised method has a strong resistance to timing offset, which is a superiority in
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Table 6.1: A comparison between supervised classification and unsupervised clas-

sification

Supervised

Classification

Unsupervised

Classification

ML KNN

Required SNR

(lower is better)

5 dB 7 dB 9 dB more than

10 dB

Training Necessary Unnecessary Unnecessary Necessary

Timing Offset Robust Sensitive Sensitive Sensitive

Phase Offset —– Robust Sensitive Sensitive

practicability. Regarding phase offset, the unsupervised method exhibits a strong

resistance to it, which is a superiority in fading channel.

6.2 Contribution and Advantages

The main purpose of modulation classification is to provide the correct classifi-

cation on the modulation of the intercepted signal from a range of modulation

pools, or otherwise to decide that the modulation cannot be recognized. The

above characteristics are very meaningful for cognitive radio [25][58]. In the spec-

trum sensing part, conventional methods, such as the energy detection, can only

detect channel occupancy. If the signal is occupied by noise or other unrelated

signals, the conventional method will still misjudge the presence of the primary

user. This will result in a reduction in frequency utilization. However, modula-

tion classification can distinguish between noise and artificially produced signals.

It is also possible to identify the primary user-specific modulations to overcome

the shortcomings of the conventional spectrum sensing techniques, due to the

fact that primary users utilize one or several fixed modulations. Therefore, the
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modulation detection entails the primary user detection in the cognitive radio

system.

In this thesis, the modulation classification algorithms using machine learning

are investigated and new methods are proposed. Firstly, a supervised machine

learning based modulation classification algorithm was proposed. The higher-

order cumulants as features were selected. Stacked denoising autoencoders, which

is an extended edition of the neural network, was chosen as a classifier.

Secondly, an unsupervised machine learning based modulation classification

algorithm was proposed. The features from time-frequency distribution were

extracted. Density-based spatial clustering of applications with noise (DBSCAN)

was used as a classifier because it is impossible to decide the number of clusters

in advance.

6.2.1 Supervised Classification

For the supervised approach, many contributions and advantages can be seen.

When two classification scenarios are considered, one of them is a rapid classi-

fication and the other one is a high accuracy scenario. For a considered rapid

scenario, so far, there is few of paper that mentions this scenario, although the

processing time is the priority and classification accuracy can be compromised

in special conditions. Its performance evaluation shows a significant speed ad-

vantage over the conventional ML method. In addition, in a rapid classification

scenario, expert features are not necessary which results in that feature extrac-

tion, which is compulsory in most conventional methods, is omitted here. It

simplifies the procedure of the modulation classification and renders rapid clas-

sification more achievable. The high accuracy classification scenario is also well

considered in the thesis. Although expert features are utilized as network inputs,

the SDAE improves the noise resistance performance. Performance evaluation

shows an accuracy advantage over the conventional ML method and the feature-

based method. So far, there are few deep networks based literature that exhibits

the influence of the signal sampling synchronization over the classification abil-

ity, although it is a significant issue in the modulation classification field. The

influence of the timing offset over the classification accuracy are investigated in
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both the scenarios. This ensures a comprehensive evaluation to understand the

ability of this method. In the high accuracy scenario, our method is robust to

the timing offset. In this research, not only a ready network structure but also

the selection methods of the network structure are presented. The performance

of the proposed approach is also investigated on different individual modulations.

This gives the insights into the classification ability of this method.

6.2.2 Unsupervised Classification

For the unsupervised Classification method, many contributions and advantages

also can be seen. The proposed method has better performance with respect

to its noise resistance which is based on the proposed new features using time-

frequency distribution. These features show good robustness to noise. The per-

formance evaluation shows an accuracy advantage over the conventional maxi-

mum likelihood (ML) method and K-Nearest Neighbors (KNN) method. The

novel method is robust to phase offsets, which always degrade the performance

of likelihood-based methods and KNN method in the classification of PSK and

QAM modulation schemes. To date, there are few reports in the literature that

exhibit the influence of the signal sampling synchronization over the classification

ability, although it is a significant issue in the field of modulation classification.

The thesis investigated the influence of the timing offset on the classification ac-

curacy. This ensures a comprehensive evaluation to understand the capabilities

of this method. This method shows good robustness to timing offsets for M PSK.

The proposed investigated the clustering validation against SNR and showed that

DBSCAN is valid for this method. DBSCAN does not require the time-consuming

training of the classifier. This is a significant advantage over supervised classifiers

when rapid processing is expected. In addition, the proposed method is simple

to obtain the parameters of this method. On the contrary, the cumulant-based

approach needs a complicated process to determine its decision rules.
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6.3 Future Research Work

Although OFDM has been widely used in modern communication technology,

digital modulation technology is still an indispensable part. If the parameters

of OFDM system can be detected in advance, this study can be applied directly

to multi-carrier modulation system. Although there have been some scholars

proposed some effective OFDM parameters detection method, to better utilize

this research, the OFDM parameters detection based on machine learning are

becoming increasingly significant.

6.3.1 Methods Improvement

• Supervised Classification

For the future work, algorithm optimization is still a challenging task, because the

computation capability of hardware is limited. On one hand, GPU computation

is a potential solution for supervised machine learning, to reduce the execution

cost. Altering the modulation pool, the network structure has to be redesigned.

On the other hand, that shifting the symbols to carrier frequency consumes extra

computing resources. Moreover, the performance is subject to timing offset.

• Unsupervised Classification

One drawback of this method is that to input a real signal into PWVD, the signal

has to be shifted to a carrier frequency, which imposes a higher requirement for

sampling. If in-phase component and quadrature component can be processed

separately, a real signal will be unnecessary. Moreover, DBSCAN is sensitive to

parameters, which prompt us to find more robust classifiers.

6.3.2 Function Extensions

In this thesis, classifications on M PSK and M QAM have been discussed. How-

ever, Orthogonal Frequency Division Multiplexing (OFDM) is dominating digital

communications, because of its robustness to interference and high spectral effi-

ciency. Therefore, it’s far more likely that next research focus would be OFDM-

related classifications, e.g. OFDMs with varied pilots.
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