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Abstract

An edge in a k-conected graph is said to be k-contractible if the contraction of it
results in a k-connected graph. We say that k-connected graph G satisfies“ degree-
sum conditon”if

∑
x∈V (W )degG(x) ≥ 3k+2 holds for any connected subgraph W of G

with　｜W｜= 3. Let k be an integer such that k ≥ 5. We prove that if a k-connected
graph with no K1+C4 satisfies degree-sum condition, then it has a k-contractible edge.
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1 Introduction

In this paper, we deal with finite undirected graphs with neither self-loops nor multiple
edges. For a graph G, let V (G) and E(G) denote the set of vertices of G and the set
of edges of G, respectibely. Let Vk(G) denote the set of vertices of degree k of G. We
denote the degree of x ∈ V (G) by dG(x). Let ∆(G) and δ(G) denote the maximum
degree of G and the minimum degree of G, respectively. For a vertex x ∈ V (G), we
denote by NG(x) the neighborhood of x in G. Moreover, for a subset S ⊂ V (G), let
NG(S) =

∪
x∈S NG(x)−S. For nonintersecting vertex sets S, T ⊆ V (G), we denote the

set of edges between S and T by EG(S, T ). We write EG(x, S) for EG({x}, S). When
there is no ambiguity, we write Vk, N(x), N(S) and E(S, T ) for Vk(G), NG(x), NG(S)
and EG(S, T ), respectively. For a vertex set S ⊆ V (G), we let G[S] denote the subgraph
induced by S in G. Let Kn, Cn and Pn denote the complete graph on n vertices, the
cycle on n vertices and the path on n vertices, respectively. For a vertex set S ⊆ V (G),
we let G− S denote the graph obtained from G by deleting the vertices in S together
with the edges incident with them; thus G− S = G[V (G)− S]. Let G be a connected
graph. A subset S ⊂ V (G) is said to be a cutset of G if G − S is not connected.
A cutset S is said to be a k-cutset if |S| = k. For a noncomplete connected graph
G, the order of a minimum cutset of G is said to be the connectivity of G and the
connectivity of G is denoted by κ(G). Let k be an integer such that k ≥ 2 and let
G be a graph with κ(G) = k and |V (G)| ≥ k + 2. An edge e of G is said to be k-
contractible if the contraction of the edge results in a k-connected graph. Note that,
in the contraction, we replace each resulting pair of double edges by a simple edge.
An edge which is not k-contractible is said to be k-noncontractible. Let xy ∈ E(G)
If NG(x) ∩ NG(y) ∩ Vk(G) ̸= ∅, then xy is said to be trivially k-noncontractible. A
k-connected graph is said to be contraction-critically if it has no k-contractible edge.

Every edge of a connected graph is 1-contractible. We observe that every 2-connected
graph of order at least 4 has a 2-contractible edge. Tutte [8] showed that every 3-
connected graph of order at least 5 has a 3-contractible edge. For k ≥ 4, there are
infinitely many contraction-critically k-connected graphs for each k. Hence, if k ≥ 4,
then we cannot expect the existence of a contractible edge in a k-connected graph with
no condition. We let a k-sufficient condition stand for a conditon for a k-connected
graph to have a k-contractible edge.

There are some k-sufficient conditions involving degree. Edawa [3] proved the fol-
lowing minimum degree k-sufficient condition

Theorem A. Let k ≥ 2 be an integer, and let G be a k-connected graph with δ(G) ≥
⌊5
4
k⌋. Then G has a k-contractible edge, unless k ∈ {2, 3} and G is isomorphic to Kk+1.

Krisell [5] extended Theorem A and proved the following degree sum k-sufficient
condition.

Theorem B. Let G be a k-connected graph for which dG(v) + dG(w) ≥ 2⌊5
4
k⌋ − 1.

for any pair v, w of G. Then G contains a k-contractible edge.

Solving a conjecture in [5], Su and Yuan [6] proved the following degree-sum k-
sufficient condition which is an extension of Theorem B.

Theorem C. Let G be a k-connected graph with k ≥ 8. If dG(v)+dG((w) ≥ 2⌊5
4
k⌋−1

for any two adjacent vertices v, w, then G has k-contractible edge.



2

There are also some k-sufficient conditions involving forbidden subgraphs. We can
see that ”triangle-free” is a k-sufficient condition; Thomassen [7] pointed out this con-
dition.

Theorem D. Every k-connected graph with no triangle has k-contractible edge.

A k-connected graph with no triangle has many k-contractible edges, which in-
dicates the possible existence of a weaker condition involving forbidden subgraphs
which guarantees a k-connected graph to have a k-contractible edge. In this direc-
tion, Kawarabayashi [4] showed the following, where K−

4 stands for the graph obtained
from K4 by deleting one edge.

Theorem E. For an odd integer k ≥ 3, every k-connected graph with no K−
4 has a

k-contractible edge.

Since K−
4 contains a triangle, this is an extension of Theorem D when k is odd. We

call the graph K1 + 2K2 a bowtie. Ando, Kaneko, Kawarabayashi and Yoshimoto [1]
proved that every k-connected graph with no bowtie has a k-contractible edge, which
is also an extension of Theorem D.

Theorem F. If a k-connected graph contains no K1+2K2, then it has a k-contractible
edge.

Theorems D, E and F deal with forbidden subgraph k-sufficient conditions. On the
other hand, Theorem A gives a minimum degree k-sufficient condition and Theorem
C gives a degree-sum k-sufficient conditon. However, if we restrict ourselves to a class
of graphs that satisfy some forbidden subgraph conditions, then we may relax the
minimum degree bound in Theorem A and the degree-sum bound in Theorem C. The
following forbidden subgraph condition relaxes the minimum degree bound (see Ando
and Kawarabayashi [2]). Let K−

5 be the graph obtained from K5 by removing one edge.

Theorem G. Let k be an integer such that k ≥ 5. Let G be a k-connected graph
which contains neither K−

5 nor 5k1 + P3. If δ(G) ≥ k + 1, then G has a k-contractible
edge.

Note that if k ≥ 5, then ⌊5
4
k⌋ ≥ k + 1. There is a k-regular contraction-critically

k-connected graph which contains neither K−
5 nor 5K1 + P3. Hence we cannot replace

δ(G) ≥ k + 1 by δ(G) ≥ k in Theorem G. In this sense, the minimum degree bound in
Theorem G is sharp.

In the same direction, Yingqiu and Liang recently proved the following [9].

Theorem H. For k ≥ 5, let G be a k-connected graph which contains no K1+C4. If
dG(v) + dG(w) ≥ 2k+ 2 for any two adjacent vertices v, w, then G has a k-contractible
edge.

In this paper we prove an extension of Theorem H which involves 3-degree-sum
condition. For a connected subgraph W of G, we set dG(W ) =

∑
x∈V (W ) dG(x).

Theorem 1. Let k be an integer such that k ≥ 5, and G be a k-connected graph
which contains no K1 + C4. If dG(W ) ≥ 3k + 2 hold for any connected subgraph W of
G with |W | = 3, then G has a k-contractible edge.
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To conclude this section, we give two examples of contraction critically k-connected
graphs. The first one shows that, for each k ≥ 5, there is a contraction critically
k-connected graph with no K1 + C4 and dG(W ) ≥ 3k + 1 hold for any connected
subgraph W of G with |W | = 3. The second shows that, for each even integer k ≥ 8,
there is a contraction critically k-connected graph such that it contains K1 + C4 and
dG(W ) ≥ 3k+2 hold for any connected subgraph W of G with |W | = 3. There example
shows that neither the degree-sum condition nor the forbidden subgraph condition of
Theorem 1 can be dropped.

Example 1.

Let G be the graph illustrated in Figure 1. Then we observe that each edge of G is
trivially noncontractible and G contains no K1+C4. Hence G is a contraction-critically
5-connected graph which satisfies the forbidden subgraph condition of Theorem 1.

Figure 1: graph G
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Example 2.

LetG be the graph illustrated in Figure 2. Let S1 = {x1, x2, x3, x4}, S2 = {a1, a2, a3, a4}
and S3 = {y1, y2, y3, y4, y5, y6}. Then we observe S = S1∪S2 is a 8-cutset of G. We also
observe that each vertex of S1 has degree 8 and end vertex of V (G)−S1 has degree more
than 10. Since each vertex of S1 has degree 8, we see that each edge of EG(S1, S3) ∪
E(G[S3]) is trivially noncontractible. Since E(G) = EG(S1, S3) ∪ E(G[S3]) ∪ E(G[S])
and S is an 8-cutset of G, we see that G has no contractible edge. Let W be a con-
nected subgraph of G such that |W | = 3. Since W is connected, we observe that
|V (W ) ∩ S1| ≤ 2 and |V (W ) ∩ (S2 ∪ S3)| ≥ 1, which implies dG(W ) ≥ 3× 8 + 2 = 24.
Hence G is a contraction-critically 8-connected graph which satisfies the degree-sum
condition of Theorem 1.

Figure 2: graph G

Similarly we can construct a contraction-critically k-connected graph which satisfied
the degree-sum condition of Theorem 1, for any k such that k ≥ 9
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2 Preriminaries

In this section we give some more definitions and preliminary results.
For a graph G, we write |G| for |V (G)|. For a subgraph H of graph G, when

there is no ambiguity, we sometimes write simply H for V (H). So NG(H) and G−H
mean NG(V (H)) and G− V (H), respectively. For a vertex x of G, we write EG(x) for
EG({x}, V (G) − {x}). When there is no ambiguity we write E(x) for EG(x). Hence
E(x) stands for the set of edges incident with x. We denote the set of end vertices of
an edge e of G by V (e). For a connected subgraph W of G, we denote the degree sum
of W by dG(W ), that is dG(W ) =

∑
x∈V (W ) dG(x).

Let k be an integer such that k ≥ 2 and let G be a graph with κ(G) = k. Recall
that an edge of G is said to be k-noncontractible if it is not k-contractible. An edge is
k-noncontractible if and only if there is a k-cutset S which contained V (e) ⊆ S. An
induced subgraph A ofG is called a fragment if |NG(A)| = k and V (G)−(A∪NG(A)) ̸=
∅. In other words, a fragment A is nonempty union of components of G−S where S is
a k-cutest of G such that V (G)− (A ∪ S) ̸= ∅. By the definition, if A is a fragment of
G, then G − (A ∪NG(A)) is also a fragment of G. Let A stand for G − (A ∪NG(A)).
For a k-noncontractible edge e of G, a fragment A of G is said to be a fragment with
respect to e if V (e) ⊆ NG(A). For a set of edges F ⊆ E(G), we say that A is a fragment
with respect to F if A is a fragment with respect to some e ∈ F . A fragment A with
respect to F is said to be minimum if there is no fragment B other than A with respect
to F such that |B| < |A|. If |A| = 1 and |A| = 2, then a fragment A is said to be
a trivial fragment and 2-fragment, respectively. Moreover, if |A| ≥ ⌈k+1

2
⌉, then a

fragment A is said to be a large fragment.
For an edge e of G, we write the cardinality of a minimum fragment with respect to

e by η(e). Namely, η(e) = min{|A| | A is a fragment with respect to e}. For a vertex x
of G, we set η(x) = max{η(e) | e ∈ E(x)}. By the definition η(x) = 1 if and only if each
edge of E(x) is trivially noncontractible. We set EL(G) = {e ∈ E(G) | η(e) ≥ ⌊k+1

2
⌋}.

Hence EL(G) is the set of edges e for which each fragment with respect to e is large.
In this paper we will frequently mention a specific graph, K1 +C4. For convenience

we write (x1, x2x3x4x5), for a graphH ∼= K1+c4, with V (H) = {x1, x2, x3, x4, x5},dH(x1) =
4 and H[{x2, x3, x4.x5}] ∼= C4 with x2x3, x3x4, x4x5, x5x2 ∈ E(H).

In the proof Theorem 1 we will use the following Lemmas. The proofs of three
Lemmas are not difficult.

Lemma 1. Let G be a k-connected graph, and let A and B be fragments of G.
Let S = NG(A) and T = NG(B). Then the following hold. If A ∩ B ̸= ∅, then
|S ∩B| ≥ |A ∩ T |.

Lemma 2. Let G be a graph and let W be a subset of V (G). Then
∑

x∈V (G)−W |NG(x)∩
W | =

∑
y∈W dG(y)− 2|E(W )|.

Ando and Kawarabayashi proved the following Lemma 3 in [2], which plays a fun-
damental roll in the proof of Theorem 1.

Lemma 3. Let G be a k-connected graph and let A be a a minimum fragment with
respect to EL(G). Suppose that A has a vertex x such that E(x) ∩ EL(G) ̸= ∅ Then
each edge in E(x) ∩ EL(G) is k-contractible.
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3 The proof of Theorem 1

In this section we give a proof of Theorem 1. Let k be an integer, such that k ≥ 5.
Assume that G is a contraction critically k-connected graph with no K1 + C4 such
that dG(x) + dG(y) + dG(z) ≥ 3k + 2 hold for any connected subgraph W of G with
V (W ) = {x, y, z}. Since G is contraction critically k-connected, there is a k-cutset S
of G such that e ∈ E(G[S]) for every edge e of E(G).

Claim 1. Let S be a k-cutset of G, and let A be a minimum fragment of G− S. If
|A| /∈ {1, 2}, then |A| ≥ ⌈k+1

2
⌉.

Proof.
Clearly, we have either |A| ∈ {1, 2} or |A| ≥ 3. We prove that if |A| ≥ 3, then
|A| ≥ ⌈k+1

2
⌉. Set S = NG(A), and let H = G[S ∪ V (A)]. For any w ∈ V (A), we have

NG(w) = NH(w). Thus dG(w) = dH(w). By the minimality of A, A is connected. Since
|A| ≥ 3, A contains a connected subgraph W with |W | = 3. Denote X = V (W ) =
{x1, x2, x3}, Q = V (H)−X. Since W is connected, without loss of generality we may
assume that x1x2, x2x3 ∈ E(W ). We show |NG(x1) ∩ NG(x2) ∩ NG(x3)| ≤ 1. Assume
|NG(x1) ∩ NG(x2) ∩ NG(x3)| ≥ 2, say NG(x1) ∩ NG(x2) ∩ NG(x3) ⊃ {u, v}. Then
we observe that G[{u, x1, x2, x3, v}] ⊃ K1 + C4 = (x2, x1ux3v), which contradicts the
forbidden subgraph condition. Therefore |NG(x1)∩NG(x2)∩NG(x3)| ≤ 1. So, at most
one vertex of A ∪ S − X is adjacent to all vertices of X, and every other vertex of
V (H)−X is adjacent to at most two vertices of X. By the degree sum condition, we
have that dG(x1) + dG(x2) + dG(x3) ≥ 3k + 2. If x1x3 /∈ E(G) then by Lemma 2, we
have

3k + 2 ≤
∑
x∈X

dG(x) = 2|E(W )|+ |E(X,Q)|

≤ 2× 2 + 3 + 2(|A|+ |S| − 3− 1)

= 2|A|+ 2k + 1

Therefore 2|A| ≥ k + 3. Since |A| is an integer, we have |A| ≥ ⌈k+3
2
⌉ > ⌈k+1

2
⌉.

If x1x3 ∈ E(G) then by the same arguments, we have

3k + 2 ≤
∑
x∈X

dG(x) = 2|E(W )|+ |E(X,Q)|

≤ 2× 3 + 3 + 2(|A|+ |S| − 3− 1)

= 2|A|+ 2k + 1

Therefore 2|A| ≥ k + 1. Since |A| is an integer, we have |A| ≥ ⌈k+1
2
⌉. The proof of

Claim 1 is completed. 2

Claim 2. Let x be a vertex of G. Let A be a connected 2-fragment with respect to
E(x). If E(x) ∩ EL(G) = ∅, then each fragment with respect to EG(x,A) is trivial.
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Proof.
Let A = {a, b} and let S = NG(A). Let B be a fragment with respect to EG(x,A) and
let T = NG(B). Since E(x) ∩EL(G) = ∅, Claim 1 assure us that |B| ∈ {1, 2}. Assume
that |B| = 2, say B = {u, v}. We show b ∈ A ∩ T . Assume that b ∈ A ∩ B. Then
A ∩ B = ∅ since A = {a, b}. If S ∩ B = ∅, then |S ∩ B| < |A ∩ T |. Hence Lemma 1
assure us that A∩B = ∅, which implies that B = ∅. This contradicts that the choice of
B. Hence S∩B ̸= ∅, and we observe dG(b) = k, which implies A∩B is a fragment with
respect to EG(x,A). This contradicts the fact that B is minimum fragment. Hence
b /∈ A ∩B.
By the similar argument we can show that b /∈ A∩B. Now it is shown that b ∈ A∩T . We
show |S∩B| = 2, assume |S∩B| ≤ 1. Then |S∩B| < |A∩T | and Lemma 1 assure us that
A∩B = ∅, which implies that B = S∩B and |B| = |S∩B| ≤ 1. This contradicts the fact
that |B| = 2. Hence we have |S ∩ B| = 2 and S ∩ B = {u, v}. Since A is a connected
fragment, we see that ab ∈ E(G). Since B is a minimum fragment with respect to
EG(x,A), we observe that uv ∈ E(G). Since uv, ab ∈ E(G), we see that G[{a, b, u, v}]
has a 4-cycle, if |{a, b, u, v}| ∩ Vk(G) ≥ 2, we can find a connected subgraph W of
G[{a, b, u, v}] such that |W | = 3 and dG(W ) ≤ 3k+1, which contradicts the degree-sum
condition. Hence |{a, b, u, v} ∩ Vk(G)| ≤ 1. Without loss of generality, we may assume
that {a, b, u} ⊆ Vk+1(G). Then we see that G[{z, a, b, u, v}] ⊃ K1 + C4 = (a, xbvu),
which contradicts the forbidden subgraph condition. Now Claim 2 is proved. 2

Claim 3. If x ∈ Vk(G) ∪ Vk+1(G). Then E(x) ∩ EL(G) ̸= ∅.

Proof.
At first, we show NG(x) ∩ Vk(G) ̸= ∅, Assume that NG(x) ∩ Vk(G) = ∅. Let A be a
minimum fragment with respect to E(x). Since NG(x) ∩ Vk(G) = ∅, we observe that
|A| ≥ 2. Since E(x) ∩ EL(G) = ∅, Claim 1 assure us |A| ≤ 2. Hence we see |A| = 2.
Let B be a minimum fragment with respect to EG(x,A). Then by Claim 2 we have
|B| = 1, which contradicts the assumption that NG(x) ∩ Vk(G) = ∅. Now it is showed
that NG(x) ∩ Vk(G) ̸= ∅.
Let y ∈ NG(x) ∩ Vk(G). Let A be a minimum fragment with respect to xy. We
show |A| ≥ 2. Assume |A| = 1, say A = {a}. Then since x ∈ Vk(G) ∪ Vk+1(G) and
y, a ∈ Vk(G), we have dG(x) + dG(y) + dG(a) ≤ 3k + 1, which contradicts the degree-
sum condition. Now it is show that |A| ≥ 2. Hence |A| = 2, say A = {a, b}. If
{a, b} ∩ Vk(G) ̸= ∅, we see that dG(y) + dG(a) + dG(b) ≤ 3k + 1, which contradicts the
degree-sum condition. Hence we observe that {a, b} ⊂ Vk+1(G). Let B be a minimum
fragment with respect to ya. Then Claim 2 assure us that |B| = 1, say B = {u}. Since
u ∈ Vk(G) and x ∈ Vk+1, We observe that u ̸= x. That d(G[{y, u, a}]) ≤ 3k + 1, which
contradicts the degree-sum condition. The proof of Claim 3 is completed. 2

Now we proceed the proof of Theorem 1. Let A be a minimum fragment with
respect to EL(G) and let S = NG(A). Since G is contraction-critically, Lemma 3
assure us E(x) ∩ EL(G) = ∅ for any x ∈ A. Hence by Claim 3 we observe that
A ∩ (Vk(G) ∪ Vk+1(G)) = ∅.

Claim 4. Let x ∈ A and let y ∈ NG(x) ∩ S. Let B be a minimum fragment with
respect to xy. Then |B| = 1.
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Proof.
Let T = NG(B). Since x ∈ A and G is contraction critically, Lemma 3 assure us
that E(x) ∩ EL(G) = ∅. Hence Claim 1 assure us |B| ∈ {1, 2}. Assume |B| = 2, say
B = {u, v}. Since u, v ∈ Vk(G)∪Vk+1(G), Claim 3 assure us that A∩B = ∅. If S∩B = ∅,
then |S∩B| < |A∩T |, which implies A∩B = ∅ and B = ∅. This contradicts the choice
of B. Hence S ∩ B ̸= ∅. We show A ∩ B = ∅, assume A ∩ B ̸= ∅, say v ∈ A ∩ B and
u ∈ S ∩B. Since |S ∩B| = |A∩ T |, we observe that |(S ∩B)∪ (S ∩ T )∪ (A∩ T )| = k,
which implies v ∈ Vk(G). Let C be a minimum fragment with respect to EG(x,B).
Then, by Claim 2, we know that |C| = 1, say C = {w}. Since v ∈ A and x ∈ A, we
see that xv /∈ E(G), which implies w ̸= v, since xw ∈ E(G). Let W = G[{u, v, w}].
Since B is minimum, we know that uv ∈ E(G), which implies that W is connected.
Now we observe that dG(W ) = dG(w) + dG(u) + dG(v) ≤ 3k + 1, which contradicts the
degree-sum condition. It is shown that A ∩B = ∅. and B = S ∩B = {u, v}
Since NG(x)∩B ̸= ∅, say u = NG(x). Let C is a minimum fragment with respect to xu.
Then by Claim 2, we have |C| = 1, say C = {w}. We show that w ̸= v. Assume w = v.
Then xv ∈ E(G) and v ∈ Vk(G). If vy ∈ E(G), then v ∈ NG(x) ∩ NG(y) ∩ Vk(G),
which contradicts that η(xy) = 1. Hence yv /∈ E(G), which implies yu ∈ E(G). Since
NG(y) ∩ B ̸= ∅. Let C ′ be a minimum fragment with respect to xv. By Claim 2, we
know that |C ′| = 1, say C ′ = {w′}. If w′ = u, then since yu ∈ E(G), we see that
u ∈ NG(x) ∩NG(y) ∩ Vk(G), which contradicts the assumption that η(xy) = 2. Hence
w′ ̸= u. Then dG(u) + dG(v) + dG(w

′) ≤ 3k + 1, which contradicts the degree-sum
condition. This contradiction proved that w ̸= v.
If {u, v} ∩ Vk(G) ̸= ∅, then W = G[{u, v, w}] is a connected subgraph of G such that
dG(u) + dG(v) + dG(w) ≤ 3k + 1, which contradicts the degree-sum condition. Hence
{u, v} ⊂ Vk+1(G).
We show |A ∩ T | ≥ 2. Assume |A ∩ T | = 1. Then since |S ∩ B| > |A ∩ T | = 1,
Lemma 1 assure us A ∩ B = ∅, which contradicts the fact that A is a large fragment
with |A| ≥ ⌈k+1

2
⌉ ≥ 3. It is shown that |A ∩ T | ≥ 2, say x′ ∈ A ∩ T − {x}. Let

C ′ be a minimum fragment with respect to EG(x
′, B). Then, Claim 2 assures us that

|C ′| = 1, say C ′ = {w′}. Note that w,w′ ∈ NG(u). Since u ∈ Vk+1(G), if w ̸= w′, then
W = G[{w,w′, u}] is a connected subgraph of G such that dG(u) + dG(w) + dG(w

′) ≤
3k+1, which contradicts the degree-sum condition. Hence w = w′ Then we observe that
xw, x′w ∈ E(G) and {x,w, x′} ⊂ NG(u) ∩NG(v), and we find a K1 + C4 = (w, xux′v)
in G which contradicts the forbidden subgraph condition. The proof of Claim 4 is
completed. 2

Claim 5. Let xy ∈ E(A). Let B be a minimum fragment with respect to xy. Then
|B| = 1.

Proof.
Since x ∈ A and G is contraction critical, Lemma 3 assures us that E(x)∩EL(G) = ∅.
Hence Claim 1 assure us |B| ∈ {1, 2}. Assume |B| = 2, say B = {u, v}. We show that
u, v ∈ S ∩ B. Since u, v ∈ Vk(G) ∪ Vk+1(G), Claim 3 assure us that A ∩ B = ∅. If
A∩B ̸= ∅, then by Lemma 1, we have |S ∩B| < |A∩ T |, which implies A∩B = ∅ and
B = ∅. This contradicts the choice of B. Hence A∩B = ∅. It is shown that u, v ∈ S∩B.
We show {u, v} ⊆ Vk+1(G). Assume, {u, v} ∩ Vk(G) ̸= ∅. Suppose u ∈ Vk(G). Since
xy, uv ∈ E(G) and note of NG(x)∩B, NG(y)∩B, NG(u)∩{x, y} and NG(v)∩{x, y} is
empty, we observe thatG[{x, y}∪B] has a C4. Without loss of generality we may assume
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C4 = xuvy. Let C be a minimum fragment with respect to EG(x,B). Then Claim 2
assures us that |C| = 1, say C = {w}. If v = w, then v ∈ NG(x)∩NG(y)∩Vk((G), which
contradicts the assumption that η(xy) = 2. Hence v ̸= w. Then W = G[{u, v, w}] is a
connected subgraph of G such that dG(u) + dG(v) + dG(w) ≤ 3k+1, which contradicts
degree-sum condition. Now it is shown that {u, v} ⊆ Vk+1(G).
Let D be a minimum fragment with respect to xu. Since Claim 4, |D| = 1, say
D = {w′}. Since u, v ∈ Vk+1(G) and w′ ∈ Vk(G), w′ ̸= u, v. Then we observe that
{x, y, w′} ⊂ NG(u)∩NG(v), and we find a K1 +C4 = (x, yuw′v), which contradicts the
forbidden subgraph condition. This contradiction proves Claim 5 2

Now we denote E = {f ∈ E(G)|V (f) ⊂ S ∩ Vk(G)}. Let f1, f2 ∈ E . Since the
degree-sum condition, if V (f1) ∩ V (f2) ̸= ∅, then f1 = f2.

Claim 6. For each edge e ∈ E[A], there exists an edge f ∈ E such that G[V (e) ∪
V (f)] ∼= K4.

Proof.
Let B be a minimum fragment with respect to xy. By Claim 5, |B| = 1, say B = {u},
then u ∈ Vk(G)∩S and xu, yu ∈ E(G). Let C be a minimum fragment with respect to
xu. By Claim 4, |C| = 1, say C = {v}. which implies v ∈ Vk(G)∩S and xv, yv ∈ E(G).
Let D be a minimum fragment with respect to uy. By Claim 4, we have |D| = 1, say
D = {w}, then w ∈ Vk(G)∩S and xw, yw ∈ E(G). If w ̸= v then d(G[{u, v, w}]) = 3k,
which contradicts the degree-sum condition. Hence w = v, which implies uv ∈ E . We
observe that G[{x, y, u, v}] ∼= K4. The proof of Claim 6 is completed. 2.

Claim 6 assures us that for each edge e ∈ E(A), there is an edge f ∈ E such that
G[V (e)∪V (f)] ∼= K4. For each e ∈ E(A) choosing a such edge f and setting φ(e) = f ,
we define a mapping φ from E(A) to E .

We denote distA(e1, e2) be the distance between e1 and e2 in A. If distA(e1, e2) = 1
then e1 and e2 have a common end vertex. If distA(e1, e2) = 2, then there is an edge e3
between a vertex in V (e1) and a vertex in V (e2).

Claim 7. Let e1, e2 ∈ E(A). If e1 ̸= e2 and distA(e1, e2) ≤ 2. then φ(e1) ̸= φ(e2).

Proof.
Assume that φ(e1) = φ(e2) = f . Let V (e1) = {x1, x2}, V (e2) = {x3, x4}, and V (f) =
{u, v}. At first we consider the case that distA(e1, e2) = 1. Then V (e1) ∩ V (e2) ̸= ∅,
without loss of generality we may assume that x2 = x3. Then we observe that
x1u, x1v, x2u, x4u, x4v ∈ E(G) and G[{x1, x2, x4, u, v}] ⊃ K1 + C4 = (u, x1vx4x2),
which contradicts the forbidden subgraph condition. Next we consider the case that
distA(e1, e2) = 2. In this case all for vertices x1, x2, x3, x4 any distinct and we may
assume that x2, x3 ∈ E(G). Then we observe that x1u, x1v, x2u, x3u, x3v ∈ E(G) and
G[{x1, x2, x3, u, v}] ⊃ K1+C4 = (u, x1vx3x2) which contradicts the forbidden subgraph
condition. Now Claim 7 is proved. 2

Claim 8. There is an edge xy ∈ E(A) such that dA(x) + dA(y) ≥ 2
3
k + 3.
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Proof.
Let W be a subgraph of A which is isomorphic to a path of length 2. Let W = x1x2x3.

Subclaim 8.1. dA(W ) = k + 5

Proof.
Assume |NG(x1) ∩NG(x2) ∩NG(x3)| ≥ 2, say u, v ∈ NG(x1) ∩NG(x2) ∩NG(x3). Then
we observe that there is a K1 + C4 = (x2, x1ux3v), which contradicts the forbidden
subgraph condition. Hence |NG(x1) ∩NG(x2) ∩NG(x3)| ≤ 1. Hence we have

|EG(V (W ), S)| ≤ 3 + 2(|S| − 1)

= 2k + 1

Since δ(A) ≥ 2, we have dG(W ) ≥ 3k + 6. Hence

dA(W ) = dG(W )− |EG(V (W ), S)|
≥ (3k + 6)− (2k + 1)

= k + 5

Now Subclaim 8.1 is proved.2

Subclaim 8.2. A contains a subgraph which is isomorphic to P4.

Proof.
Assume A has no P4. Then we see that dist(e, e′) ≤ 2 for any two edge e, e′ ∈ E(A),
and A has K1, |A| − 1. Since A has K1, |A| − 1, we see that ∆(A) = |A| − 1. Since
δ(A) ≥ 2 and ∆(A) = |A| − 1, we have 2|E(A)| ≤ (|A| − 1) + 2(|A| − 1) = 3|A| − 3.
Since dist(e, e′) ≤ 2 for any e, e′ ∈ E(A), Claim 7 assures us that |φ(E(A))| = |E(A)|.
Hence |E| ≥ |φ(E(A))| = |E(A)|, which implies |S| ≥ 2|E| = 2|E(A)| ≥ 3|A| − 3. Since
|A| ≥ ⌈k+1

2
⌉, we have

|S| ≥ 3⌈k + 1

2
⌉ − 3

≥ k +
k + 3

2
− 3

≥ k + 1

which contradicts the fact k = |S|. Now Subclaim 8.2 is proved.2
Subclaim 8.2 assure us that A contains P4 = x1x2x3x4. Assume dA(x2)+dA(x3)

2
3
k+

3, and dA(x3) + dA(x4) < 2
3
k + 3. Since dA(x2) + dA(x3) + dA(x4) ≥ k + 5, we have

dA(x4) ≥ k
3
+ 2. Then dA(x3) < (2

3
k + 3) − dA(x4) =

k
3
+ 1. Hence dA(x1) + dA(x2) ≥

(k + 5)− dA(x3) ≥ 2
3
k + 3. Now Claim 8 is proved. 2

Let A be a minimum fragment with respect to EL(G). Let NG(A) = S and let
x, y ∈ A. Since Claim 8, We observe that, dA(x) + dA(y) ≥ 2

3
k + 3. By Claim 7, we

have
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|S| ≥ |
2
3
k+2∪
i=1

V (φ(i))| =

2
3
k+2∑
i=1

|V (φ(ei))|

= 2(
2

3
k + 2)

> k

This is contradicts that |S| = k. This is the final contradiction and proof of Theorem
1 is completed.
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