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論文の和文概要 

 

論文題目 

可換な生成子を持つ2パラメータユニタリモデルにおける相対論的ス

ピン-1/2粒子のトレードオフ関係 

氏  名 Funada Shin 

本論文は、不確定性関係からは導き出せない、可換なオブザーバブルの期待値の推定を量

子パラメータ推定問題として扱うことにより、推定誤差間のトレードオフ関係を定量的に

導出した。トレードオフ関係を求める新しい方法を提案した。 

スピン1/2の相対論的粒子の位置演算子の期待値推定の問題に提案した手法を適用した。

相対論的効果により、観測者の速度に依存してスピンが回転するため、静止系では古典的

な（量子力学的でない）モデルのため存在しなかったトレードオフ関係が運動している観

測者にとっては、必ず存在するという非自明な結果を得た。 

 

 

  



論 文 の 英 文 要 旨 

 

 

ＴＩＴＬＥ 

 

The trade-off relations of a relativistic spin-½ particle for two-parameter 
unitary model with commuting generators 
 

ＮＡＭＥ 

 

 

Funada Shin 

 

 

 

 

We treat estimating the expectation values of commuting as a quantum parameter 
estimation problem. A new method for obtaining the trade-off relation is proposed. As a 
result, we quantitatively derive a trade-off relation of the commuting observables, which is 
inconsistent with Heisenberg's uncertainty relation. We applied the proposed approach to 
the problem of estimating the expectation value of the position operator of a relativistic 
particle with spin 1/2. We obtained the non-trivial result that the trade-off relation, which 
does not exist in the rest frame due to the classical (non-quantum mechanical) model, 
always exists for a moving observer because the relativistic effect causes the spin to 
rotate depending on the observer's velocity. 
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Chapter 1

Introduction

1.1 Background

1.1.1 Uncertainty relation and quantum estimation theory

The uncertainty relation based on the quantum estimation theory was investigated by many
authors, see for example [1, 2, 3, 4, 5, 6, 7, 8]. It is known that the one-parameter unitary
model with a pure reference state, the Heisenberg-Robertson type uncertainty relation and the
uncertainty relation by the parameter estimation has the same form. Further, this approach is
more general than the traditional one, since one can derive the uncertainty relation for non-
observables. The celebrated energy-time uncertainty relation [9] is a well-defined relation for
time and energy when treated by the quantum estimation theory. Many authors in the literature
discussed the similarity between the two types of uncertainty relations. In Ref. [6], they showed
that the uncertainty relation for a generic full parameter qudit model can be different when
derived from the quantum parameter estimation theory. Usually, when the uncertainty relation
is discussed, the uncertainty relation of two non-commuting observables is discussed, see for
example [10, 11, 12]. Therefore, as far as we know, trade-off relation has not been investigated
when the two observables commute.

1.1.2 Quantum information theory with relativity taken into account

Relativistic quantum information theory brings a new direction to physics research. The sig-
nificance of the effect of relativity on the quantum state is that the state vector for a moving
observer changes depending on the observer’s motion while the physical state in the rest frame
remains the same. As a natural consequence, information that the moving observer obtains
changes depending on the motion of the moving observer since the state vector changes. There
are studies of quantum information theory with relativity taken into account. The studies in the
realm of relativistic quantum information have increased in number in the past. Here, we briefly
list some of them. Firstly, the information paradox about black holes is now formulated in the
framework of information theory; see recent reviews [15, 16]. Secondly, quantum information
in non-inertial frame was investigated [17, 18, 19, 20, 21]. Thirdly, the effect of relativity on
Bell’s inequality. The degree of Bell’s inequality violation was investigated [22, 23, 24, 25, 26].
The entropy changes due to the relativistic effect [27] and its effect on Bell’s inequality are also
studied, which was initiated in [28].
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Among these early studies about the relativity and the quantum information, the papers [22,
23, 29, 30] brought the use of the Wigner rotation [31, 32] into the realm of quantum informa-
tion. As other examples, the Wigner rotation is used to discuss the limitation given by a quan-
tum entropy in the relativity domain [27]. The entanglement [29, 33, 34, 35, 36, 37, 39, 40] and
Bell’s inequality [23, 22, 41] are also discussed by using the Wigner rotation. The essence of
the Wigner rotation is that it ‘rotates’ the spin of the relativistic particle by the angle, which is a
function of the particle’s momentum. Thus, the spin and the momentum couple in a non-trivial
way that the Wigner rotation gives.

1.2 Trade-off relation based on relativistic quantum estima-
tion

Based on the previous investigations in relativistic quantum information theory, it is natural to
pose a question: what is the effect of the Wigner rotation for parameter estimation of quantum
states? To phrase it differently, we ask: how does estimation accuracy change for a moving
observer? However, to the best of our knowledge, there has existed no study about the change
in estimation accuracy that a moving observer undergoes. We demonstrate how estimation
accuracy changes for the moving observer in the framework of the quantum estimation the-
ory [1, 2]. To obtain the limit of estimation accuracy as a function of the moving observer’s
velocity, we utilize the quantum Fisher information matrix which enables us to quantify the
accuracy limit. Among those quantum Fisher information matrices, we consider the symmetric
logarithmic derivative (SLD) Fisher information matrix as an indicator of estimation accuracy.
As the main result, we obtain the analytical expression of the SLD Fisher information matrix
for an arbitrary moving observer as an integral form Eq. (6.52). This then sets the estimation
accuracy limits between the observers in the rest frame and in the moving frame. To illustrate
our result, we plot the relativistic effect on estimation accuracy in Fig. 6.4. Estimation accuracy
obtained by the SLD Fisher information matrix is finite even at the relativistic limit where the
velocity vapproaches the speed of light. This suggests that estimation accuracy remains finite
at the relativistic limit.

As for the model, we set up a specific pure-state model that describes a single spin-1/2 parti-
cle. A parametric model is defined by a two-parameter unitary shift model. We next consider
an observer moving at a constant velocity in one direction with respect to the rest frame. The
moving observer then makes a measurement to estimate the parameters encoded in the state
without accessing the spin degree of freedom. Thus, our parameter model in the moving frame
is given by the Wigner rotation followed by the partial trace over the spin. We investigate how
estimation accuracy for the moving observer changes as a function of the velocity. In our study,
the parameters correspond to the expectation value for the position of the particle. We evaluate
the limits for the mean square error (MSE) upon estimating the expectation value of the posi-
tion operator by the SLD Cramér-Rao (CR) bound and λLD CR bound. As a result, we show
analytically that a trade-off relation always exists for the moving observer once we consider
relativity.
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1.3 Trade-off relation by commuting observables

We also investigate a trade-off relation between two commuting observables based on the two-
parameter quantum estimation theory. From what has been said so far, it may seem that such a
trade-off relationship is impossible at first glance. However, as we show in this thesis, the quan-
tum estimation theory allows us to derive a non-trivial trade-off relation, or trade-off relation by
estimating the expectation values of two commuting observables in the following way.

We first treat the estimation of the expectation value of commuting observables as a quantum
parameter estimation problem. Then, we quantitatively derive the trade-off relation between
estimation errors, which cannot be derived from the trade-off relation. More specifically, we
considered a two-parameter unitary model with the commuting generators. We evaluated the
lower bound of the mean square error (MSE) matrix by applying the quantum Cramér-Rao in-
equality for one-parameter families based on quantum estimation theory. The proposed method
in this thesis consists of i) giving a trade-off relation by the components of the MSE matrix
and of the quantum Fisher information matrix, and ii) narrowing the lower bound by combin-
ing multiple quantum Cramér-Rao inequalities. We confirm the effectiveness of the proposed
method.

As for the trade-off relation of the commuting observables, we investigate the cases of the
state generated by the unitary transformations with two commuting generators. In other words,
we assume X and Y as generators with parameters θ = (θ1, θ2) and use the unitary transforma-
tions generated by them. The state ρθ generated by this transformation from the reference state
ρ0 which is known in advance is defined as follows.

ρθ = e−iθ1Xe−iθ2Yρ0eiθ1Xeiθ2Y . (1.1)

When the reference state ρ0 is a pure state or a qubit, we show that the trade-off relation does
not exist. However, in the three-dimensional case, when ρ0 is a qutrit, we give conditions for
the trade-off relation to be established, construct such an example, and show numerically that
the trade-off relation does indeed exist generically.

After we confirmed that the trade-off relation of the commuting generators does exist, we
come to a thought that it may be nothing unusual to see the trade-off relation when the gener-
ators commute. To see if that is the case, we next investigate the trade-off relation of a model
with a infinite degree of freedom.

Our physical model for this purpose is a model of one electron in a uniform magnetic field.
We also assume that the electron is in the thermal state, which is a mixed state, because a pure
reference state does not provide a trade-off relation when the generators of the transformation
commute. Then, we investigate the trade-off relation regarding the position of the electron
by the parameter estimation problem of the two-parameter unitary model. In this model, the
Heisenberg-Robertson type uncertainty relation [13, 14] of the position operators X, Y of an
electron only yields the following trivial inequality.

(∆X)(∆Y) ≥ 1
2
|[X, Y]| = 0, (1.2)

where [X, Y]:=XY-YX. ∆X denotes the (quantum) standard deviation about X with respect to
a state ρ, which is defined by (∆X)2 = tr[ρ(X − ⟨X⟩ρ)2].

To derive the trade-off relation, we are to use a parametric model that describes the position
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measurement of the particle. Here we utilize the unitary transformation generated by the canon-
ical momenta px and py with the parameter θ = (θ1, θ2). By the same token as in Eq. (1.1), we
can write the state ρθ generated by the unitary transformation from the reference state ρ0 which
is known in advance as follows.

ρθ = e−iθ1 pxe−iθ2 pyρ0eiθ2 pyeiθ1 px . (1.3)

By using the momenta px and py as the generators, we obtain the expectation value of the
position operators as follows.

⟨X⟩θ = ⟨X⟩0 + θ1, (1.4)
⟨Y⟩θ = ⟨Y⟩0 + θ2, (1.5)

where ⟨X⟩θ = tr[ρθX] and ⟨X⟩0 = tr[ρ0X]. We define ⟨Y⟩θ and ⟨Y⟩0 similarly. From the above,
it can be seen that estimating the parameters θ1 and θ1 is equivalent to measuring the positions
X and Y . Note that the generators of this model also commute and [px, py] = 0.

Based on the analysis by the quantum estimation theory, we see that this model is an example
of showing the intersections of the SLD and RLD bounds. By using the method explained
above, we get non-trivial bounds that give the trade-off relations between the two commuting
observables, x and y, unlike the result of Heisenberg-Robertson type uncertainty relation.

Finally, we set up another physical model also with a continuous infinite degree of freedom.
In a similar setting for the reference state, we add a moving observer to investigate how rel-
ativistic effects affect estimation accuracy. As the reference state, we set up a particle with
spin-1/2 in the rest frame, where an observer is not in motion with respect to the physical sys-
tem. As for the spin state, it is known that it is in the spin down state in the rest frame. As a
relativistic effect, it is known that the moving observer observes the change in the wave func-
tion as well as the spin rotation once the relativity is taken into account. It is also known that
the Wigner rotation describes these changes. This relativistic effect is expected to affect the
accuracy of the estimation of the position by the moving observer.

Our method is then applied to this statistical model to show the existence of the trade-off
relation between the components of the MSE error matrix. As a statistical model, we place the
pure state in the rest frame, obtain the wave function in the moving frame based on relativistic
quantum mechanics. Then, the spin degrees of freedom are traced out (averaged).

As a result, we obtain the non-trivial result that a trade-off relation is always established
when the observer moves although this model is a classical (non-quantum mechanical) model
in the rest frame. Therefore, a trade-off does not exist in the rest frame. In this way, our model
is an example that a relativistic effect gives rise to the trade-off relation.

1.4 Derivation of the trade-off relation

Furthermore, in this study, a general method for determining the trade-off relation from quan-
tum estimation theory is also given. This method is used to investigate the uncertainty relation,
or trade-off relation. First, we regard the trade-off relation based on the quantum estimation the-
ory as the diagonal components of the MSE matrix [8]. Next, we establish a formulation of the
diagonal components of the MSE matrix for the case of two-parameter estimation. We prove
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that our formulation is the best estimate as long as we are interested in the relation between the
diagonal components.

In addition, we propose a use of two different quantum CR bounds, for example, the SLD
and the λLD CR bounds so that we can narrow the lower bound region by combining the two.
Since this method is not always possible, we give conditions as to when we can use this method
as well.

1.5 Outline

The outline of this thesis is as follows. Chapter 2 reviews the definitions of quantum Fisher
information and quantum Cramér-Rao inequalities. In chapter 3, we propose the method for
deriving the trade-off relation. Our proposal is twofold. First, we give a formula for the trade-
off relation given by quantum Cramér-Rao inequalities in the case of the two-parameter model,
assuming that we are interested in the relation between the diagonal components of the MSE
matrix. This formula gives the trade-off relation in terms of the relation between the diagonal
components of the MSE matrix. Next, we apply this formula to the SLD and the λLD Fisher
information matrices separately and combine the obtained bounds to narrow down the lower
bound. In chapter 4, we pick up the reference state as i) a pure state and ii) a finite-dimensional
state and investigate whether the trade-off relation exists when the generators of the unitary
transformation commute. We prove that when a pure state and a qubit state are the reference
states, there does not exist a trade-off relation if the generators of the unitary transformation
commute. However, we find a condition for qutrit states having a trade-off relation. Chapter
5 presents an example in which the trade-off relation exists while the generators of the unitary
transformation commute. The physical model is one electron in a magnetic field with a contin-
uous infinite degree of freedom. We assume that the reference state is a mixed (thermal) state.
We find that the trade-off relation exists. The strength of the trade-off relation or even the exis-
tence of the trade-off relation strongly depends on the expectation value of angular momentum.
In chapter 6, we set up a physical model similar to the one we use in chapter 5. Our model here
is a massive particle in the x-y plane with its wave function described by a gaussian function and
spin-1/2. However, the difference in this model is that we investigate in the framework of rel-
ativistic quantum mechanics. For that purpose, we assume that an observer is moving toward
the z direction. We evaluate his/her estimation accuracy. This chapter analyzes the problem
using the SLD Fisher information matrix only. The RLD Fisher information matrix does not
exist. Hence, we do not see a trade-off relation. In chapter 7, we find the formula that gives
the λLD and, thus, λLD Fisher information matrix for the non-full-rank model. Then, we apply
the formula to the same physical model in chapter 6. By combining the SLD and the λLD CR
bounds, we find that a trade-off relation exists with any given spread of the wave function and
with any given observer’s velocity.
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Chapter 2

Quantum Cramér-Rao inequalities and
quantum Fisher information matrices

In this chapter, we define a quantum state, a quantum parametric model, quantum CR bounds,
and quantum CR type bounds.

2.1 Preliminary

In this section, we explain the notations used in this thesis.

2.1.1 Dirac notation

Ket

In the case of an n-dimensional complex Hibert space H = Cn, a ket |ψ⟩ ∈ Cn is a column
vector.

|ψ⟩ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ1

ξ2
...
ξn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.1)

The dimension of Hilbert space can be extended to infinity, i.e., H = C∞. However, we only
consider that the kets of their norm are finite such as

⟨ψ|ψ⟩ =
∞∑

j=1

|ξ j|2 < ∞, (2.2)

that is, |ψ⟩ ∈ l2, where

l2 =

⎧⎪⎪⎨
⎪⎪⎩a = {aj}∞j=1 ∈ C∞|

∞∑

j=1

|aj|2 < ∞
⎫⎪⎪⎬
⎪⎪⎭ . (2.3)
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Bra

A bra ⟨ψ| is defined by the row vector whose entry is the complex conjugation of a ket.

⟨ψ| = (ξ∗1, ξ
∗
2, , · · · , ξ∗n). (2.4)

We denote complex conjugate of α by α∗.

Products

The inner product of the two kets |φ⟩ and ket |ψ⟩ is written as

⟨φ|ψ⟩ = (η∗1, η
∗
2, , · · · , η∗n)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ1

ξ2
...
ξn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

n∑

i=1

η∗i ξi. (2.5)

The |ψ⟩ ⟨φ| is a matrix [|ψ⟩ ⟨φ|]i j and is expressed as

|ψ⟩ ⟨φ| =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ1

ξ2
...
ξn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(η1, η2, , · · · , ηn), (2.6)

[|ψ⟩ ⟨φ|]i j = ξiη
∗
j. (2.7)

2.1.2 Hermite conjugate

The Hermite conjugate of a matrix M is denoted by M† which is obtained by taking the trans-
pose of M and by taking the complex conjugate of each element.

[M†]i j = ([M] ji)∗, (2.8)

2.1.3 Positivity

Positive semi-definite

A matrix M is positive semi definite⇔ ⟨x|M|x⟩ ≥ 0 for all |x⟩ ∈ H .
In this case, we denote M ≥ 0.

Positive definite

A matrix M is positive definite⇔ ∀ |x⟩ ∈ H , if |x⟩ ! 0, ⟨x|M|x⟩ > 0.
In this case, we denote M > 0.
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2.2 Quantum state, measurement, Born rule

2.2.1 Quantum state

A quantum state is represented by a matrix called state, ρ. The state ρ is positive semi definite
and its trace is 1. Mathematically, ρ > 0 and trρ = 1.

2.2.2 Measurement

We define the concept of measurement in quantum theory. In quantum theory, measurement is
mathematically described by a set of matrices called positive operator-valued measure (POVM),
Π.

Π = {Πx}x∈X, (2.9)

where X is an index set of measurement outcomes. Πx are non-negative and satisfy the normal-
ization condition. ∑

x∈X
Πx = I, (2.10)

where I is the identity matrix.

2.2.3 Born rule

This rule is one of the axioms of quantum theory and often called Born rule. The probability of
getting outcome x, p(x|Π) is given by

p(x|Π) = tr(ρΠx). (2.11)

From the positivity of state ρ and the positivity of POVM Πx, p(x|Π) is positive for all x. The
summation over x gives 1, i.e.,

∑

x∈X
p(x|Π) =

∑

x∈X
tr(ρΠx) = tr(ρ

∑

x∈X
Πx) = tr(ρI) = 1. (2.12)

2.3 Model, MSE matrix, and quantum information matrices

2.3.1 Model

Let us define a quantum statistical model as a parametric family of quantum states on a Hilbert
spaceH .

M := {ρθ|θ ∈ Θ ⊂ Rn}, (2.13)

where θ = (θ1, θ2, · · · , θn).
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MSE matrix

The mean square error (MSE) matrix Vθ[Π, θ̂] =
[
Vθ, i j[Π, θ̂]

]
is defined by

Vθ, i j[Π, θ̂] =
∑

x∈X
tr(ρθΠx)(θ̂i(x) − θi)(θ̂ j(x) − θ j), (2.14)

where θ̂ = (θ̂1, θ̂2, · · · , θ̂n) is an estimator.
The set of a POVM and an estimator, Π and θ̂ are called locally unbiased at θ if

∑

x∈X
θ̂i(x)tr(ρθΠx) = θi, (2.15)

and
∑

x∈X
θ̂i(x)

∂

∂θ j
[tr(ρθΠx)] = δi, j, (2.16)

hold for all i, j.

2.3.2 Qutantum Fisher information

SLD, RLD, and λLD

The symmetric logarithmic derivative (SLD), LS θ, i, the right logarithmic derivative (RLD),
LR θ, i, and the λ logarithmic derivative (λLD) Lλ θ, i [42, 43] are defined by the solutions of the
following equations.

∂iρθ =
1
2

(ρθLS θ, i + LS θ, iρθ), (2.17)

∂iρθ = ρθLR θ, i, (2.18)

∂iρθ =
1 + λ

2
ρθLλ θ, i +

1 − λ
2

Lλ θ, iρθ, (2.19)

where
∂iρθ =

∂iρθ
∂θi
. (2.20)

From Eq. (2.17), we can show the following.✓ ✏
Theorem 2.3.1 (Theorem SLD: Hermitian)
The SLD is Hermitian when the model is full rank.

L†S θ, i = LS θ, i. (2.21)✒ ✑
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Proof

The SLD is defined by Eq. (2.17), i.e.,

∂iρθ =
1
2

(ρθLS θ, i + LS θ, iρθ), (2.22)

By taking Hermite conjugate on both the left and right-hand sides, we have

∂iρ
†
θ =

1
2

(ρθLS θ, i + LS θ, iρθ)†, (2.23)

⇐⇒ ∂iρθ =
1
2

(L†S θ, iρθ + ρθL
†
S θ, i), (2.24)

⇐⇒ ∂iρθ =
1
2

(ρθL†S θ, i + L†S θ, iρθ). (2.25)

We use ρ†θ = ρθ. By comparing Eqs. (2.22, 2.25), we have

LS θ, i = L†S θ, i. (2.26)

This is because the SLD is unique when ρθ is a full rank. Therefore, the SLD is Hermitian. !
As for the relation among the SLD, RLD, and λLD, the λLD includes the SLD and the RLD

as the special cases of λ = 0 and 1, respectively.

SLD, RLD, and λLD inner products

Let us define three kinds of inner products, the SLD, RLD, and λLD inner products.

⟨X,Y⟩Sρθ =
1
2

tr[ρθ(YX† + X†Y)], (2.27)

⟨X,Y⟩Rρθ = trρθ(YX†), (2.28)

⟨X,Y⟩λρθ =
1 + λ

2
trρθ(YX†) +

1 − λ
2

trρθ(X†Y), (2.29)

where X, Y are any linear operators onH .

SLD, RLD, and λLD Fisher information matrices

Let us denote the SLD, RLD, and λLD Fisher information matrices by JS θ, JR θ,, and Jλ θ,,
respectively. Then, the SLD, RLD, and λLD Fisher information matrices are defined by

[JS θ]i j = ⟨LS θ, i, LS θ, j⟩Sρθ =
1
2

tr[ρθ(LS θ, iLS θ, j + LS θ, jLS θ, i)], (2.30)

[JR θ]i j = ⟨LR θ, i, LR θ, j⟩Rρθ = tr(ρθLR θ, jL†R θ, i), (2.31)

[Jλ θ]i j = ⟨Lλ θ, i, Lλ θ, j⟩λρθ =
1 + λ

2
tr(ρθLλ θ, jL†λ θ, i) +

1 − λ
2

tr(ρθL†λ θ, iLλ θ, j), (2.32)

respectively. In Eq. (2.30), we use LS θ, i = L†S θ, i.
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✓ ✏
Theorem 2.3.2 (SLD Fisher information matrix: Real matrix)
The SLD Fisher information matrix is a real matrix.✒ ✑

Proof

The SLD Fisher information matrix JS is defined by Eq. (2.30), i.e.,

[JS θ]i j = ⟨LS θ, i, LS θ, j⟩Sρθ =
1
2

tr[ρθ(LS θ, iLS θ, j + LS θ, jLS θ, i)]. (2.33)

The first term is a complex conjugate of the second term on the right hand side.

∵ [tr(ρθLS θ, iLS θ, j)]∗ = tr[(ρθLS θ, iLS θ, j)†] = tr(L†S θ, jL
†
S θ, i ρ

†
θ). (2.34)

Since the SLD is a Hermitian matrix, we obtain

[tr(ρθLS θ, iLS θ, j)]∗ = tr(ρθLS θ, jLS θ, i) (2.35)

Therefore, [JS θ]i j is real. !

2.3.3 Quantum Cramér-Rao inequality

In the following, we present a theorem about λLD Cramér-Rao inequality.✓ ✏
Theorem 2.3.3 (Theorem: λLD Cramér-Rao inequality)
For any locally unbiased estimator (Π, θ̂) at θ, its MSE matrix satisfies

Vθ[Π, θ̂] ≥ J−1
λ θ, (2.36)

where Jλ θ is the λLD Fisher information matrix.✒ ✑
A proof of this theorem is given in Appendix A.
As noted above, the SLD and RLD Fisher information matrices, JS θ and JR θ corresponds to the
cases when λ = 0 and 1, respectively.

2.3.4 Quantum Cramér-Rao type inequality

In a quantum parameter estimation problem, it is desirable to find the precision bound called
the most informative bound defined by

C MI
θ [W] = min

Π, θ̂: l.u. at θ
tr{WV[Π, θ̂]}. (2.37)

The abbreviation “l.u.” stands for locally unbiased. It is not always possible to find an explicit
expression of C MI

θ . In general, we cannot minimize the MSE matrix directly, one possible
way is to minimize the weighted trace of the MSE matrix. The inverse of the quantum Fisher
information matrix gives a lower bound for the weighted trace of the MSE matrix. The next
theorem states this as follows.
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✓ ✏
Theorem 2.3.4 (Scalar quantum Cramér-Rao bound)
Given a weight matrix W > 0, the weighted trace of the MSE matrix for any locally unbi-
ased estimator at θ obeys the scalar inequality

tr(WVθ[Π̂, θ]) ≥ Cλ
θ[W], (2.38)

where

Cλ
θ[W] = tr{WRe(Jλ−1

θ )} + tr|
√

WIm(Jλ−1
θ )
√

W |, (2.39)

Re(X) =
1
2

(X + X∗), (2.40)

Im(X) =
1
2i

(X − X∗). (2.41)

tr|X| denotes the trace of absolute values of eigenvalues of the matrix X. X∗ has a complex
conjugate of all components of X as its components, i.e., [X∗]i j = ([X]i j)∗.✒ ✑
In general a bound for the weighted trace of the MSE matrix is called the CR type bound.

We use the formulation in Eq. (2.38) for the discussion in the following chapter. Here again,
we remark that the SLD and RLD CR type bounds, CS

θ[W] and CR
θ[W] corresponds to Cλ

θ[W]
when λ = 0 and 1, respectively.
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Chapter 3

Trade-off formulation

In this chapter, we derive the error trade-off relation between the diagonal components of the
MSE matrix for the two-parameter model. We use a bound obtained by the weighted trace
of the MSE matrix which we refer to Cramér-Rao (CR) type bound. We show that we can
use the diagonal weight matrix to calculate the bound for the two-parameter model when we
are interested in the trade-off relation between the diagonal components of the MSE matrix.
By using the diagonal weight matrix as in [8], we derive a CR inequality for a two-parameter
model in a general form than the one we gave in [44].

We also propose using two quantum CR bounds to narrow down the lower bound region when
they have intersections. We demonstrate the use of the symmetric logarithmic derivative (SLD)
and the right logarithmic derivative (RLD) CR bounds. It is, of course, applicable to the SLD
and λ logarithmic derivative (λLD) CR bounds. We give the conditions for the intersections to
exist explicitly.

3.1 MSE region and locally unbiasedness

We defineVl.u., the set of positive matrix of any MSE matrices Vθ[Π, θ̂] as

Vl.u. = {V ∈ Rn×n|V = Vθ[Π, θ̂]; Π, θ̂ are locally unbiased at θ}. (3.1)

Vl.u. depends on θ in general. However, we only discuss the cases of a fixed θ. Thus, θ-
dependence is omitted. We can always find the estimater θ̂ for Π such that and (Π, θ̂) is locally
unbiased at θ.✓ ✏

Theorem 3.1.1 (Vl.u. and classical Fisher information matrix)
Vl.u. is also expressed as

Vl.u. = {V ∈ Rn×n|V = (Jθ[Π])−1, Π is POVM.} (3.2)

where Jθ[Π] is a (classical) Fisher information matrix. It is explicitly written as

Jθ, i j[Π] =
∑

x∈X
pθ(x|Π)∂ilθ(x|Π)∂ jlθ(x|Π). (3.3)

With Eq. (2.11), i.e., pθ(x|Π) = tr(ρθΠx), lθ(x|Π) is defined by lθ(x|Π) = log pθ(x|Π).✒ ✑
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Proof

We define θ̂l.u. i(x) by

θ̂l.u. i(x) = θi +

n∑

j=1

J−1
θ, ji[Π]∂ j log pθ(x|Π). (3.4)

Then, we first show the (Π, θ̂l.u. i(x)) is locally unbiased at θ. We show Eθ[θ̂l.u. i(x) − θi] = 0 as
follows.

Eθ[θ̂l.u. i(x) − θi] =
∑

x∈X
(tr(ρθΠ)[θi +

n∑

j=1

J−1
θ, ji[Π]∂ j log pθ(x|Π) − θi], (3.5)

⇐⇒ Eθ[θ̂l.u. i(x) − θi] =
∑

x∈X
pθ(x|Π)

n∑

j=1

J−1
θ, ji[Π]

∂ j pθ(x|Π)
pθ(x|Π)

, (3.6)

⇐⇒ Eθ[θ̂l.u. i(x) − θi] =
∑

x∈X

n∑

j=1

J−1
θ, ji[Π]∂ j pθ(x|Π), (3.7)

⇐⇒ Eθ[θ̂l.u. i(x) − θi] =
n∑

j=1

J−1
θ, ji[Π]∂ j

∑

x∈X
pθ(x|Π), (3.8)

⇐⇒ Eθ[θ̂l.u. i(x) − θi] = 0 (3.9)

We use
∑

x∈X pθ(x|Π) = 1. From Eq. 3.9, we have

Eθ[θ̂l.u. i(x)] = θi, (3.10)

and
∂ jEθ[θ̂l.u. i(x)] = δi j. (3.11)

Therefore, (Π, θ̂l.u. i(x)) is locally unbiased at θ. The MSE matrix Vθ[Π, θ̂] =
[
Vθ, i j[Π, θ̂]

]
is

defined by
Vθ, i j[Π, θ̂] =

∑

x∈X
tr(ρθΠx)(θ̂i(x) − θi)(θ̂ j(x) − θ j). (3.12)

We use (Π, θ̂l.u. i(x)) to calculate the MSE matrix Vθ, i j[Π, θ̂].

Vθ, i j[Π, θ̂] =
∑

x∈X
pθ(x|Π)

n∑

k=1

J−1
θ, ki[Π]∂k log pθ(x|Π)

n∑

l=1

J−1
θ, l j[Π]∂l log pθ(x|Π), (3.13)

⇐⇒ Vθ, i j[Π, θ̂] =
n∑

k=1

n∑

l=1

∑

x∈X
pθ(x|Π)∂k log pθ(x|Π)∂l log pθ(x|Π)J−1

θ, ki[Π]J−1
θ, l j[Π] (3.14)

⇐⇒ Vθ, i j[Π, θ̂] =
n∑

k=1

n∑

l=1

Jθ, kl[Π]J−1
θ, l j[Π]J−1

θ, ki[Π] (3.15)

⇐⇒ Vθ, i j[Π, θ̂] =
n∑

k=1

δk jJ−1
θ, ki[Π] (3.16)

⇐⇒ Vθ, i j[Π, θ̂] = J−1
θ, ji[Π] (3.17)

(3.18)
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From Vθ, i j[Π, θ̂] = Vθ, ji[Π, θ̂], we have

Vθ, i j[Π, θ̂] = J−1
θ, i j[Π]. ! (3.19)

3.2 Intersection of two bounds

Let us consider two different CR type bounds, C1
θ[W] and C2

θ[W] which are any two CR type
bounds. LetVi be

Vi = {V ∈ Rn×n|V ≥ 0, ∀W ∈W, tr[WV] ≥ Ci
θ[W]} (i = 1, 2), (3.20)

where

W = {W ∈ Rn×n|W > 0}. (3.21)

W is a weight matrix which is positive definite, W > 0. By its definition of Vl.u., we have a
relation,

Vl.u. ⊂ (V1 ∩V2). (3.22)

Therefore, if V1 is not a subset of V2 or if V2 is not a subset of V1, i.e., if the intersection of
the setsV1 andV2 satisfyV1∩V2 ! Vi (i = 1, 2), we can obtain a more precise bound than
the one given by each bound separately. This situation corresponds to the case when there exist
two bounds that have intersections. We revisit this concept in Section 3.6.

Let us consider the case of C1
θ[W] and C2

θ[W] being the SLD and RLD CR bounds, CS
θ[W]

and CR
θ[W], respectively. From Eq. (3.22),

Vl.u. ⊂ (VS ∩VR), (3.23)

where

VQ = {V ∈ Rn×n|V ≥ 0,∀W ∈W, tr[WV] ≥ CQ
θ [W]} (Q = S, R, λ). (3.24)

VS andVR are the sets of MSE matrices defined by the SLD and RLD CR bounds, respectively.
From (3.23), by combining two error trade-off relations given by the SLD and RLD CR bounds,
we can determine the shape of an error trade-off relation more accurately when the SLD and
RLD CR bounds have intersections. They may have intersections, because there is no ordering
between J −1

R and J −1
S in general as the general relationship between the SLD and RLD Fisher

information matrices [46]

J −1
S ≥ Re (J −1

R ), (3.25)

indicates. The inverse of the RLD Fisher information matrix J −1
R may have complex compo-

nents. Note, however, that this inequality alone does not give a conclusive argument whether an
error trade-off relation exists or not. This is because the quantum CR inequality is not tight un-
less certain special conditions are satisfied. For example, if the model is a gaussian shift model,
it is known that the RLD CR bound is achievable and dominant over the SLD CR bound.
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3.3 Cramér-Rao (CR) type bound: two-parameter model

In this section, we focus on the two-parameter model. Therefore, V,W ∈ R2×2.
From Eq. (2.39), the quantum CR type bound CQ

θ [W] is expressed by

CQ
θ [W] = tr{WRe(JQ

−1
θ )} + tr|

√
WIm(JQ

−1
θ )
√

W |. (3.26)

where tr|X| denotes the trace of absolute values of eigenvalues of the matrix X.
We will consider the following form of a CR type bound. Let us introduce two matrices, A

and B here. The matrix A is positive definite, i.e., A > 0. The matrix B, is a skew symmetric
matrix, i.e., BT = −B. A, B ∈ R2×2.

CQ
θ [W] = tr(WA) + tr|

√
WB
√

W |. (3.27)

To see the correspondence to Eq. (3.26) , we set

A = Re(JQ
−1
θ ), (3.28)

B = Im(JQ
−1
θ ). (3.29)

Their examples are shown in sections 3.5.1 and 3.5.2.
As given in Appendix B.1, the eigenvalues of

√
WB
√

W, λ± are expressed as

λ± = ±i
√

det W det B. (3.30)

Thus, we have

CQ
θ [W] = tr(WA) + 2

√
det W det B. (3.31)

Therefore, the quantum CR type inequality

tr(WV) ≥ CQ
θ [W] (3.32)

is expressed as

tr[W(V − A)] ≥ 2
√

det W det B. (3.33)

As given in Appendix B.1, we have an inequality that holds for any weight matrices, W ∈W,

det(V − A) ≥ det B, (3.34)

and for any diagonal weight matrices, W ∈ W̃,

(V11 − A11)(V22 − A22) ≥ det B. (3.35)

A derivation is given in Appendix B.1.
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From (3.34) and (3.35), equivalent expressions forVCR and ṼCR are written as

VCR = {V ∈ R2×2|∀i,Vii − Aii > 0, det[V − A] ≥ det B}, (3.36)
ṼCR = {V ∈ R2×2|∀i,Vii − Aii > 0, (V11 − A11)(V22 − A22) ≥ det B}. (3.37)

where A = [Ai j].

3.4 Trade-off relation between diagonal components of MSE
matrices: two-parameter model

In the following, if a trade-off relation between the diagonal components of the MSE matrix
exist, we consider the trade-off relation exists. For two-parameter models, as far as the inves-
tigation of the relation between the diagonal components of the MSE matrix is concerned, we
show that we can use the diagonal weight matrices and arbitrary weight matrices.

3.4.1 Choice of MSE region

For any given weight matrix W > 0, a quantum CR type bound CQ
θ [W] satisfies the relation

Eq. (2.38)
tr(WVθ[θ, Π̂]) ≥ CQ

θ [W]. (3.38)

We define two sets of weight matricesW and W̃, the sets of arbitrary weight matrices and
those of diagonal weight matrices, respectively. They are defined by

W := {W ∈ Rn×n|W > 0}, (3.39)
W̃ := {W ∈ Rn×n|W = diag(w1,w2, · · · ,wn) > 0}. (3.40)

W = diag(w1,w2, · · · ,wn) constitutes a diagonal weight matrix W with its diagonal components
[W]ii = wi. We introduce a diagonal weight matrix because

tr(WVθ[Π, θ̂]) =
n∑

j=1

wjVθ[Π, θ̂] j j (3.41)

holds if W ∈ W̃. With this relation, we can determine relation between the diagonal components
of the MSE matrix.

Let us assume that a trade-off relation is defined by a trade-off relation between the diagonal
components of the MSE matrix. To investigate the trade-off relation between the diagonal
components of the MSE matrix, we can use the elements of the W̃ as weight matrices. With
these sets of the weight matrices W and W̃, we can also define the set of all possible MSE
matricesVCR and ṼCR.

VCR = {V ∈ Rn×n|V ≥ 0,∀W ∈W, tr(WVθ[Π, θ̂]) ≥ CQ
θ [W]}, (3.42)

ṼCR = {V ∈ Rn×n|V ≥ 0,∀W ∈ W̃, tr(WVθ[Π, θ̂]) ≥ CQ
θ [W]}. (3.43)

The setsVCR and ṼCR are the sets of all possible MSE matrices derived by using the arbitrary
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weight matrices and the arbitrary diagonal weight matrices, respectively. Therefore, the relation
between is expressed by

VCR ⊂ ṼCR. (3.44)

3.4.2 Sets of diagonal components of MSE matrices by arbitrary weight
matrices and by diagonal matrices

Hereafter, we focus on the 2-parameter model only. We define the two sets of diagonal com-
ponents of the MSE matrices. One is the diagonal components of the MSE matrix derived by
the arbitrary weight matrix, and the other by using the diagonal weight matrix. Then, we show
those two sets are identical.

Let us define the following two setsDCR and D̃CR as follows.

DCR = {⃗v =
(

v1

v2

)
|∃v ∈ R, V =

(
v1 v
v v2

)
∈ VCR}, (3.45)

D̃CR = {u⃗ =
(

u1

u2

)
|∃u ∈ R, U =

(
u1 u
u u2

)
∈ ṼCR}, (3.46)

By using alternative expressions, Eqs. (3.36, 3.37),DCR and D̃CR can also written as

DCR = {⃗v =
(

v1

v2

)
|∀i, vi − Aii > 0 ∧∃ v, (v1 − A11)(v2 − A22) − (v − A12)2 ≥ det B}, (3.47)

D̃CR = {u⃗ =
(

u1

u2

)
|∀i, ui − Aii > 0 ∧ (u1 − A11)(u2 − A22) ≥ det B}. (3.48)

DCR and D̃CR are the sets of diagonal components of the MSE matrices obtained with using
arbitrary weight matrices and diagonal weight matrices, respectively.✓ ✏

Theorem 3.4.1 (DCR = D̃CR)
DCR and D̃CR are identical.

D̃CR = DCR. (3.49)✒ ✑
Proof

Using Eq. (3.47), we see a following equivalent expressions ofDCR.

DCR = {⃗v =
(

v1

v2

)
|∀i, vi − Aii > 0 ∧∃ v, (v1 − A11)(v2 − A22) − (v − A12)2 ≥ det B} (3.50)

⇐⇒ DCR = {⃗v =
(

v1

v2

)
|∀i, vi − A ii > 0 ∧ (v1 − A11)(v2 − A22) ≥ det B}. (3.51)

From Eq. (3.48), we have

D̃CR = {u⃗ =
(

u1

u2

)
|∀i, ui − Aii > 0 ∧ (u1 − A11)(u2 − A22) ≥ det B}. (3.52)
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From (3.51) and (3.48), we obtain

D̃CR = DCR. (3.53)

Although there is a relationVCR ⊂ ṼCR,DCR and D̃CR are turned out to be identical. To obtain
the trade-off relation between the diagonal components of MSE matrix, we can use (3.35), i.e.,

(V11 − A11)(V22 − A22) ≥ det B, (3.54)

becauseDCR and D̃CR are identical. !

3.5 Examples: SLD CR bound, RLD CR bound, λLD CR
bound, and Nagaoka bound for two-parameter model

Using the result in the previous section, we derive the inequality for the diagonal components
which results from SLD CR bound, RLD CR bound, and Nagaoka bound for a qubit system.

3.5.1 SLD CR bound

Since the SLD Fisher infromation matrix JS
−1
θ is a real matrix, Eq. (3.26) gives the SLD CR

bound CS
θ[W] as follows.

CS
θ[W] = tr(WJS

−1
θ ). (3.55)

Therefore, A = JS
−1
θ and B = 0 in (3.26). From (3.35), we obtain

(V11 − JS
−1
11)(V22 − JS

−1
22) ≥ 0. (3.56)

where JS
−1 = [JS

−1
i j ]. Then, we obtain

V11 − JS
−1
11 ≥ 0, V22 − JS

−1
22 ≥ 0. (3.57)

3.5.2 RLD CR bound

From Eq. (3.26), the RLD CR bound CR
θ[W] is written as

CR
θ[W] = tr(WRe[JR

−1
θ ]) + tr|

√
WIm[JR

−1
θ ]
√

W |. (3.58)

Unlike the SLD CR type bound, the second term in the right hand side appears because the
RLD Fisher information matrix JR θ is a complex matrix in general. Therefore, A = Re[JR

−1]
and B = Im[JR

−1] in (3.26). From (3.35),

(V11 − JR
−1
11)(V22 − JR

−1
22) ≥ |Im(JR

−1
12)|2, (3.59)

where JR
−1
θ = [JR

−1
i j ]. Here, we use det(Im[JR

−1]) = |Im(JR
−1
12)|2.
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3.5.3 λLD CR bound

In the same way as we obtain the RLD CR bound, we have

(V11 − Jλ−1
11)(V22 − Jλ−1

22) ≥ |Im(Jλ−1
12)|2. (3.60)

3.5.4 Nagaoka bound: qubit

For a qubit system, Nagaoka bound CN
θ [W] [45] is written as

CN
θ [W] = tr(WJ −1

S ) + 2
√

det W det J −1
S . (3.61)

By setting

B =
√

det J −1
S

(
0 1
−1 0

)
, (3.62)

we have BT = −B and det B = det J −1
S . Then, we can write CN

θ [W] as

CN
θ [W] = tr(WA) + 2

√
det W det B, (3.63)

where A = Re(J −1
S ) = J −1

S . Therefore, we have

tr[W(V − A)] ≥ 2
√

det W det B. (3.64)

Eq. (3.64) has the same form as Eq. (3.33). From Eq. (3.35), we obtain

(V11 − JS
−1
11)(V22 − JS

−1
22) ≥ det J −1

S (3.65)

3.6 Error trade off relation by the SLD and λLD CR bounds:
two-parameter model

We now move to our central idea of this chapter. From Eq.(3.23), we can obtain a more precise
bound by combining the SLD and λLD CR bounds when they have intersections. When we
use the SLD and λLD CR bounds as quantum CR bounds, we denote the sets of the diagonal
components as D̃S and D̃λ, respectively. From Eq. (3.57), D̃S is expressed as

D̃S = {⃗v =
(

v1

v2

)
|∀i, vi − JS

−1
θ ii > 0} (3.66)

D̃λ is expressed as

D̃λ = {⃗v =
(

v1

v2

)
|∀i, vi − Jλ−1

11 > 0 ∧ (v1 − Jλ−1
11)(v2 − Jλ−1

22) ≥ |Im(Jλ−1
12)|2}. (3.67)

If D̃S ∩ D̃λ ! D̃S or D̃S ∩ D̃λ ! D̃λ holds, the MSE components v1 = V11 and v2 = V22 fall in
the set D̃S ∩ D̃λ. We can make the CR bound narrow down by using two sets, D̃S and D̃λ.
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Let us consider the case plotting V11 in the horizontal axis and V22 in the vertical axis. If
det B = det(ImJλ−1) is not zero,

(v1 − Jλ−1
11)(v2 − Jλ−1

22) ≥ |Im(Jλ−1
12)|2 (3.68)

gives a hyperbola in the plot. If the hyperbola intersects with the lines V11 = JS
−1
11 and

V22 = JS
−1
22 , we call the situation as intersections exists. See Figure 3.1 for the occurrence

of intersections of the two bounds: the SLD CR and λLD1 CR bounds. On the other hand, if
D̃S ⊂ D̃λ holds, there is no intersections. In this case, we cannot conclude that the trade-off
relation exists. See Fig. 3.1 for the two bounds that do not have intersection: the SLD and
λLD2 CR bounds.

λLD1 λLD2 SLD

2.8 3.0 3.2 3.4 3.6 3.8 4.0
0.0

0.2

0.4

0.6

0.8

1.0

V11

V22
ΩTradeoff

Ω 2

1

Tradeoff

Figure 3.1: Two λLD bounds. The SLD bound is dominant over the λLD2 bound. No trade-
off relation exist. The λLD1 bound goes above the SLD bound approximately in the range
3 < V11 < 3.6. The trade-off relation exists in the range.

3.7 Conditions for the intersection of the SLD and λLD CR
bounds to exist

In the following, we discuss the conditions for the intersection of the SLD and λLD CR bounds
to exist. We drop θ in the quantum Fisher information since we consider the cases of a fixed θ.

Since the SLD CR bound cannot give a trade-off relation, we need a trade-off relation given
by the λLD. From the discussion in the previous subsections, when we are interested in the
diagonal components of the MSE matrix only, the λLD CR inequality is expressed as Eq. (3.59),

(V11 − Jλ−1
11)(V22 − Jλ−1

22) >
∣∣∣Im Jλ−1

12

∣∣∣ 2
. (3.69)

In this case, the trade-off relation results from the λLD CR inequality exists if and only if
∣∣∣Im Jλ−1

12

∣∣∣ 2
! 0. (3.70)
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By defining δ := Jλ 12 − Jλ 21 and with Jλ 12 being the complex conjugate of Jλ 21, we have an
equivalent condition.✓ ✏

Lemma 3.7.1 (Condition 1: Existence of trade-off relation that results from λLD)

δ = Jλ 12 − Jλ 21 ! 0, (3.71)

where Jλ = [Jλ i j].✒ ✑
As explained in Section 3.6, if D̃S ∩ D̃λ ! D̃S or D̃S ∩ D̃λ ! D̃λ holds, the MSE components
V11 and V22 fall in the set D̃S∩D̃λ. In that case, we narrow the region where V11 and V22 exist by
combining the SLD and λLD CR inequality Eqs.(3.57, 3.59). We remark here that we exclude
the case where D̃S ∩ D̃λ ! D̃λ because we can conclude the trade-off relation can be detected
by the λLD CR bound only. Condition 2 below is about the relation explained above.✓ ✏

Lemma 3.7.2 (Condition 2: Existence of intersection between SLD and λLD CR bounds)

The intersection of the sets D̃S and D̃λ are not equal to D̃S if and only if

∆ := |ImJ−1
λ 12|2 − (J−1

S 11 − J−1
λ 11)(J−1

S 22 − J−1
λ 22) > 0. (3.72)✒ ✑

Proof

We derive the condition for the trade-off relation determined by both λLD and the SLD CR
bounds to exist. We remark that the λLD includes the λLD as a special case λ = 1. This proof
includes the case of the RLD CR bound.

Let the MSE matrix V be
V =

(
V11 V12

V21 V22

)
. (3.73)

Then, λLD Cramér-Rao (CR) bound is given by

(V11 − J−1
λ 11)(V22 − J−1

λ 22) ≥ |ImJ−1
λ 12|2, (3.74)

where [J −1
λ ] jk = J−1

λ jk.

For now, we are interested in the boundary of λLD bound. In the following discussion, we
use the equation for the boundary,

(V11 − J−1
λ 11)(V22 − J−1

λ 22) = |ImJ−1
λ 12|2. (3.75)

Figure 3.1 shows the cases in which the trade-off exists and does not. This is a conceptual
diagram. The SLD CR bound is dominant over the λLD2 CR bound. No trade-off relation
exists. The λLD1 CR bound goes above the SLD CR bound approximately in the range 3 <
V11 < 3.6. The trade-off relation exists in the range. Therefore, as we can see in the figure, if the
value of the V22 component of λLD bound is bigger than that of the SLD bound at V11 = J−1

S 11,
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the trade-off relation exists. By substituting J−1
S 11 in V11 in Eq. (3.75), we obtain

V22|V11=J−1
S 11
=
|ImJ−1

λ 12|2
J−1

S 11 − J−1
λ 11
+ J−1

λ 22. (3.76)

From the condition for the trade-off relation to be established, V22|V11=J−1
S 11
− J−1

S 22 > 0, we have

V22|V11=J−1
S 11
− J−1

S 22 =
|ImJ−1

λ 12|2
J−1

S 11 − J−1
λ 11
+ J−1

λ 22 − J−1
S 22 (3.77)

=
|ImJ−1

λ 12|2 − (J−1
S 11 − J−1

λ 11)(J−1
S 22 − J−1

λ 22)
J−1

S 11 − J−1
λ 11

> 0. (3.78)

A relation
J−1

S ≥ ReJ−1
λ (3.79)

holds in general. Therefore,

J−1
S 11 − J−1

λ 11 ≥ 0, (3.80)
J−1

S 22 − J−1
λ 22 ≥ 0, (3.81)

holds. Since D̃S ∩ D̃λ = D̃λ holds when J−1
S = ReJ−1

λ , We exclude the case where J−1
S = ReJ−1

λ .
Then, from Eq. (3.78), we have

∆ = |ImJ−1
λ 12|2 − (J−1

S 11 − J−1
λ 11)(J−1

S 22 − J−1
λ 22) > 0. ! (3.82)

Here, we remark on the achievability of the SLD and λLD CR bound. We assume that neither
of them is achievable. However, if ∆ > 0 holds, we regard that we detect the existence of
a trade-off relation given by an achievable bound if it exists because the achievable bound is
above the CR bound given by the SLD and λLD bounds in the V11 − V22 chart such as Fig. 3.1.

3.8 Strength of trade-off relation ΩTradeoff

As indicators of the strength of the trade-off relation, we choose ΩTradeoff
1 and ΩTradeoff

2 shown in
Fig. 3.1. The strength of trade-off relation ΩTradeoff

1 and ΩTradeoff
2 become larger, and the bound

gets narrowed down. We consider that the trade-off relation becomes more significant.
We define ΩTradeoff

1 and ΩTradeoff
2 by

ΩTradeoff
1 =

⎧⎪⎪⎨
⎪⎪⎩

V11|V22=J−1
S 22
− J−1

S 11 if ∆ > 0,
0 otherwise.

(3.83)

ΩTradeoff
2 =

⎧⎪⎪⎨
⎪⎪⎩

V22|V11=J−1
S 11
− J−1

S 22 if ∆ > 0,
0 otherwise.

(3.84)

The ΩTradeoff
1 and ΩTradeoff

2 are the strength of trade-off relation in the direction of θ1 and θ2. Fig-
ure 3.1 shows ΩTradeoff

1 and ΩTradeoff
2 . When ΩTradeoff

1 = ΩTradeoff
2 , we just use ΩTradeoff = ΩTradeoff

1 =

ΩTradeoff
2 . ΩTradeoff

2 has the distance between the intersection and the boundary of the SLD CR
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bound. As shown in Fig. 3.1, if the ΩTradeoff
1 and ΩTradeoff

2 becomes larger, the trade-off rela-
tion becomes more significant. We regard these as an indicator of the strength of the tradeoff
relation.
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Chapter 4

Trade-off relation given by unitary
transformation with commuting
generators: Finite dimension

In the previous chapter, we establish a way to derive a trade-off relation from a given model
and provide conditions for a trade-off relation to exist. In this chapter, by using those methods,
we check if a trade-off relation exists for a pure state, a mixed state of qubit state, and a mixed
state of qutrit state when the generators of the unitary transformation commute. As a result, we
find no trade-off exists for the pure state and the qubit cases. However, a trade-off relation can
be established under certain conditions for the qutrit. We construct an example and conduct
a numerical analysis. Since we use unitary models only, we drop θ in the quantum Fisher
information matrices in this chapter.

4.1 Model and error trade-off relation

Let us consider arbitrary finite dimensional system. We consider the two-parameter unitary
transformation with the generators X and Y , i.e.,

U(θ1, θ2) = e−iXθ1−iYθ2 . (4.1)

We denote the two-parameter family of states generated from the state ρ0 as ρθ.

ρθ = U(θ1, θ2) ρ0U†(θ1, θ2). (4.2)

The state ρ0 is called as a reference state. In this thesis, we mainly consider the case of the
commuting generators, [X, Y] = 0 unless stated explicitly.
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4.2 Reference state: Pure state

We first consider the case that the reference state is a pure state, i.e., ρ0 = |ψ0⟩ ⟨ψ0|. From
Eqs. (4.1, 4.2), ρθ is expressed as

ρθ = e−iXθ1−iYθ2 |ψ0⟩ ⟨ψ0| eiXθ1+iYθ2 . (4.3)

Therefore, we have

∂1 |ψθ⟩ = −iX |ψθ⟩ , (4.4)
∂2 |ψθ⟩ = −iY |ψθ⟩ , (4.5)

where

∂ j |ψθ⟩ =
∂

∂θ j
|ψθ⟩ , ( j = 1, 2), (4.6)

|ψθ⟩ = e−iXθ1−iYθ2 |ψ0⟩ . (4.7)

The SLD LS θ, i are given by [48]

LS θ, 1 = 2∂1(|ψθ⟩ ⟨ψθ|) = −2iXρθ + 2iρθX = 2i[ρθ, X], (4.8)
LS θ, 2 = 2∂2(|ψθ⟩ ⟨ψθ|) = −2iYρθ + 2iρθY = 2i[ρθ,Y]. (4.9)

If [LS θ, 1, LS θ, 2] |ψθ⟩ = 0 holds, the SLD CR bound is achievable [49], therefore, no trade-off
relation exists. [LS θ, 1, LS θ, 2] |ψθ⟩ is obtained as follows.

[LS θ, 1, LS θ, 2] |ψθ⟩ = 4 ⟨ψθ| [X,Y] |ψθ⟩ |ψθ⟩ . (4.10)

A derivation of Eq. (4.10) is given in Appendix C.1. Hence, if X and Y commute, i.e., if
[X,Y] = 0 holds, we have

[LS θ, 1, LS θ, 2] |ψθ⟩ = 0. (4.11)

4.3 Reference state: Qubit state

In this section, we first discuss the quantum CR bounds of the qubit state for the general case,
i.e., [X,Y] ! 0. Then, we discuss the case of [X,Y] = 0.

4.3.1 General case [X,Y] ! 0

We consider the case of a single qubit in a mixed state. We first consider the general two-
parameter unitary model to get insight into the problem. By using the Bloch vector, we can
express the reference state ρ0 as

ρ0 =
1
2

(I + s⃗0 · σ⃗). (4.12)
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where |s⃗0| < 1. σ⃗ is a vector whose components are the Pauli matrices, i.e., σ⃗ = (σx,σy,σz) =
(σ1,σ2,σ3). The Pauli matrices are defined by

σ1 :=
(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
. (4.13)

And the matrix I is an identity matrix

I =
(
1 0
0 1

)
. (4.14)

By its definition, we immediately see that the Pauli matrices are traceless, i.e.,

tr(σ j) = 0, ( j = 1, 2, 3). (4.15)

The state ρθ is given by (4.2), i.e.,

ρθ = e−iXθ1−iYθ2ρ0eiXθ1+iYθ2 . (4.16)

The generators X, Y can also be expanded with using Pauli matrices.

X = x0 I + x⃗ · σ⃗, (4.17)
Y = y0 I + y⃗ · σ⃗. (4.18)

The inverse of SLD and RLD Fisher information matrices, J −1
S and J −1

R are explicitly written
as

J −1
S =

4
det JS

(
|⃗y × s⃗0|2 −(x⃗ × s⃗0) · (⃗y × s⃗0)

−(x⃗ × s⃗0) · (⃗y × s⃗0) |x⃗ × s⃗0|2
)
, (4.19)

J −1
R = J−1

S +
4

det JS

(
0 −i|s⃗0| 2[s⃗0 · (x⃗ × y⃗)]

i|s⃗0| 2[s⃗0 · (x⃗ × y⃗)] 0

)
, (4.20)

where det JS is the determinant of JS, and it is

det JS = 16 |s⃗0| 2|s⃗0 · (x⃗ × y⃗)|2. (4.21)

Derivations of J−1
S and J−1

R is given in Section C.2. As shown in (4.19) and (4.20), J −1
S =

Re J −1
R holds. It follows that our qubit model is D-invariant. Let us remark on the D-invariant

models. It is known that the RLD CR inequality is saturated when the model is D-invariant
[50, 51, 52, 53, 54, 55], which is valid at least in the asymptotic setting. There is no intersection
of the RLD and SLD CR bounds in the D-invariant models because the RLD CR bound is
dominant over the SLD CR bound. If the model is D-invariant and if the imaginary part of
the off-diagonal components of the RLD Fisher information matrix is not zero, there is only
a trade-off relation that results from Condition 1. In the following, we mainly investigate the
non-asymptotic setting unless stated explicitly. This is in contrast to the previous study [8],
where the authors focused on the D-invariant model, i.e.,VS ∩VR = VR.

Therefore, the RLD CR bound is asymptotically achievable and gives a trade-off relation. As
explained earlier, the SLD and RLD CR bounds do not intersect, but the trade-off relation exists
in the asymptotic setting.
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As for the Nagaoka bound, for a two-parameter qubit model, which is known to be achievable
[56, 57] in the non-asymptotic setting, an inequality regarding the diagonal components of the
MSE matrix can be derived. The inequality of the Nagaoka bound (3.65) is written as

(V11 − JS
−1
11)(V22 − JS

−1
22) >

1
det JS

. (4.22)

From (3.59) and (4.20), we obtain the inequality of the RLD CR bound.

(V11 − JS
−1
11)(V22 − JS

−1
22) >

|s⃗0| 2
det JS

. (4.23)

We used JR
−1
11 = JS

−1
11 and JR

−1
22 = JS

−1
22. Since |s⃗0| 2 < 1, the Nagaoka bound is tighter than the

RLD CR bound.

4.3.2 Commuting generators’ case

Next, we derive a relationship between X and Y , or x⃗ and y⃗ when X and Y commute. From
(4.17) and (4.18), the commuting relation of X and Y is given by

[X, Y] = [x⃗ · σ⃗, y⃗ · σ⃗] = 2i(x⃗ × y⃗) · σ⃗. (4.24)

It immediately follows that the necessary and sufficient condition for X and Y to commute is
x⃗ × y⃗ = 0⃗, i.e., x⃗ and y⃗ are parallel. Therefore, there is no trade-off relation because the unitary
transformation is no longer a two-parameter model.

4.4 Reference state: Qutrit state

Let us consider a qutrit system, the three-dimensional system. To avoid non-regular models,
the models we consider are full-rank. Other regularity conditions are also imposed implicitly.
Furthermore, the models are two-parameter unitary models.

First, we check if a trade-off relation given by the RLD CR bound exists. (i, j) component
of the RLD Fisher information matrix, JR, i j is defined by

JR, i j = tr
(
ρ0LR, j L†R, i

)
, (4.25)

where ∂iρθ |θ=0 = ρ0LR, i. We choose θ = 0 because there is no θ dependence in unitary models.
When Xi and Xj commutes, by using ∂iρθ |θ=0 = L†R, i ρ0, (4.1), and (4.2), we obtain

JR, i j = −tr
(
[Xj, ρ0][Xi, ρ0] ρ−1

0

)
, (4.26)

where X1 = X and X2 = Y . With this, Condition 1 is expressed as

δ = tr
([

[X, ρ0] , [Y, ρ0]
]
ρ−1

0

)
, (4.27)

and thus, it is relatively easy to check this condition analytically. We stress that having com-
muting generators, [X,Y] = 0 does not immediately imply δ = 0. Since X and Y commute, they
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are simultaneously diagonalizable. Without the loss of generality, for the calculation of δ, we
can use the representation so that both X and Y can be diagonalized.

ρ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (4.28)

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 0 0
0 x2 0
0 0 x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (4.29)

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1 0 0
0 y2 0
0 0 y3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4.30)

By using (4.26), δ is calculated as follows.

δ = (det ρ0)−1 (
ρ12ρ23ρ31 − ρ21ρ32ρ13

) [(
y⃗ × x⃗

) · 1⃗
]
, (4.31)

where x⃗ = (x1, x2, x3), y⃗ = (y1, y2, y3), and 1⃗ = (1, 1, 1). The condition of no trade-off relation,
δ = 0 holds when

Im (ρ12ρ23ρ31) = 0, (4.32)
or

(⃗y × x⃗) · 1⃗ = 0. (4.33)

Violation of these conditions and (3.72), i.e.,

∆ =
∣∣∣Im JR

−1
12

∣∣∣2 − (J−1
R 11 − J−1

S 11)(J−1
R 22 − J−1

S 22) > 0. (4.34)

are the necessary and sufficient conditions to have a non-trivial error trade-off relation. In the
case of qutrit, we cannot give an explicit expression of ∆ in general. But, we can straightfor-
wardly obtain ∆ numerically.

The following subsections give examples of reference states that give non-trivial error trade-
off relations. One of them gives a relatively high possibility. Our primary interest is investigat-
ing the error trade-off relation for a given commuting X and Y .

4.4.1 Example: reference state with multi-parameter

As one of the simplest examples, we pick an example with pure imaginary off-diagonal compo-
nents as a reference state ρ0 with five real variables v1, v2, v3, u1, u2, and u3. (v1 + v2 + v3 = 1).

ρ0 =
1
3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 −i
√

u1 i
√

u2

i
√

u1 v2 −i
√

u3

−i
√

u2 i
√

u3 v3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4.35)

We choose the reference state ρ0 as above, because imaginary parts of the off-diagonal com-
ponents of the reference state ρ0 are important to satisfy Condition 1 as seen in (4.32). We
calculate ∆ in Condition 2 with using the reference state ρ0 defined by (4.35) of which refer-
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Figure 4.1: ∆ as a function of umax, the maximum of u1, u2, and u3 in (4.35). x⃗ = (1, 2, 3),
y⃗ = (1.5, 5, 1).

ence state parameters are generated by random numbers. We pick those which satisfy trρ0 = 1
and ρ0 > 0 and calculate the RLD and SLD Fisher information matrices JS and JR. The RLD
Fisher information matrix is obtained by using (4.26). The SLD Fisher information calculation
is done in the standard method. (See for example, [58, 59].) The number of samples generated
is on the order of 106. Figure 4.1 shows ∆ as a function of umax, the maximum of u1, u2, and u3.
There exists a region ∆ > 0. The ratio of obtaining ∆ > 0 out of all of the samples generated is
3.0%. Figures 4.2 and 4.3 show ∆ as a function of λmin and λmax, respectively. λmin and λmax are
the minimum and maximum of eigenvalues of ρ0, respectively. For ∆ to be positive, λmin and
λmax must be in a certain range. λmin is more than about 0.13 and λmax is less than about 0.58.

Figure 4.2: ∆ as a function of λmin, the minimum of the eigenvalues of ρ0

4.4.2 Example: one-parameter family of reference states

Next, we set the reference state parameters in (4.35) as v1 = v2 = v3 = 1 and u1 = u2 = u3 = u in
order to investigate the model more in detail analytically. We pick the reference state parameters
as above, because the result of Section 4.4.1 indicates that the eigenvalues of the reference state
(4.35) be roughly in the range 1/3±0.2 to exhibit the non-trivial trade-off relation. The reference
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Figure 4.3: ∆ as a function of λmax, the maximum of the eigenvalues of ρ0

state ρ0 is, then explicitly written as

ρ0 =
1
3

I +
1
3
√

u

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −i i
i 0 −i
−i i 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (4.36)

where I denotes 3×3 identity matrix. The reference state ρ0 is a sum of the completely mixed
state of the qutrit system and a perturbation with one parameter u. The parameter u must be in
the range, 0 < u < 1/3 for the reference state ρ0 to be positive. We exclude u = 0, because
ρ0 = I/3 at u = 0.

In the following, we show that the reference state ρ0 (4.35) always gives a non-trivial trade-
off relation with a certain choice of the reference state parameter u and that the possibility of
seeing the non-trivial trade-off relation is not small.

Intersections of RLD and SLD CR bounds

From Condition 2 for λ = 1, the condition for the trade-off relation to exist is as follows. (3.72)

Condition 2 : ∆ =
∣∣∣Im JR

−1
12

∣∣∣2 − (J−1
R 11 − J−1

S 11)(J−1
R 22 − J−1

S 22) > 0.. (4.37)

∆ > 0 needs to be satisfied in order to have a non-trivial error trade-off relation. We define a
geometrical parameter, ζ as follows.

ζ =
[1⃗ · (x⃗ × y⃗)]2

(1⃗ × x⃗)2(1⃗ × y⃗)2
. (4.38)

Let ξ⃗ = 1⃗ × x⃗ and η⃗ = 1⃗ × y⃗. A vector analysis formula gives an expression,

ζ =
1
3

sin2 θ ≤ 1
3
, (4.39)

where sin θ = |ξ⃗ × η⃗|/(|ξ⃗||⃗η|). ζ = 1/3 when θ = ±π/2. ζ = 0 is excluded, because ξ⃗ × η⃗ = 0⃗
gives δ = 0 from (4.33). Therefore, the possible range for the parameter ζ is 0 < ζ ≤ 1/3.
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Figure 4.4: Solutoin u0 that satisfies Fζ(u0) = 0 in the range 0 < ζ ≤ 1/3

We introduce a function of u at a given ζ, Fζ(u) as

Fζ(u) = 16ζ(3u2 − 7u + 2)2 − u(3u2 − 9u + 8)2. (4.40)

By using Fζ(u), ∆ is expressed as

∆ =
9

16ζ2|ξ⃗|2 |⃗η|2(2 − u)u(u2 − 7u + 4)2
Fζ(u). (4.41)

The coefficient of Fζ(u) in (4.41) is positive finite when 0 < u < 1/3. In order to investigate the
range of u that gives ∆ > 0, we can check the condition for Fζ(u) > 0 instead.

We can analytically show that Fζ(u) is a monotonically decreasing function of u and that
there is always a unique solution u0 that satisfies Fζ(u0) = 0 when 0 < ζ ≤ 1/3 and when
ρ0 > 0, i.e., 0 < u < 1/3. A detailed explanation is given in Appendix C.3. Figure 4.4 shows
the solution u0 that satisfies Fζ(u) = 0. In the region where u < u0 at a given ζ, the non-trivial
trade-off relation exists. We can regard u0 as the upper limit of u that gives a non-trade off
relation. It is worth noting that the upper limit of u is almost a half of the maximum of u, 1/3 at
ζ = 1/3. This means that the possibility of realizing non-trivial trade-off relation is not small.

Figure 4.5 shows an example in which the SLD and RLD CR bounds have two intersections.
The parameters used are u = 1/12, x⃗ = (1, 2, 3), and y⃗ = (1.5, 5, 1).

Indicators of the strength of the trade-off relation ΩTradeoff
1 and ΩTradeoff

2 defined in Section 3.8
are calculated as

ΩTradeoff
1 =

∆

J 22
S − J 22

R
=

3
4 ζ |⃗η|2u(u2 − 7u + 4)(3u2 − 9u + 8)

Fζ(u), (4.42)

ΩTradeoff
2 =

∆

J 11
S − J 11

R
=

3
4 ζ |ξ⃗|2u(u2 − 7u + 4)(3u2 − 9u + 8)

Fζ(u). (4.43)

The strengths of trade-off relation is proportional to ∆. Figure 4.6 shows ΩTradeoff
1 and ΩTradeoff

2
as a function of the parameter u. In the range where ΩTradeoff

1 > 0 or ΩTradeoff
2 > 0, the non-trivial

trade-off relation exists. The strength of trade-off relation becomes stronger as u approaches 0.
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Figure 4.5: Example of RLD and SLD CR bounds with the intersections: the reference state ρ0

defined by (4.36) with u = 1/12, x⃗ = (1, 2, 3), y⃗ = (1.5, 5, 1). The gray region is the bound
determined by both the RLD and the SLD CR bounds .

4.4.3 Discussion

Unlike a qubit reference state or a pure state reference state, there exists a non-trivial trade-
off relation for some qutrit reference states even when the generators commute. We show
analytically that a non-trivial trade-off relation always exists in a certain range of the reference
state parameter u when the reference state ρ0 is defined by (4.36) that is a sum of the completely
mixed state and a perturbation.

Furthermore, the strengths of trade-off relation ΩTradeoff
1 and ΩTradeoff

2 increase as u approaches
0. This looks counterintuitive, because we can regard u as a small perturbation from 3x3 iden-
tity matrix when u ≪ 1 by the definition of ρ0, (4.36). This reflects the fact that ∂iρθ is not
necessarily small when the perturbation itself is small. Since the (i, j) component of the RLD
Fisher information matrix is JR, i j = tr[∂ jρθL†R, i], the component JR, i j may not be small if ∂iρθ is
not small.

In a more general case when ρ0 is expressed by (4.35), we conducted numerical analysis.
In this case also, there exists a non-trivial trade-off relation. Furthermore, in the case of four
dimensional system with pure imaginary off-diagonal components, we also see a non-trivial
trade-off relation by the same numerical analysis as well. With these, we conclude that the
error trade-off relation is a generic phenomenon in the sense that it occurs with a finite volume
in the spate space.

4.5 Conclusion

We have investigated whether the error trade-off relation exists in the generic two-parameter
unitary models for finite dimensional systems with the commuting generators. By analyzing the
necessary and sufficient conditions for the SLD and RLD CR bounds to intersect each other, we
obtain the necessary and sufficient conditions for the existence of a non-trivial trade-off relation
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Figure 4.6: ΩTradeoff
1 (solid line) and ΩTradeoff

2 (dotted line) as a function of the parameter u. x⃗
and y⃗ are the same as those used for Fig. 4.5. In the range where Ω1 > 0, therefore Ω2 > 0, the
non-trivial trade-off relation exists.

based on the SLD and RLD CR bounds for arbitrary finite dimensional system.
By using the conditions, we show two examples of the qutrit system with the non-trivial

trade-off relation. The result of the reference state with multi-parameter indicates that the
eigenvalues of the reference state be in a certain range. In the other model reference state
with one-parameter, we show analytically that a non-trivial trade-off relation always exists in a
certain range of the reference state parameter and that the region with the trade-off relation is
up to about a half of the allowed region.

In our previous study about the trade-off relation of an infinite dimensional system [44], the
bound is also given by both of the SLD and RLD CR bounds when the generators of the unitary
transformation with the commuting generators. As shown in Figs. 4.5 and 4.6, we confirmed
that what we saw in our previous study is not special, but generic. When the reference state is a
pure state or a general qubit state, we disprove the existence of a non-trivial trade-off relation.
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Chapter 5

Example of error trade off relation by the
SLD and RLD CR bounds: one electron in
a magnetic field

In this chapter, we present an example of a physical model that exhibits the trade-off relation in
the way that we investigated in the previous chapter. The model we use here is an electron in a
uniform magnetic field. We assume the state of the electron is described by the non-relativistic
quantum mechanics.

Hence, we investigate the uncertainty relation between two communing observables based
on the multi-parameter quantum estimation theory [1, 2, 60, 61, 62, 63]. At first sight, one
might expect that there cannot be such a trade-off relation. However, as demonstrated in this
thesis, the quantum estimation theory enables us to derive a non-trivial trade-off relation for
estimating the expectation values of two commuting observables. The result of this chapter is
based on the part of [44]. We use the natural unit. Planck constant, !, speed of light, c, and the
Boltzmann constant, kB are 1, i.e., ! = c = kB = 1. Since we use unitary model only, we drop θ
in this chapter.

5.1 Parametic model

5.1.1 Hamiltonian

The Hamiltonian H for an electron motion in a uniform magnetic field is

H =
1

2m
( p⃗ + eA⃗)2. (5.1)

where −e and m are the charge of an electron (e > 0), and the mass of the electron, respec-
tively. A⃗ is a vector potential. In the following discussion, we use the coordinate represen-
tation of operators. The canonical observables describing this systems are px, x, py, and y.
We will investigate the uncertainty relation of an electron motion in a uniform magnetic field
B⃗ = (0, 0, B), B > 0. We use the symmetric gauge. Hence the vector potential is written as
A⃗ = B (−y/2, x/2, 0). We can show that the choice of the gauge gives no change in the quantum
Fisher information when the magnetic field is uniform.
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We will consider the motion in x-y plane only, because z component solution is a plane wave.
With a new vector operator, π⃗ = p⃗ + eA⃗, our Hamiltonian becomes [64]

H =
1

2m
(π2

x + π
2
y). (5.2)

Here we remark that these mechanical (kinetic) momenta satisfy the canonical commutation
relation up to a constant factor: [πx, πy ] = −ieB [64]. They together with the guiding center
operators are the fundamental observables in the study of electrons in strong magnetic fields,
see for example [65].

It is known that the operators x, y and px, py are equally described by the two sets of the
creation and annihilation operators, acting on the different Fock spaces, a, a† and b, b† such that
[a, a†] = [b, b†] = 1 with all other commutation relations vanishing [66].

The canonical momenta px, py and the position x, y in Eq. (5.1) are expressed as

px =
i

2κ

[
(a† − a) + (b† − b)

]
, py =

1
2κ

[
(a† + a) − (b† + b)

]
, (5.3)

x =
κ

2

[
(a† + a) + (b† + b)

]
, y = − iκ

2

[
(a† − a) − (b† − b)

]
. (5.4)

where κ =
√

2(eB)−1 has the dimension of length.
The mechanical momenta πx, πy in Eq. (5.2) are expressed as

πx =
i
κ

(a† − a), πy =
1
κ

(a† + a). (5.5)

(5.6)

As shown in Eq. (5.11) below, κ corresponds to the spread of the probability density of the
electron in the lowest Landau level, or LLL.

The Hamiltonian H and z component of the angular momentum L are expressed in terms of
the two harmonic oscillators as

H = ω(a†a +
1
2

), (5.7)

L = xpy − ypx = a†a − b†b, (5.8)

where ω = eB/m is the cyclotron frequency.

5.1.2 States

As the states on which the operators a, a† and b, b† act, the number states |n⟩a and |n⟩b that
satisfy

a†a |n⟩a = n |n⟩a , b†b |n⟩b = n |n⟩b , (5.9)

are often used. The number states |0⟩a and |0⟩b are the vacuum states of the harmonic oscillators.
Since the Hamiltonian H does not include b, b†, its energy eigenstate consists of infinite

number of the angular momentum eigenstates Eq. (5.8), i.e, the energy eigenstate is degener-
ated. This state is written as |0, 0⟩ := |0⟩a |0⟩b from Eqs. (5.7, 5.8). The wave function of this
state is known as the lowest Landau level, or LLL, ψ00(x, y), which is expressed by

ψ00(x, y) = ⟨x, y | 0, 0⟩ = Ce−
x2+y2

2κ2 , (5.10)
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where C is the normalization factor. Then, the position probability density |ψ00(x, y)|2 is

|ψ00(x, y)|2 ∝ e−
x2+y2

κ2 . (5.11)

This is a Gaussian distribution with its spread κ and with its peak at (x, y) = (0, 0).

5.2 Estimation of the position

We use a parametric model that describes the position measurement of the particle. We utilize
the unitary transformation generated by the canonical momenta px and py with the parameter
θ = (θ1, θ2). We can write the reference state ρθ generated by the unitary transformation from
the reference state ρ0 which is known in advance as follows.

ρθ = e−iθ1 pxe−iθ2 pyρ0eiθ1 pxeiθ2 py . (5.12)

Hence, with the reference state ρθ, our modelM is written as

M = {
ρθ

∣∣∣ θ = (θ1, θ2) ∈ R2}, (5.13)

By using the momenta px and py as the generators, we obtain the expectation value of the
position operators as follows.

⟨X⟩θ = ⟨X⟩0 + θ1, (5.14)
⟨Y⟩θ = ⟨Y⟩0 + θ2, (5.15)

where ⟨X⟩θ = tr[ρθX] and ⟨X⟩0 = tr[ρ0X]. The unitary transformations of model makes a shift
in the position probability density of the electron by θ = (θ1, θ2). From Eqs. (5.14, 5.15), we
have θ1 = ⟨x⟩θ − ⟨x⟩0 and θ2 = ⟨y⟩θ − ⟨y⟩0. Then, the shifted state from the reference state has
a sharp peak at (x, y) = (θ1, θ2). Therefore, estimating ⟨x⟩θ and ⟨y⟩θ is equivalent to infer the
shift parameters θ = (θ1, θ2). (Under the assumption that we know in advance the expectation
value of the position operators with respect to the reference state ρ0.) We estimate the unknown
parameters θ1 and θ2 by making arbitrary measurement, which is unbiased. We then infer the
two parameters from the measurement result. We shall use the MSE matrix to measure the
estimation accuracy of the position of the electron.

5.3 Trade-off relation of thermal state

As shown in Appendix C.1 and in Section 4.2, the SLD CR bound becomes acheivable for any
pure state reference state if the generators of the unitary transformation commute. Therefore,
their exists no trade-off relation.

We set up a mixed state as the reference state to see how the noise affects the measurement
accuracy of the electron position. For this purpose, as the mixed state, we choose the thermal
state. However, in the current system we are considering, there is no unique thermal state,
because the energy eigenstate is degenerated. Then, the thermal state of this system is not
uniquely specified by the temperature only. To resolve this degeneracy problem, we impose a
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condition that the expectation value of the angular momentum ⟨L⟩0 is fixed. This is done by
introducing a chemical potential.

After constructing the reference state, we use the method explained in Section 3.6 to evaluate
the strength of the trade-off relation ΩTradeoff

1 and ΩTradeoff
2 .

5.3.1 Reference state

Given ⟨L⟩0 is fixed at a constant, the reference state ρ0 is denoted by

ρ0 = Z−1
β, µe

−βH+µL, (5.16)

where β = T−1 is the inverse temperature and Zβ, µ = tr [e(−βH+µL)] is the partition function. The
parameter µ is the chemical potential, which will be determined later. The role of the chemical
potential µ is to keep ⟨L⟩0 constant to avoid complications by the degeneracy of angular mo-
mentum. The use of the chemical potential here is the same idea as seen in the grand canonical
ensemble of statistical physics where the chemical potential is used to keep the expectation
value of the number of particles constant.

From Eqs. (5.7, 5.8),
ρ0 = Z−1

β, µe
− 1

2βωe−(βω−µ)a†a−µb†b. (5.17)

because H and L commute, i.e., [H, L] = 0. By using the Gaussian states which are defined by

a |z⟩a = z |z⟩a , b |z⟩b = z |z⟩b , (5.18)

the reference state ρ0 is expressed as

ρ0 = ρ0, a ⊗ ρ0, b, (5.19)

where ρ0, a and ρ0, b are the thermal states with different temperatures. Explicitly, they are

ρ0, a =
1

2πκ2
a

∫
e
− |z|2

2κ2a |z⟩a a⟨z | d2z, (5.20)

ρ0, b =
1

2πκ2
b

∫
e
− |z|2

2κ2b |z⟩b b⟨z | d2z, (5.21)

with
2κ2

a = (eβω−µ − 1)−1, 2κ2
b = (eµ − 1)−1. (5.22)

The derivation of Eqs. (5.19, 5.22) is given in Appendix D.1. It is straightforward to calculate
the expectation value ⟨L⟩0 as

⟨L⟩0 = tr [L ρ0] = 2κ2
a − 2κ2

b. (5.23)

From Eqs. (5.22, 5.23), we obtain

(⟨L⟩0 + 1)e2µ − ⟨L⟩0(e βω + 1)eµ + (⟨L⟩0 − 1)e βω = 0. (5.24)

When βω and ⟨L⟩0 are given, µ is the variable of Eq. (5.24). If ⟨L⟩0 = −1 holds, there exists
a unique solution. Whereas there are two solutions for ⟨L⟩0 ! −1. However, one of them is
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Figure 5.1: The chemical potential µ as a function of the expectation value of the angular
momentum ⟨L⟩0 at three different temperature parameters βω = 0.1, 1, and 5. At lower βω i.e.,
higher temperature, µ becomes closer to zero, no preference for the angular momentum.

shown to be unphysical giving a negative temperature state. Then, the chemical potential µ as
a function of ⟨L⟩0 and βω is found to be

eµ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2e βω

e βω + 1
(⟨L⟩0 = −1)

1
2(⟨L⟩0 + 1)

[
⟨L⟩0(e βω + 1) +

√
⟨L⟩20(e βω − 1)2 + 4e βω

]

(⟨L⟩0 ! −1)

. (5.25)

Although the solution of Eq. (5.24) has a singular point at ⟨L⟩0 = −1 at a first glance, we can
show that the solution the solution for ⟨L⟩0 ! −1 is continuously connected to the solution for
⟨L⟩0 = −1. We can also show that the first derivative is continuous at ⟨L⟩0 = −1.

Figure 6.1 shows µ as a function of ⟨L⟩0 at βω = 0.1, 1, and 5 from top to bottom. The
chemical potential µ as a function of ⟨L⟩0 diverges for ⟨L⟩0 ≥ 0 as βω goes to infinity, i.e.,
the zero temperature limit. At a special case, ⟨L⟩0 = 0, we see µ = βω/2 from Eq. (5.25).
Explicitly, the zero temperature limit is

lim
β→∞
µ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞ (⟨L⟩0 ≥ 0)

log
[ ⟨L⟩0−1
⟨L⟩0

]
(⟨L⟩0 < 0)

. (5.26)

5.3.2 Trade-off relation

We derive the SLD and the RLD CR bounds. They then provide the trade-off relation for
the MSE matrix. The calculations of SLDs and RLDs and their quantum Fisher information
matrices are given in Appendix D.2.
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Condition for trade-off relation to exist

Let JR and JS be the RLD and the SLD Fisher information matrices with respect to ρθ =
Uθρ0U†θ , respectively. The inverse of JR is calculated as

(JR)−1 =
κ2

1 + 2κ2
a + 2κ2

b

(
2κ2

a + 2κ2
b + 8κ2

aκ
2
b i (2κ2

b − 2κ2
a)

−i (2κ2
b − 2κ2

a) 2κ2
a + 2κ2

b + 8κ2
aκ

2
b

)

=
κ2

1 + 2κ2
a + 2κ2

b

(
2κ2

a + 2κ2
b + 8κ2

aκ
2
b i ⟨L⟩0

−i ⟨L⟩0 2κ2
a + 2κ2

b + 8κ2
aκ

2
b

)
. (5.27)

We use ⟨L⟩0 = 2κ2
b − 2κ2

a . The explicit expression of κ is κ =
√

2(eB)−1. This κ is the spread of
the square of the absolute value of the wave function of the ground state.

Hence, we have the RLD CR bound.

(V11 − JR
−1
11)(V22 − JR

−1
11) ≥ κ4

( ⟨L⟩0
1 + 2κ2

a + 2κ2
b

)2

. (5.28)

Next, the calculation of the inverse of JS reveals that (JS)−1 is a diagonal matrix and that JS
−1
11

is equal to JR
−1
22. (JS)−1 is written as

(JS)−1 =

(
JS
−1
11 0

0 JS
−1
22

)
, (5.29)

where

JS
−1
11 = JS

−1
22 = κ

2
1
2 + 2κ2

a + 2κ2
b + 8κ2

aκ
2
b

1 + 2κ2
a + 2κ2

b

. (5.30)

Hence, we have
V11 ≥ JS

−1
11, V22 ≥ JS

−1
11. (5.31)

There are two cases regarding the ordering between the inverse of RLD and SLD Fisher matri-
ces in terms of the matrix inequality.

We next investigate the condition for trade-off relation to exists, Condition 2 we show in
Section 3.7.

∆ = |ImJR
−1
12|2 − (JS

−1
11 − JR

−1
11)(JS

−1
22 − JR

−1
22) > 0. (5.32)

Then, Condition 2, the condition for trade-off relation to exist is obtained as

∆ =
κ4

4(1 + 2κ2
a + 2κ2

b)2
(4⟨L⟩20 − 1) > 0. (5.33)

Depending on ⟨L⟩0, we have the following two cases.
Case i). When |⟨L⟩0| ≤ 1/2, the SLD CR bound defines a tighter lower bound. This is because
the matrix inequality

∆J−1 := (JS)−1 − (JR)−1 = ∆g
(

1 −2i ⟨L⟩0
2i ⟨L⟩0 1

)
≥ 0, (5.34)
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holds if and only if |⟨L⟩0| ≤ 1/2 is satisfied. Here, ∆g is defined by

∆g :=
κ2

2
1

1 + 2κ2
a + 2κ2

b

> 0. (5.35)

Case ii). In the other case, |⟨L⟩0| > 1/2, however, there is no matrix ordering between the RLD
and the SLD Fisher information matrices. This means that both of the RLD CR inequality
Eq. (5.28) and the SLD CR inequality (5.31) contribute to the trade-off relation.

Figures 5.2 show examples of the bounds with different |⟨L⟩0|=1, 1/2, and 0.2. Figure 5.2a
shows an example of the bound given by the current analysis with |⟨L⟩0| = 1/2. The parameters
used are κ = 1, 2κ2

a = 2, 2κ2
b = 1, and thus |⟨L⟩0| = 1 > 1/2 holds. Figure 5.2b shows an

example of the bound given by the current analysis with |⟨L⟩0| = 1/2. The parameters used are
κ = 1, 2κ2

a = 1.5, 2κ2
b = 1, and thus |⟨L⟩0| = 1/2 holds. The RLD and the SLD CR bounds

have only one intersection point. The SLD CR bound is dominant. No trade-off relation exists.
Figure 5.2c shows an example of the bound given by the current analysis with |⟨L⟩0| = 1/2. The
parameters used are κ = 1, 2κ2

a = 1.2, 2κ2
b = 1, and thus |⟨L⟩0| = 1 < 1/2 holds. The RLD and

the SLD CR bounds have no intersection point. The SLD CR bound is dominant. No trade-off
relation exists. The strength of the trade-off relation ΩTradeoff is given by

holds if and only if |⟨L⟩0| ≤ 1/2 is satisfied. Here, ∆g is defined by

∆g :=
κ2

2
1

1 + 2κ2
a + 2κ2

b

> 0. (5.36)

Case ii). In the other case, |⟨L⟩0| > 1/2, however, there is no matrix ordering between the RLD
and the SLD Fisher information matrices. This means that both of the RLD CR inequality
Eq. (5.29) and the SLD CR inequality (5.32) contribute to the uncertainty relation. Figure 5.2
shows an example of the bound given by the current analysis with |⟨L⟩0| > 1/2. The parameters
used are κ = 1, 2κ2

a = 2, 2κ2
b = 1, and thus |⟨L⟩0| = 1 > 1/2 holds. The gray region defined

by two quantum CR bounds, the SLD and the RLD CR bounds are the region where (V11, V22)
exists.

Figures 5.2, 5.3, and 5.4 show examples of the bounds with different |⟨L⟩0| = 1, 1/2, 0.2.
Figure 5.3 shows an example of the bound given by the current analysis with |⟨L⟩0| = 1/2. The
parameters used are κ = 1, 2κ2

a = 1.5, 2κ2
b = 1, and thus |⟨L⟩0| = 1/2 holds. The RLD and the

SLD CR bounds have only one intersection point. The SLD CR bound is dominant. No trade-
off relation exists. Figure 5.4 shows an example of the bound given by the current analysis with
|⟨L⟩0| = 1/2. The parameters used are κ = 1, 2κ2

a = 1.2, 2κ2
b = 1, and thus |⟨L⟩0| = 1 < 1/2

holds. The RLD and the SLD CR bounds have only one intersection point. The SLD CR bound
is dominant. No trade-off relation exists.
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Figure 5.2: Bound for ⟨L⟩0 =
1.0
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Figure 5.3: Bound for ⟨L⟩0 =
1/2
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Figure 5.4: Bound for ⟨L⟩0 =
0.2

Strength of the trade-off relation

The strength of the trade-off relation ΩTradeoff is given by

ΩTradeoff =
∆

JS
−1
11 − JR

−1
11
=

κ2

2(1 + 2κ2
a + 2κ2

b)
(4⟨L⟩20 − 1) = ∆g(4⟨L⟩20 − 1), (5.37)

if ∆ > 0 holds. Otherwise, ΩTradeoff = 0. Figure 4.3 shows ∆g(4⟨L⟩20 − 1) as a function of ⟨L⟩0
at three different βω’s which are the same as Fig. 5.1.

When |⟨L⟩0| ≤ 1/2, ∆ is negative as shown in Fig. 5.4, the RLD CR bound stays always
below the SLD CR bound. This is consistent with (JS)−1 ≥ (JR)−1 when |⟨L⟩0| ≤ 1/2. At larger
βω (lower temperature), the possible ranges of VR−S

11 and VR−S
22 given by the RLD CR bound

50

a b c

Figure 5.2: Bounds given by quantum Cramér-Rao inequalites. The temperature parameters
used are 2κ2

a = 2, 2κ2
b = 1, and thus |⟨L⟩0| = 1 > 1/2 for a, 2κ2

a = 1.5, 2κ2
b = 1, and thus

|⟨L⟩0| = 1/2 for b, 2κ2
a = 1.2, 2κ2

b = 1, and thus |⟨L⟩0| = 0.2 < 1/2 for c. The κ is set as 1 for all
three cases. The allowed region of the MSE matrix components (V11, V22) is the gray region.
The allowed region of model is given by the region covered by both the SLD Cramér-Rao bound
(dotted lines) and the RLD CR bound (dashed lines).
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ΩTradeoff =
∆

JS
−1
11 − JR

−1
11
=

κ2

2(1 + 2κ2
a + 2κ2

b)
(4⟨L⟩20 − 1) = ∆g(4⟨L⟩20 − 1), (5.36)

if ∆ > 0 holds. Otherwise, ΩTradeoff = 0. Figure 5.3 shows ∆g(4⟨L⟩20 − 1) as a function of ⟨L⟩0
at three different βω’s which are the same as Fig. 5.1.
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Figure 5.3: ∆g(4⟨L⟩20 − 1) as a function of ⟨L⟩0. ΩTradeoff = ∆g(4⟨L⟩20 − 1) for |⟨L⟩0| > 1/2 and
ΩTradeoff = 0 for |⟨L⟩0| ≤ 1/2.

When |⟨L⟩0| ≤ 1/2, ∆ is negative as shown in Eq 5.33, the RLD CR bound stays always below
the SLD CR bound. This is consistent with (JS)−1 ≥ (JR)−1 when |⟨L⟩0| ≤ 1/2. At larger βω
(lower temperature), the possible ranges of V11 and V22 given by the RLD CR bound becomes
larger at the same ⟨L⟩0. Finally, we briefly discuss achievability of the trade-off relation above.
It is known that the RLD CR bound is (asymptotically) achievable, if and only when the model
is D-invariant [54]. This condition is checked by comparing two matrices, the inverse of the
RLD Fisher information matrix and the Z matrix (Z = [Zjk]) which is defined by [68]

Zjk = tr(ρθL k
S, θL

j
S, θ), (5.37)

where

L j
S, θ =

n∑

k=1

JS, θ
−1
k jLS, θ,k. (5.38)

As given in Appendix D.2, (JR)−1 and the Z matrix Z are different. Hence, the RLD CR bound
is not tight. We next examine if the SLD CR bound is achievable or not. In Refs. [67, 68], the
necessary and sufficient conditions are derived for asymptotically achievability of the SLD CR
bound. The simplest condition is that the imaginary part of the Z matrix is zero. In our model,
this is equivalent to ⟨L⟩0 = 0 which is also equivalent to κa = κb [Eq. (5.23)]. When ⟨L⟩0 ! 0,
neither the RLD CR bound nor SLD CR bound is even asymptotically achievable. Therefore,
the trade-off relation is not tight, except for the special choice of the parameter, ⟨L⟩0 = 0.
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5.4 Conclusion

We have investigated the trade-off relation for estimating x and y components of the position
of one electron in a uniform magnetic field. In the present study, the trade-off relation upon
estimating the expectation values of the two commuting observables, (x, y) was derived in the
framework of the quantum estimation theory. As the generators of the unitary transformation,
we use a set of canonical momenta, px and py. Based on the analysis by the quantum estimation
theory, we get non-trivial bounds that give the trade-off relations between the two commuting
observables, x and y, unlike the result of Heisenberg-Robertson type uncertainty relation.

Before closing this chapter, we make two remarks. First, the CR bound of Model with
respect to the thermal state reference state is not achievable except for ⟨L⟩0 = 0. A possible
extension might be an analysis by minimizing a weighted trace of the mean square error matrix
[8]. However, this method gives asymptotically achievable bound only. Second, for the thermal
state with the ⟨L⟩0 constraint, we see the change in the bound shape depending on ⟨L⟩0. We
have no clue as to why the bound shape changes at ⟨L⟩0 = 1/2 in a simple physical picture so
far. It should be worthwhile seeing why the bound shape changes there.
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Chapter 6

Spin-1/2 relativistic particle: SLD CR
bound for moving observer [69]

With a similar model in chapter 5, we treat the physical model by taking the relativity [70, 31,
32] into account. Our purpose is to investigate if estimation accuracy is affected and, if so, how
much estimation accuracy of a moving observer is affected.

We obtain the accuracy limit for estimating the expectation value of the position of a relativis-
tic particle for an observer moving along one direction at a constant velocity. We set a specific
model of a relativistic spin-1/2 particle described by a gaussian wave function with a spin down
in the rest frame. To derive the state vector of the particle for the moving observer, we use
the Wigner rotation [31, 32] that entangles the spin and the momentum of the particle. Based
on this wave function for the moving frame, we obtain the symmetric logarithmic derivative
(SLD) Cramér-Rao bound that sets the estimation accuracy limit for an arbitrary observer in
motion. It is shown that estimation accuracy decreases monotonically in the observer’s velocity
when the moving observer does not measure the spin degree of freedom. This implies that the
estimation accuracy limit worsens with increasing the observer’s velocity, but it is finite even in
the relativistic limit. We derive the amount of this information loss by the exact calculation of
the SLD Fisher information matrix in an arbitrary moving frame.

6.1 Model

We assume that an observer moves along the z axis with a constant velocity v. We choose
the z direction as the moving direction, because we expect that this direction gives the most
significant change in the rotation of spin as a massive relativistic spin-1/2 particle on the x-y
plane [23]. We use the natural unit, i.e., ! = 1 and c = 1 unless otherwise stated. The mass of
the particle is m. As a metric tensor gµν (µ, ν = 0, 1, 2, 3), we choose gµν = (+1,−1,−1,−1).

6.1.1 State in the rest frame

The wave function of the particle is set as a gaussian function of x and y with a plane wave in the
z coordinate. For simplicity, we set the wave number, or the momentum along the z direction
as zero. To apply the Wigner rotation as described in [31, 32], we mainly use the momentum
representation in the following discussion.
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The state of the particle is in a known pure state called a reference state. The reference state
ρ0 in the rest frame is

ρ0 = |Ψ↓⟩ ⟨Ψ↓| , (6.1)

|Ψ↓⟩ =
∫

d3 pϕ0(p1)ϕ0(p2)δ(p3) | p⃗, ↓⟩ , (6.2)

where δ(p3) denotes the Dirac delta function to represent the plane wave in the z direction. The
momentum vector p⃗ is a spatial part of the four-momentum pµ, i.e., p⃗ = (p1, p2, p3). The state
vectors |p⃗, ↓⟩ and | p⃗, ↑⟩ are the momentum eigenstates with down and up spins, respectively.
The ϕ0(p) is defined by the gaussian function as

ϕ0(p) =
κ1/2

π1/4 e−
1
2 κ

2 p2
. (6.3)

The κ determines the spread of the wave function in the coordinate representation, i.e., the
spread of the wave function in the coordinate representation becomes broader as κ increases.
The spread κ is a quantity that an experimenter chooses at his/her will.

A quantum parametric model is defined by a two-parameter unitary model as

Mrest =
{
ρθ

∣∣∣ θ = (θ1, θ2) ⊂ R2}, (6.4)

where ρθ is generated by the momentum operators in the x and y direction, p̂1 and p̂2, respec-
tively,

ρθ = U(θ)ρ0U†(θ) = U(θ) |Ψ↓⟩ ⟨Ψ↓|U†(θ), (6.5)

with
U(θ) = e−ip̂1θ1−i p̂2θ2 . (6.6)

The operator p̂i (i = 1, 2) are the momentum operator of ith component, i.e., p̂i |p⃗,σ⟩ = pi | p⃗,σ⟩,
(σ =↓, ↑). Let us define a state vector |Ψ↓(θ)⟩ by

|Ψ↓(θ)⟩ = U(θ) |Ψ↓⟩ (6.7)

=

∫
d3 pϕ0(p1)ϕ0(p2)δ(p3)e−ip1θ1−ip2θ2 | p⃗, ↓⟩ . (6.8)

Then, Eq. (6.5) is expressed as
ρθ = |Ψ↓(θ)⟩ ⟨Ψ↓(θ)| . (6.9)

The physical implication of the parameter θ is that it is the peak position of the wave function
in the coordinate representation. Alternatively, we consider position operators x̂ j, which are
canonical conjugate of the momentum operators p̂ j. ( j = 1, 2) [71]. From Eq. (6.6), we have

U†(θ)x̂ jU(θ) = x̂ j + θ j ( j = 1, 2). (6.10)

The unitary transformation U(θ) gives a shift by θ j to a position operator x̂ j. By assumption,
we know the reference state ρ0. However, we do not know θ1 or θ2. We estimate the parameters
θ1 and θ2 encoded in ρθ = U(θ) |Ψ↓⟩ ⟨Ψ↓|U†(θ). By doing so, we have an estimate for the
expectation value of the position operators x̂1 and x̂2 as seen in Eq. (6.10).

The parametric model (6.4) in the rest frame is a classical model in the following sense.
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Firstly, two parameters are totally uncorrelated since the state vector (6.8) is also expressed as
the tensor product form,

|Ψ↓(θ)⟩ = |ψ1(θ1)⟩ |ψ2(θ2)⟩ |p3 = 0⟩ |↓⟩ , (6.11)

with
|ψ j(θ j)⟩ =

∫
dpj ϕ0(pj)e−ip jθ j |pj⟩ , ( j = 1, 2). (6.12)

Secondly, an optimal measurement to estimate θ j is the position operator x̂ j. Optimal measure-
ments for θ1 and θ2 commute and hence we can simultaneously perform the optimal measure-
ment. Thirdly, upon measuring the position operators, the measurement outcomes obey the in-
dependent classical gaussian distributions with the mean (θ1, θ2) and their variances (κ2/2, κ2/2).
Thus, the optimal unbiased estimator is given by the sample mean.

6.1.2 Quantum Fisher information in the rest frame

The symmetric logarithmic derivative (SLD) Lj(θ) of the pure state model Eq. (6.4) is calculated
is given by [48]

Lj(θ) = 2∂ j[|Ψ↓(θ)⟩ ⟨Ψ↓(θ)|], (6.13)

where ∂ j = ∂/∂θ j. Throughout this chapter, we consider the SLD only. Hence we omit subscript
“S” in this chapter. By a direct calculation, we obtain the commutator of the SLDs as

[L1(θ), L2(θ)] = 4(|∂1Ψ↓(θ)⟩ ⟨∂2Ψ↓(θ)| − |∂2Ψ↓(θ)⟩ ⟨∂1Ψ↓(θ)|), (6.14)

where |∂ jΨ↓(θ)⟩ = ∂ j |Ψ↓(θ)⟩, ( j = 1, 2). Similar notations will be used throughout the thesis.
We remark that the SLDs do not commute in this particular choice of SLDs.

At first sight, this non-commutativity seems to contradict the fact that the parametric model
in the rest frame is a classical one. A resolution is that the choice of the SLDs above is not
unique [48]. As an example, we have another choice of the SLDs, L̃ j(θ) ( j = 1, 2) as follows.

L̃1(θ) = 2∂1(|ψ1(θ)⟩ ⟨ψ1(θ)|) ⊗ I2 ⊗ I3 ⊗ |↓⟩ ⟨↓| , (6.15)
L̃2(θ) = I1 ⊗ 2∂2(|ψ2(θ)⟩ ⟨ψ2(θ)|) ⊗ I3 ⊗ |↓⟩ ⟨↓| , (6.16)

where

Ik =

∫
dpk |pk⟩ ⟨pk| , (k = 1, 2, 3). (6.17)

These SLDs L̃ j(θ) satisfy the definition of SLD and indeed they do commute each other.
The SLD Fisher information matrix J(θ) = [J jk(θ)] is obtained by the formula in [48] as

J jk = 4(⟨∂ jΨ↓(θ)|∂kΨ↓(θ)⟩ + ⟨Ψ↓(θ)|∂ jΨ↓(θ)⟩ ⟨Ψ↓(θ)|∂kΨ↓(θ)⟩). (6.18)

In the following discussion, we drop θ in the SLD Fisher information matrix, because J is
independent of θ due to the unitarity of the model. By a straightforward calculation involving
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the standard gaussian integrals, we have

J jk =
2
κ2 δ jk, ( j, k = 1, 2). (6.19)

The alternative SLDs L̃ j(θ) Eqs. (6.15) and (6.16) give the same SLD Fisher information matrix
Eq. (6.19). The inverse of the SLD Fisher information matrix J−1 = [J −1

jk ] is also diagonal as
follows.

J −1
jk =

κ2

2
δ jk. (6.20)

The SLD CR inequality is expressed as

V ≥ J−1, (6.21)

where V = [V jk] is the mean square error (MSE) matrix. With Eq. (6.20), we have

V11 ≥
κ2

2
, V22 ≥

κ2

2
. (6.22)

The estimation accuracy limit regarding the expectation value of the position operator is propor-
tional to κ2 which determines the spread of the wave function in the coordinate representation.
It is easy to see J −1 approaches the zero matrix as κ → 0. At the limit of κ → 0, the wave
function in the coordinate representation becomes the Dirac delta function. This allows us to
estimate the parameter θ without any error.

6.1.3 State in a moving frame

We next consider an observer moving along the z axis with respect to the rest frame. A Lorentz
transformation κ from the rest frame to this moving frame is

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cosh χ 0 0 − sinh χ
0 1 0 0
0 0 1 0

− sinh χ 0 0 cosh χ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.23)

cosh χ =
1√

1 − v2
, sinh χ =

v√
1 − v2

. (6.24)

v is a velocity of the observer moving along the z axis. By this Lorentz transformation, the
momentum of the particle is transformed as in classical physics. We define the spatial part of
the four-momentum,

−−→
Λp by

Λp = ((Λp)0, (Λp)1, (Λp)2, (Λp)3) = ((Λp)0,
−−→
Λp). (6.25)
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Then,
−−→
Λp is given by

−−→
Λp =

⎛
⎜⎜⎜⎜⎜⎜⎝

3∑

µ=0

Λ1
µp
µ,

3∑

µ=0

Λ2
µp
µ,

3∑

µ=0

Λ3
µp
µ

⎞
⎟⎟⎟⎟⎟⎟⎠ (6.26)

= (p1, p2,−p0 sinh χ), (6.27)

where p0 =
√

m2 + | p⃗ |2. The m is the mass of the particle in the rest frame. See for exam-
ple [31].

For a relativistic spin-1/2 particle, the Lorentz transformation Λ also gives rise to a unitary
transformation U(Λ) acting on the state vector. This is described by the Wigner rotation [31, 32]
(See a short summary in Appendix E.1.). In our model, the state vector in the rest frame is in a
spin down state, |Ψ↓(θ)⟩. The state vector |Ψ↓(θ)⟩ is transformed to |ΨΛ(θ)⟩ as

|ΨΛ(θ)⟩ = U(Λ) |Ψ↓(θ)⟩ =
∑

σ=↓,↑
|ΨΛσ(θ)⟩ . (6.28)

We remark here that |ΨΛσ(θ)⟩ , (σ =↓, ↑) are not normalized. It is convenient to express the state
vectors |ΨΛσ(θ)⟩, (σ =↓, ↑) as

|ΨΛσ(θ)⟩ = |ψΛσ(θ)⟩ |σ⟩ . (6.29)

The explicit form of |ψΛσ(θ)⟩ is given by

|ψΛσ(θ)⟩ =
∫

d3 p

√
(Λp)0

p0 Fθ,σ(p1, p2)δ(p3) |−−→Λp⟩ , (6.30)

Fθ, ↓(p1, p2) = ϕ0(p1)ϕ0(p2)e−ip1θ1−ip2θ2 cos
α(| p⃗ |)

2
, (6.31)

Fθ, ↑(p1, p2) = −ϕ0(p1)ϕ0(p2)e−ip1θ1−ip2θ2eiφ(p1, p2) sin
α(| p⃗ |)

2
, (6.32)

| p⃗ | =
√

(p1)2 + (p2)2, (6.33)

eiφ(p1, p2) =
p1

| p⃗ | + i
p2

|p⃗ | , (6.34)

cosα(| p⃗ |) =
√

m2 + |p⃗ |2 + m cosh χ
√

m2 + |p⃗ |2 cosh χ + m
, (6.35)

sinα(| p⃗ |) = − |p⃗ | sinh χ
√

m2 + | p⃗ |2 cosh χ + m
. (6.36)

In the expressions above, m denotes the rest mass of the spin-1/2 particle.
The Lorentz boost gives a non-zero probability density of spin up state as shown in Eq. (6.32).

This makes the particle spin ‘rotate’, and hence is called the Wigner rotation. Detailed deriva-
tions of Eqs. (6.28), (6.30), (6.31), and (6.32) are given in Appendix E.1.

We remark that the states |ΨΛ(θ)⟩ are entangled with respect to the momentum and the spin
degrees of freedoms. For the observer moving along the z axis, the spin has a component of
spin up which is none at the rest frame, i.e., the spin rotates as the observer moves.
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6.2 Parameter estimation: moving frame

We are now in position to discuss parameter estimation in the moving frame. Suppose that a
moving observer wishes to estimate the parameter θ encoded in the state Eq. (6.28). The system
under discussion has two different degrees of freedoms. One is a continuous part describing the
wave function, and the other is the spin. It is natural to measure the continuous degree of
freedom to estimate the parameter as the observer does not know whether s/he is in a moving
frame or not. In this setting, the moving observer does not have access to the spin degree of
freedom. Then, our parametric model is given by tracing out the spin of from the pure state
Eq. (6.28).

As comparison, we also give a short account on other possible cases. The first is when the
moving observer measures the both degrees of freedoms. This will be discussed in Sec. 6.2.1.
The other case is when the spin of the particle is measured only, which will be given in
Sec. 6.3.1.

6.2.1 Invariance of quantum Fisher information after the Lorentz boost

We first consider the situation where the moving observer measures the whole state Eq. (6.28).
The parametric model for this case is defined as follows.

Mboost =
{ |ΨΛ(θ)⟩ ⟨ΨΛ(θ)|

∣∣∣ θ = (θ1, θ2) ∈ R2}. (6.37)

It is clear that this model is unitary equivalent to the model in the rest frame, since the difference
is only given by the unitary transformation U(Λ). To phrase it differently, we can regard the
model after the Lorentz boost in the different representation. Therefore, the SLD Fisher infor-
mation matrix is exactly same as in the rest frame, Eq. (6.20). While this is true mathematically,
the physical meanings of these two models are different.

Let us further elaborate on physics of the two models; the one in the rest frame Eq. (6.4) and
the other Eq. (6.37) in the moving frame. The unitary transformation U(Λ) which defines the
Wigner rotation is parameter independent, and hence, two parametric models are equivalent.
Yet, the significance of the Lorentz transformation is that U(Λ) depends on the velocity v of
the moving observer with respect to the rest frame. The resulting state-vector after the Lorentz
boost Eq. (6.28) indeed depends on v in a non-trivial manner. Furthermore, the wave function
in the moving frame is no longer described by the simple gaussian wave function as given
in Eqs. (6.31) and (6.32). In particular, the two parameters θ1 and θ2 are not described by a
tensor product of two independent parametric models as in the rest frame. Nevertheless, we
can formally express an optimal measurement for the model after the Lorentz boost by the pair
of observables

U(Λ)x̂ jU†(Λ), ( j = 1, 2),

which obviously commute each other. We will not give further analysis on these observables,
but it is obvious that experimental implementation of this optimal measurement is much more
complex. It may not be feasible as it will depend on the velocity v.
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6.2.2 Parametric model in the moving frame

We now analyze the parametric model when the moving observer does not measure the spin of
the particle. By taking the partial trace over the spin σ, we have

ρΛ(θ) = trσ |ΨΛ(θ)⟩ ⟨ΨΛ(θ)| (6.38)

=
∑

σ=↓,↑
⟨σ|ΨΛ(θ)⟩ ⟨ΨΛ(θ)|σ⟩ (6.39)

=
∑

σ=↓,↑
|ψΛσ(θ)⟩ ⟨ψΛσ(θ)| . (6.40)

With this ρΛ(θ), we define the parametric model of interest as

MΛ = {
ρΛ(θ)

∣∣∣ θ = (θ1, θ2) ∈ R2}. (6.41)

As noted before, the state vectors |ψΛσ(θ)⟩ are unnormalized. Let us evaluate the inner prod-
ucts ⟨ψΛσ(θ)|ψΛσ(θ)⟩ to analyze the amplitudes of the each spin state. From Eqs. (6.30), (6.31),
and (6.32), by a straightforward calculation shown in Appendix E.2.1 , we obtain the inner
products as follows.

⟨ψΛ↓(θ)|ψΛ↓(θ)⟩ =
1
2

(1 + ξ), (6.42)

⟨ψΛ↑(θ)|ψΛ↑(θ)⟩ =
1
2

(1 − ξ), (6.43)

⟨ψΛ↑(θ)|ψΛ↓(θ)⟩ = 0, (6.44)

where

ξ =

∫ ∞

−∞

∫ ∞

−∞
|ϕ0(p1)ϕ0(p2)|2 cosα(| p⃗ |)dp1dp2 (6.45)

= 2κ2
∫ ∞

0
dt t e−κ

2t2
√

m2 + t2
√

1 − v2 + m√
m2 + t2 + m

√
1 − v2

. (6.46)

The ξ is an indicator of the spin rotation by the Lorentz boost as seen in Eqs. (6.42) and (6.43).
As the result, it depends only on the observer’s velocity v. The smaller ξ becomes, the larger
the amplitude of the spin up state. Therefore, the spin rotates. We remark that the state vectors
|ψΛ↑(θ)⟩ and |ψΛ↓(θ)⟩ are orthogonal.

By using the normalized state vector |ψ̄Λσ(θ)⟩ defined by

|ψ̄Λσ(θ)⟩ = |ψΛσ(θ)⟩
√
⟨ψΛσ(θ)|ψΛσ(θ)⟩

, (6.47)

we write ρΛ(θ) as a convex combination of two pure states |ψ̄Λ↓(θ)⟩ ⟨ψ̄Λ↓(θ)| and |ψ̄Λ↑ (θ)⟩ ⟨ψ̄Λ↑ (θ)|,
i.e.,

ρΛ(θ) =
1
2

(1 + ξ) |ψ̄Λ↓(θ)⟩ ⟨ψ̄Λ↓(θ)| +
1
2

(1 − ξ) |ψ̄Λ↑(θ)⟩ ⟨ψ̄Λ↑(θ)| . (6.48)

At any given κ, the ξ takes its maximum value 1 at v = 0 which means no spin rotation. It
takes its minimum value ξrel in the relativistic limit of v→ 1 which corresponds to v→ c in the
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Figure 6.1: Numerically calculated (1 − ξ)/2 as a function of mκ at v = 1, 0.95, 0.5, and 0.1.
The set of the velocity v is chosen differently to make the distance between the plots more even.

standard unit. An explicit expression of ξrel is

ξrel =
√
πmκ em2κ2

erfc(mκ), (6.49)

where erfc(x) is the complementary error function defined by

erfc(x) =
2√
π

∫ ∞

x
dt e−t2 . (6.50)

The derivations of Eqs. (6.42), (6.43), (6.46), and (6.49) are given in Appendix E.2.1. The
probability for the spin up state reaches its maximum 1/2 at the limit of κ → 0 and at the
relativistic limit. Figure 6.1 shows the probability of the spin up state ⟨ψΛ↑(θ)|ψΛ↑(θ)⟩ = (1− ξ)/2
as a function of mκ at v = 0.95, 0.5, and 0.1. The set of the velocities v is chosen differently to
make the distance between the plots more even. Figure 6.1 shows its maximum (1 − ξrel)/2 as
well.

Let us analyze these state vectors in the coordinate representation. We define the wave func-
tion of a particle with spin up in the coordinate representation ψΛ↑(x) by

ψΛ↑(x) = ⟨x|ψ̄Λ↑(θ)⟩
∣∣∣
θ=0. (6.51)

A derivation of its explicit expression is given in Appendix E.3. Figure 6.2 shows numerically
calculated densities |ψΛ↑(x)|2 for κ = 0.1 as a function of the position x1 for v = 0.99, 0.98, 0.7,
and 0.1. For simplicity, we set (θ1, θ2) = (0, 0) and x2, x3 = 0. To convert the wave function in
the moment representation to that in the coordinate representation, we make a Fourier transform
of the the wave function in the moment representation. Therefore, |ψΛ↑(x) = ψΛ↑

∗(−x)| holds.
This is confirmed in Appendix E.3. Then, for the probability density |ψΛ↑(x)|2 = |ψΛ↑(−x)|2.
Because of this, we plot ψΛ↑(x) for x1 ≥ 0 in Fig. 6.2.

It is worth noting that the peak of the spin up wave function ψΛ↑(x) is no longer at x1 = θ1 =

0. To see the dependence of the observer’s velocity v on the peak position, we numerically
calculate the derivative of |ψΛ↑(x)|2. Figure 6.3 shows the derivative of |ψΛ↑(x)|2 as a function of
position. In this figure, we set (θ1, θ2) = (0, 0) as well for simplicity. We observe that the faster
the observer moves, the further the peak position moves away from x1 = θ1. These numerically
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Figure 6.2: Numerically calculated probability density |ψΛ↑(x)|2 for κ = 0.1 as a function of x1

at v = 0.99, 0.98, 0.9, 0.7 and 0.1.
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Figure 6.3: Numerically calculated derivative of the probability density |ψΛ↑(x)|2 as a function
of x1 at v = 0.98, 0.9, 0.7 and 0.1.

verified facts indicate that the parametric model Eq. (6.41) is a convex mixture of two pure state
models. One is centered at θ, and the other is centered at θ+some amount. If one performs the
position measurement, the resulting probability distribution is thus given by a convex mixture
of two distributions with different locations of the peak. This finding naturally invites us to say
that estimation accuracy gets worse for the moving observer.

6.2.3 Quantum Fisher information matrices in the moving frame

SLD Fisher information matrix

The SLD Fisher information matrix JΛ = [JΛ jk] for the model (6.41) is calculated as follows.

JΛ jk =
2
κ2 (1 − 2κ2η2)δ jk. (6.52)

where
η = −

∫ ∞

−∞

∫ ∞

−∞
dp1dp2 (p1)2

| p⃗ | [ϕ0(p1)ϕ0(p2)]2 sinα(| p⃗ |). (6.53)
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A detailed explanation is given in Appendix E.4. By executing the integration over the angle of
the two-dimensional polar coordinate, κη is expressed as

κη = v
∫ ∞

0
dt

κ′3t3e−κ′
2t2

√
1 + t2 +

√
1 − v2

, (6.54)

where κ′ = mκ. From Eq. (6.52), we have the SLD CR inequality as follows.

V11 ≥
κ2

2
1

1 − 2κ2η2 , V22 ≥
κ2

2
1

1 − 2κ2η2 . (6.55)

As given in Appendix E.5, the denominator in Eq. (6.55), 1 − 2κ2η2 is positive, and hence the
accuracy limits for V11 and V22 are always finite.

By comparing the SLD CR inequalities for the rest frame Eq. (6.22) and Eq. (6.55), we see
how much estimation accuracy is affected by the Lorentz boost. As an indicator, we take up the
ratio of the (1, 1) components of (JΛ)−1 and (J)−1. We define the ratio ∆(v) by

∆(v) =
[(JΛ)−1]11

[(J)−1]11
=

1
1 − 2κ2η2 . (6.56)

By definition, ∆(0) = 1 for the rest frame. The ratio ∆(v) quantifies the amount of information
loss due to the Lorentz boost. If it is larger, the moving observer can only estimate the parameter
less accurately when compared to the rest frame. Figure 6.4 shows the ratio ∆(v) as a function
the moving observer’s velocity v at the different spreads of the wave function κ = 0.1, 0.5,
1.0, and 3.0. The set of the spreads κ is chosen to make the distance between the plots more
even. The m is the rest mass of the particle. As shown in Appendix E.5, κη is a monotonically
decreasing function of κ′ = mκ, for any given velocity v. This then implies that κη reaches its
maximum,

√
πv/4 at the limit of κ → 0. Therefore, for ∆(v), we obtain the following inequality.

∆(v) ≤ lim
κ→0
∆(v) =

1
1 − π

8 v2 . (6.57)

6.2.4 Quantum Fisher information matrices at the relativistic limit

SLD Fisher information matrix

We shall analyze the relativistic limit of our result in detail. Firstly, from Eq.(6.57), an upper
bound for the relativistic limit of the ratio ∆(v) is given by

∆(1) ≤ 1
1 − π

8
≃ 1.647. (6.58)

This shows that the ratio is always finite.
Next, we calculate an explicit expression for the relativistic limit of the SLD Fisher informa-

tion matrix Jrel = limv→1 JΛ. This is given by

Jrel
jk =

2
κ2

⎧⎪⎪⎨
⎪⎪⎩1 − 2

[
mκ
2
+

√
π

4
em2κ2

(1 − 2m2κ2) erfc(mκ)
]2⎫⎪⎪⎬
⎪⎪⎭ δ jk. (6.59)
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Derivation of Jrel = limv→1 JΛ Eq. (6.59)

We evaluate the [JΛ] jk in the limit of v→ 1, i.e.,

lim
v→1

[JΛ] jk = lim
v→1

2
κ2 (1 − 2κ2η2)δ jk. (6.60)

Hence, we evaluate the κη in the limit of v→ 1. Using Eq. (6.54), we have

lim
v→1

κη = lim
v→1

V
∫ ∞

0
dt

κ′3t3e−κ′
2t2

√
1 + t2 +

√
1 − v2

= lim
v→1

∫ ∞

0
dt
κ′3t3e−κ′

2t2

√
1 + t2

=
mκ
2
+

√
π

4
em2κ2

(1 − 2m2κ2) erfc(mκ).

(6.61)

We use κ′ = mκ. By substituting this result in Eq. (6.60), we obtain Eq. (6.59). !
It is worth noting that the (Jrel)−1 is finite even at the relativistic limit of v → 1 which

corresponds to that of v → c in the standard unit. To get a further insight into the property of
Jrel, we consider two different limits in the spread κ of the wave function. We will analyze small
and large κ limit of (Jrel)−1, as the estimation accuracy limit is quantified by the inverse of Jrel.

When the spread is extremely broader, κ ≫ 1, with the help of the the asymptotic expansion
of the complimentary error function erfc(x) (see Appendix E.5), an approximate expression of
[(Jrel)−1]11 is written as

[(Jrel)−1]11 ≃ [(J)−1]11 +
1

4m2 . (6.62)

The difference between [(Jrel)−1]11 and [(J)−1]11 is only a constant given by the particle mass.
When the spread is extremely narrower, κ ≪ 1, on the other hand, by using the Taylor

expansion (Appendix E.5), we have

[(Jrel)−1]11 ≃
[(J)−1]11

1 − π
8
≃ 1.647 [(J)−1]11. (6.63)

As also seen by Eq. (6.57), the relativistic effect for the SLD Fisher information matrix is more
prominent when the spread is narrower.

6.3 Discussion

6.3.1 No information left in spin

We show that if the moving observer does not measure the continuous degree of freedom, the
observer cannot estimate the parameter shift in the position by the following reasoning. In other
words, there is no information left in the spin of the particle. Putting it differently, the Wigner
rotation does not transfer the information about the parameter to the spin degree of freedom.

Suppose that the moving observer only measures the spin of the particle. We take the partial
trace over the momentum p⃗ to obtain the reduced state ρΛspin(θ) = trp |ΨΛ(θ)⟩ ⟨ΨΛ(θ)| for this

60



□ κ=0.1 ■ κ=0.5 ○ κ=1.0 ● κ=3.0

□□□□□□□□□□□□□
□□□□□

□□□□
□□□

□□□
□□

□□
□□

□□
□
□
□
□

□

■■■■■■■■■■■■■■■■■■■
■■■■■■■

■■■■
■■■

■■■
■■

■
■

■

○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

○

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0
0.8

1.0

1.2

1.4

1.6

V

Δ

Figure 6.4: Numerically calculated ratio ∆(v) as a function of v, the velocity of the moving
observer at κ = 0.1, 0.5, 1.0 and 3.0.

case. The parametric model is then given by

Mspin = { ρΛspin(θ) | θ = (θ1, θ2) ∈ R2}. (6.64)

A direct calculation with using Eq. (6.28) gives ρΛspin(θ) as follows.

ρΛspin(θ) =
∫

d3 p ⟨p|ΨΛ(θ)⟩ ⟨ΨΛ(θ)|p⟩ (6.65)

=

∫
dp1dp2

∑

σ=↓,↑

∑

σ′=↓,↑
Fθ,σ(p1, p2)F∗θ,σ′(p1, p2) |σ⟩ ⟨σ′| . (6.66)

From Eqs. (6.31) and (6.32), we see that the integrand Fθ,σ(p1, p2)F∗θ,σ′(p1, p2), (σ,σ′ =↓, ↑)
does not depend on the parameter θ, since the phases cancel each other. Thus, in this situation,
we cannot estimate the parameter of the model (6.64) at all, since the reduced state ρΛθ, spin does
not depend on the parameter.

6.3.2 Effects of the Wigner rotation

We now discuss the effect of the Wigner rotation on estimation accuracy in our model. As
we have seen in Sec. 6.2.2, the Wigner rotation gives the amplitudes of both the spin up and
spin down states When a moving observer measures the momentum only, the observer ends up
seeing the effect of the Wigner rotation as the mixture of two different pure states Eq. (6.30).
This then gives rise to the information loss, as the measurement of the momentum only is not
complete. This information loss for the moving observer is, of course, expected. This is because
the effect of the Wigner rotation followed by the partial trace is a completely-positive and trace-
preserving map. Therefore, the SLD Fisher information should decrease by the monotonicity of
the quantum Fisher information. One of the non-trivial findings of our thesis is that the explicit
formula for this information loss as a function of the velocity of the observer.

We further elaborate on the parametric model for a moving observer. The wave function
of the spin up state ψΛ↑(x), which does not exist in the rest frame, appears due to the Wigner
rotation. The peak of the probability density |ψΛ↑(x)|2 no longer exists at (x1, x2) = (θ1, θ2). Our
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numerical calculation indicates that it moves further away from the point (θ1, θ2) as the velocity
of the observer v increases (Fig. 6.2 and Fig. 6.3). Because of this extra peak, estimation of
the expectation values of the position operators is disturbed; therefore, the SLD CR bound
increases. The ratio of the upper bound of the moving frame to the rest frame is given by
(1 − 2κ2η2)−1, where η is explicitly expressed as the integral form.

Next, we comment on the role of the spread of the wave function. In the rest frame, κ
should be as small as possible to have better estimation accuracy. In Fig. 6.4, the ratio of
estimation accuracies ∆(v) is shown to be monotonically decreasing in κ for a fixed velocity v.
This means that the information loss for a moving observer is reduced by choosing relatively
large κ. However, this results in losing estimation accuracy as the wider spread in general
enables us less accurate estimation. Therefore, we expect the existence of a tradeoff relationship
for a moving observer to design the best spread to gain the best information available. The
investigation of this tradeoff will be subject to the future work.

The relativistic limit of the SLD Fisher information is also a rather unexpected result. In
Fig. 6.2, we numerically evaluated the relativistic behaviors of the density for the spin up state.
As the velocity approaches to the speed of light, we observe that the hight of the peak increases
rapidly. This implies that the peak diverges in the relativistic limit. This is partially because
the Lorentz transformation (6.24) does not have a well-defined limit. However, the SLD Fisher
information matrix remains finite even in this limit, which is calculated by the derivatives of
the state. Thus, the SLD CR bound does not diverge even at the relativistic limit.

Finally, we briefly discuss achievability of the SLD CR bounds. We show that the SLD
CR bound in the rest frame is achievable. When an observer is moving and does not measure
the spin, the derived SLD CR bound (6.55) is not achievable. This is shown by checking
the weak commutativity condition [67, 68]. In Appendix E.4, we calculate this condition and
find that tr(ρΛ(θ)[LΛ1(θ), LΛ2(θ)]) = 8iξη2 ! 0. Therefore, the SLD CR bound in the moving
frame is not achievable even asymptotically. A further investigation of asymptotically and non-
asymptotically achievable bounds shall be presented in due course.

6.4 Conclusion

We obtain the accuracy limit for estimating the expectation value of the position of a relativistic
particle for an observer moving along one direction at a constant velocity. We evaluate esti-
mation accuracy of the position by the SLD CR bound. Estimation accuracy is degraded by
increasing the observer’s velocity. We see that this is because the spin up state appears in the
moving frame while the spin down state only in the rest frame. Furthermore, it stays finite even
at the relativistic limit. Since we show that the SLD CR bound is not achievable, it is not guar-
anteed that a tight CR bound gives a finite bound at the relativistic limit. However, since the
Wigner rotation can be expressed as a rotation matrix that acts on a state vector, we expect that
any divergent behavior will not arise from the result of applying the Wigner rotation to a state
vector with a finite spread. To confirm the finiteness of estimation accuracy at the relativistic
limit, it is crucial to obtain an achievable bound as future work.
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Chapter 7

Trade-off relation of spin-1/2 relativistic
particle given by λLD Fisher information
matrix

In chapter 6, we only investigate the SLD CR bound. Hence, we cannot find a trade-off relation.
In this chapter, we evaluate another type of quantum Fisher information matrix called λLD
Fisher information matrix [42, 43] so that we can see a trade-off relation. By combining the
SLD CR bound and the λLD CR bound, we successfully demonstrate a trade-off relation always
exists for a moving observer. We owe the λLD to see that the trade-off relation exists since the
RLD does not exist in this model because this model is not full rank .

7.1 Trade-off relation by λLD Fisher information matrix

7.1.1 Parametric model

We consider the same parametric model as in chapter 6, which is defined in Eq. (6.41),
As a reference state, we use the state generated by taking a partial trace over the spin, ρΛ(θ),

i.e.,
MΛ = {

ρΛ(θ)
∣∣∣ θ = (θ1, θ2) ∈ R2}, (7.1)

where

ρΛ(θ) =
1
2

(1 + ξ) |ψ̄Λ↓(θ)⟩ ⟨ψ̄Λ↓(θ)| +
1
2

(1 − ξ) |ψ̄Λ↑(θ)⟩ ⟨ψ̄Λ↑(θ)| . (7.2)

7.1.2 λLD Fisher information matrix

Let us first remind the λLD and λLD Fisher information. The λLD Eq. (2.19) is defined by a
solution of the following equation.

∂iρθ =
1 + λ

2
ρθLλ θ, i +

1 − λ
2

Lλ θ, iρθ. (7.3)
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By using λLD, JR θ, Eq. (2.32) is defined by

[Jλ θ]i j = ⟨Lλ θ, i, Lλ θ, j⟩λρθ =
1 + λ

2
trρθ(Lλ θ, jL†λ θ, i) +

1 − λ
2

trρθ(L†λ θ, iLλ θ, j), (7.4)

As shown in Appendix E.2.2, |ψΛ↑(θ)⟩ and |ψΛ↓(θ)⟩ are orthogonal, i.e., ⟨ψΛ↑(θ)|ψΛ↓(θ)⟩ = 0. This
model consists of two states only, and they are orthogonal. MΛ is not a full rank model; we
need a formula for this case. A derivation of the λLD and λLD Fisher information matrix for a
non-full rank deficient model is given in Appendix F.1.

With using the formula Eq. (F.17) given in Appendix F.1, we obtain the λLD Fisher informa-
tion matrix as follows. A detailed derivation is given in Appendix F.2.

λLD Fisher information matrix Jλ

The λLD Fisher information matrix Jλ is expressed as

Jλ =
2

κ2(1 − λ2)(1 − λ2ξ2)

(
1 − 2κ2η2 − λ2ξ2 −2iκ2η2λξ

2iκ2η2λξ 1 − 2κ2η2 − λ2ξ2

)
. (7.5)

Determinant of Jλ, det(Jλ)

The determinant of Jλ, det(Jλ) is expressed as

det(Jλ) =
4
κ2

(1 − 2κ2η2)2 − λ2ξ2

(1 − λ2)(1 − λ2ξ2)
. (7.6)

Since det(Jλ) diverges at λ = 1 and -1. The range of λ is set as −1 < λ < 1. To show det(Jλ) > 0,
we utilize the following inequality. We show next that det(Jλ) > 0. We use the relation between
κη and ξ.✓ ✏

Lemma 7.1.1 (Relation between κη and ξ I)

ξ +
2η
mv
= 1 +

√
π

2κ′
eκ
′2

erfc(κ′), (7.7)

where κ′ = mκ.✒ ✑

Proof

ξ and κη are defined as follows.

κη = κ′3v
∫ ∞

0
dt

t3

√
1 + t2 +

√
1 − v2

e−κ
′2t2 , (7.8)

ξ = κ′2
∫ ∞

0
dt

2t(1 +
√

1 + t2
√

1 − v2)√
1 + t2 +

√
1 − v2

e−κ
′2 p2
. (7.9)

64



The left hand side of Eq. (7.7) is expressed as

ξ +
2η
mv
= ξ +

2κη
κ′v

(7.10)

= κ′2
∫ ∞

0
dt

2t(
√

1 + t2
√

1 − v2 + 1 + t2)√
1 + t2 +

√
1 − v2

e−κ
′2t2 (7.11)

= κ′2
∫ ∞

0
dt

2t
√

1 + t2(
√

1 − v2 +
√

1 + t2)√
1 + t2 +

√
1 − v2

e−κ
′2t2 (7.12)

= κ′2
∫ ∞

0
dt2t
√

1 + t2e−κ
′2t2 (7.13)

= 1 +
√
π

2κ′
eκ
′2

erfc(κ′). ! (7.14)

✓ ✏
Lemma 7.1.2 (Relation between κη and ξ II)
The following inequality

Θ :=
1 − 2κ2η2

ξ
> 1 (7.15)

holds for any κ > 0 and 0 < v ≤ 1.✒ ✑
Proof

Let us define T by
T = 1 − 2κ2η2 − ξ. (7.16)

Then, T > 0 is a necessary and sufficient condition for (1− 2κ2η2)/ξ > 1. Here, we show T > 0
instead. We calculate the first derivative of T with respect to v to see if T is a monotonically
increasing function of v.

∂T
∂v
= −4κη

∂(κη)
∂v
− ∂ξ
∂v
. (7.17)

From Eq. (7.7), we obtain a relation between the first derivatives of η and ξ as follows.

∂ξ

∂v
=

2η
mv2 −

2
κ′v

∂(κη)
∂v
. (7.18)

By substituting Eq. (7.18) in Eq. (7.17), we have

∂T
∂v
= −(4κη +

2
κ′v

)
∂(κη)
∂v
+

2κη
κ′v2 . (7.19)

By a straightforward calculation, we have

∂(κη)
∂v
=

∂

∂v
(κ′3v

∫ ∞

0
dt

t3

√
1 + t2 +

√
1 − v2

e−κ
′2t2) (7.20)

= − κ′3v√
1 − v2

∫ ∞

0
dt

2t3

(√
1 + t2 +

√
1 − v2

)2 e−κ
′2t2 < 0. (7.21)
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Figure 7.1: Numerically calculated Θ = (1 − 2κ2η2)/ξ plotted as a function of v.
κ=0.01, 0.5, 1.0, 1.0, 4.0.

From Eq. (7.19), we obtain for any given κ > 0,

∂T
∂v
> 0. (7.22)

T = 1− 2κ2η2 − ξ is a monotonically increasing function of v. At v = 0, κη = 0, and ξ = 1 hold.

T |v=0 = 0. (7.23)

We show that T > 0 holds. Therefore,

Θ =
1 − 2κ2η2

ξ
> 1, (7.24)

holds. !
Figure 7.1 shows the numerically calculated Θ plotted as a function of mκ. We see that

(1 − 2κ2η2)/ξ > 1. Let us remark that ξ > 0 for any κ > 0. From Eq. (7.15), we have

(1 − 2κ2η2)2

ξ2 > 1. (7.25)

Since 0 < λ2 < 1, we have

1 <
(1 − 2κ2η2)2

ξ2 <
(1 − 2κ2η2)2

λ2ξ2 (7.26)

⇐⇒ (1 − 2κ2η2)2 − λ2ξ2 > 0. (7.27)

From Eq. (7.28), det(Jλ) > 0 is expressed as

det(Jλ) =
4
κ2

(1 − 2κ2η2)2 − λ2ξ2

(1 − λ2)(1 − λ2ξ2)
. (7.28)

Therefore, we have
det(Jλ) > 0. (7.29)
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Next, let us confirm that the λLD is equal to the SLD at the limit of λ→ 0.

lim
λ→0

Jλ =
2
κ2

(
1 − 2κ2η2 0

0 1 − 2κ2η2

)
=

2(1 − 2κ2η2)
κ2

(
1 0
0 1

)
= JS. (7.30)

Its inverse J −1
λ is, then, given by

J −1
λ =

κ2

2
1 − λ2

(1 − 2κ2η2)2 − λ2ξ2

(
1 − 2κ2η2 − λ2ξ2 2iκ2η2λξ
−2iκ2η2λξ 1 − 2κ2η2 − λ2ξ2

)
. (7.31)

At the limit of λ→ 0, J −1
λ approaches J −1

S .

lim
λ→0

J −1
λ =

κ2

2
1

(1 − 2κ2η2)2

(
1 − 2κ2η2 0

0 1 − 2κ2η2

)
=
κ2

2
1

1 − 2κ2η2

(
1 0
0 1

)
= J −1

S . (7.32)

As for the range of λ to be considered, it is enough to set the range as 0 < λ < 1 because
λ = 0 makes Jλ = JS and Jλ diverges at λ = 1. Furthermore, the diagonal components of J−1

λ

and the |Jλ−1
12|2 = |Jλ−1

21|2 include λ2. We exclude the case of v = 0 because v = 0 means the
observer is in the rest frame.

7.2 Condition for trade-off existence

By using the ∆ defined in Section 3.7, the condition for trade-off relation to exist is given by
Eq. (3.72), i.e.,

∆ = |ImJ−1
λ 12|2 − (J−1

S 11 − J−1
λ 11)(J−1

S 22 − J−1
λ 22) > 0. (7.33)

Let us define ∆J−1 by
∆J−1 = J −1

S − J −1
λ . (7.34)

The condition for the trede-off relation to exist is expressed as✓ ✏
Theorem 7.2.1 (Condition for the existence of the trade-off relation)

det(∆J−1) < 0. (7.35)✒ ✑
Proof

Since the J −1
S is a diagonal matrix, we have

[∆J−1]12 = −J−1
λ 12, (7.36)

[∆J−1]21 = −J−1
λ 11 = −(J−1

λ 12)∗. (7.37)

We remark Jλ−1
12 is pure imaginary as shown in Eq. (7.31). Therefore, [∆J−1]12 and [∆J−1]21 is

pure imaginary as well.
[∆J−1]11 = J−1

S 11 − J−1
λ 11 = [∆J−1]22. (7.38)
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By using these, the ∆ is written as

∆ = |ImJ−1
λ 12|2 − (J−1

S 11 − J−1
λ 11)(J−1

S 22 − J−1
λ 22) (7.39)

= [∆J−1]12[∆J−1]21 − [∆J−1]11[∆J−1]22 (7.40)
= − det(∆J−1). (7.41)

The condition for the trade-off to exist is ∆ > 0. Therefore, the trade-off relation exists if and
only if det(∆J−1) < 0. !.

We give explicit expression of det(∆J−1) below. From Eqs. (7.31, 7.32), the components of
∆J−1 = J −1

S − J −1
λ are explicitly written as follows.

[∆J−1]11 =
κ2λ2

2
(1 − 2κ2η2)2 − [2κ2η2 + λ2(1 − 2κ2η2)]ξ2

(1 − 2κ2η2)[(1 − 2κ2η2)2 − λ2ξ2]
= [∆J−1]22, (7.42)

[∆J−1]12 =
κ2

2
(1 − λ2)(2iκ2η2λξ)
(1 − 2κ2η2)2 − λ2ξ2 = −[∆J−1]21. (7.43)

Using these, we obtain det(∆J−1) as

det(∆J−1) =
κ4λ2

4(1 − 2κ2η2)2

λ2(1 − 2κ2η2)2 − ξ2[λ2 + 2κ2η2(1 − λ2)]2

(1 − 2κ2η2)2 − λ2ξ2 . (7.44)

7.2.1 Strength of trade-off relation

We investigate the indicators of the strength of the trade-off relationΩTradeoff
1 andΩTradeoff

2 defined
in Section 3.8 for this model. In this model, the strength of trade-off relation ΩTradeoff

1 is equal to
ΩTradeoff

2 , because J−1
S 11 = J−1

S 22 and J−1
λ 11 = J−1

λ 22 holds. As the strength of the trade-off relation,
we use ΩTradeoff(λ, κ, v) = ΩTradeoff

1 (λ, κ, v) = ΩTradeoff
2 (λ, κ, v).✓ ✏

Theorem 7.2.2 (Condition for the existence of the trade-off relation)

ΩTradeoff(λ, κ, v) = −2 det(∆J−1)
tr(∆J−1)

, (7.45)

if det(∆J−1) < 0 holds.✒ ✑

Proof

By its definition, Eqs.( 3.83, 3.84), the ΩTradeoff(λ, κ, v) is written as

ΩTradeoff(λ, κ, v) =

⎧⎪⎪⎨
⎪⎪⎩

V22|V11=J−1
S 11
− J−1

S 22 if ∆ > 0,
0 otherwise.

(7.46)
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If det(∆J−1) = −∆ < 0 holds , the ΩTradeoff(λ, κ, v) is expressed as

ΩTradeoff(λ, κ, v) = ΩTradeoff
2 (λ, κ, v) (7.47)

= V22|V11=J−1
S 11
− J−1

S 22 (7.48)

=
|ImJ−1

λ 12|2
J−1

S 11 − J−1
λ 11
+ J−1

λ 22 − J−1
S 22 (7.49)

=
|ImJ−1

λ 12|2 − (J−1
S 11 − J−1

λ 11)(J−1
S 22 − J−1

λ 22)
J−1

S 11 − J−1
λ 11

(7.50)

= −2 det(∆J−1)
tr(∆J−1)

. ! (7.51)

We show below that tr(∆J−1) > 0. Because of the positivity of tr(∆J−1) > 0, ΩTradeoff(λ, κ, v) is
positive if det(∆J−1) < 0.✓ ✏

Lemma 7.2.3 (Positivity of tr(∆J−1))

tr(∆J−1) > 0 (7.52)

for any given κ > 0, 0 < v ≤ 1 and 0 < λ < 1.✒ ✑
Proof

From Eqs. (7.31, 7.32), the diagonal components of ∆J−1 = J −1
S − J −1

λ are explicitly written as
follows.

[∆J−1]11 =
κ2λ2

2
(1 − 2κ2η2)2 − [2κ2η2 + λ2(1 − 2κ2η2)]ξ2

(1 − 2κ2η2)[(1 − 2κ2η2)2 − λ2ξ2]
= [∆J−1]22. (7.53)

(7.54)

Using these, we obtain tr(∆J−1) and det(∆J−1) as

tr(∆J−1) =
κ2λ2

1 − 2κ2η2

(1 − 2κ2η2)2 − [2κ2η2 + λ2(1 − 2κ2η2)]ξ2

(1 − 2κ2η2)2 − λ2ξ2 (7.55)

=
κ2λ2

1 − 2κ2η2

(1−2κ2η2)2

ξ2 − [2κ2η2 + λ2(1 − 2κ2η2)]
(1−2κ2η2)2

ξ2 − λ2
. (7.56)

Since (1 − 2κ2η2)2ξ−2 > 1 and λ2 < 1, tr(∆J−1) is positive if and only if

2κ2η2 + λ2(1 − 2κ2η2) < 1, (7.57)

holds. Both 2κ2η2 and 1−2κ2η2 are positive. The left hand side of Eq. (7.57) is a monotonically
increasing function of λ when 0 < λ < 1. We see the maximum of the left hand side of
Eq. (7.57) at λ = 1, which is 1. Since we exclude λ = 1,

tr(∆J−1) > 0, (7.58)
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always holds. !
We remark that this relation when including equality holds in general, because the following
inequality holds [43].

tr(J−1
S ) ≥ Re(J−1

λ ), (7.59)

where Re(X) =
1
2

(X + X∗). X∗ has complex conjugate of the all components of X as its compo-
nents, i.e., [X∗]i j = ([X]i j)∗.

Below, we give an explicit expression of −2 det(∆J−1)/tr(∆J−1). The trace and the determi-
nant of ∆J−1 are given by

tr(∆J−1) =
κ2λ2

1 − 2κ2η2

(1 − 2κ2η2)2 − [2κ2η2 + λ2(1 − 2κ2η2)]ξ2

(1 − 2κ2η2)2 − λ2ξ2 , (7.60)

det(∆J−1) =
κ4λ2

4(1 − 2κ2η2)2

λ2(1 − 2κ2η2)2 − ξ2[λ2 + 2κ2η2(1 − λ2)]2

(1 − 2κ2η2)2 − λ2ξ2 . (7.61)

Therefore

−2 det(∆J−1)
tr(∆J−1)

=
κ2

2(1 − 2κ2η2)
λ2(1 − 2η2κ2)2 − ξ2[λ2(1 − 2κ2η2) + 2κ2η2]2

ξ2[λ2(1 − 2κ2η2) + 2κ2η2] − (1 − 2η2κ2)2 . (7.62)

To investigate the behavior of −2 det(∆J−1)/tr(∆J−1) as a function of λ ∈ (0, 1) for any κ > 0
and for any 0 < v ≤ 1, we define ω(λ, κ, v) by

ω(λ, κ, v) := −2 det(∆J−1)
tr(∆J−1)

=
κ2

2(1 − 2κ2η2)
λ2(1 − 2η2κ2)2 − ξ2[λ2(1 − 2κ2η2) + 2κ2η2]2

ξ2[λ2(1 − 2κ2η2) + 2κ2η2] − (1 − 2η2κ2)2 .

(7.63)

With this ω(λ, κ, v), ΩTradeoff(λ, κ, v) is expressed as

ΩTradeoff(λ, κ, v) =

⎧⎪⎪⎨
⎪⎪⎩
ω(λ, κ, v) if det(∆J−1) < 0,
0 otherwise.

(7.64)

We set the range of λ as 0 < λ < 1. λ = 0 is excluded. Fig. 7.2 shows the ΩTradeoff(λ, κ, v) and
ω(λ, κ, v) as a function of λ at κ = 1 and v = 1.

Regarding ω(λ, κ, v), we can show the next lemma.✓ ✏
Lemma 7.2.4 (ω(λ, κ, v))
ω(λ, κ, v) is a monotonically decreasing function of λ for any κ > 0 and any 0 < v ≤ 1.✒ ✑

Proof

For any given κ > 0 and for any given 0 < v ≤ 1, the first derivative of the right hand side of
Eq. (7.62) with respect to λ is calculated as

∂ω(λ, κ, v)
∂λ

= − λ(aλ4 + bλ2 + c)
{4κ4η4 − 2κ2η2[(1 − λ2)ξ2 + 2] − λ2ξ2 + 1}2 , (7.65)
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Figure 7.2: Numerically calculated strength of the trade-off ΩTradeoff(λ, κ, v) (dotted line) and
ω(λ, κ, v) (gray line) as a function of λ. κ = 1 and v = 1.

where

a = ξ4
(
1 − 2κ2η2

)2
, (7.66)

b = −{2ξ2
(
1 − 2κ2η2

)
[(1 − 2κ2η2)2 − 2ξ2κ2η2]}, (7.67)

c = −8η6κ6
(
2ξ2 + 1

)
+ 4κ4η4

(
ξ4 + 5ξ2 + 3

)
− 6κ2η2

(
ξ2 + 1

)
+ 1. (7.68)

From these, we are to show the first derivative of ΩTradeoff(λ, κ, v) with respect to λ is negative.
We just need to check if aλ4 + bλ2 + c > 0 holds.

We show here that the inequality as2+bs+c > 0, where s = λ2. Since a > 0, as2+bs+c > 0
holds if and only if its discriminant D < 0. The discriminant D is

D = −8η2κ2ξ4(1 − 2κ2η2)3[(1 − 2κ2η2)2 − ξ2]. (7.69)

From 1 − 2κ2η2 > 0 and (1 − 2κ2η2)/ξ > 1, D < 0 holds. Since D is negative and a > 0,
aλ4 + bλ2 + c > 0 holds. Therefore, the first derivative of ω(λ, κ, v) with respect to λ, the
left hand side of Eq. (7.65) is always negative. ω(λ, κ, v) is a strictly monotonically decreasing
function of λ for any given κ > 0 and for any given 0 < v ≤ 1. !

Let us define a limit ω(0, κ, v) by

ω(0, κ, v) = lim
λ→0

ω(λ, κ, v). (7.70)

We can show the following.✓ ✏
Lemma 7.2.5 (ω(0, κ, v) > 0)

ω(0, κ, v) > 0, (7.71)

for any κ > 0 and 0 < v ≤ 1.✒ ✑
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Proof

We have

ω(0, κ, v) =
2κ6η4ξ2

(1 − 2κ2η2)[(1 − 2κ2η2)2 − 2κ2η2ξ2]
=

2κ6η4

(1 − 2κ2η2)(Θ2 − 2κ2η2)
, (7.72)

where
Θ =

1 − 2κ2η2

ξ
. (7.73)

From Eq. (7.15),Θ > 1, and from 1 − 2κ2η2 > 0 and Θ > 1, Θ − 2κ2η2 > 0. Since Θ > 1,
Θ2 − 2κ2η2 > Θ − 2κ2η2 > 0.

ω(0, κ, v) > 0, (7.74)

holds for any κ > 0. As for the observer’s velocity v, ω(0, κ, v) = 0 holds at v = 0 only, because
κη = 0 at v = 0. We exclude the case of v = 0 because in that case the observer would be in the
rest frame. !

Let us remark the positivity of ω(0, κ, v). As we can see in Eqs. (7.55, 7.61), both det(∆J−1)
and tr(∆J−1) are proportional to λ2. The det(∆J−1) divided by the tr(∆J−1) cancels out the λ2s in
both of det(∆J−1) and tr(∆J−1). As a result the limit ω(0, κ, v) has a non-zero value at the limit
of λ→ 0.

Let us define a limit ω(1, κ, v) by

ω(1, κ, v) = lim
λ→1

ω(λ, κ, v). (7.75)

✓ ✏
Lemma 7.2.6 (ω(1, κ, v) < 0)

ω(1, κ, v) < 0, (7.76)

for any κ > 0 and 0 < v ≤ 1.✒ ✑
From the explicit expression of ω(λ, κ, v), i.e., Eq. (7.62), ω(1, κ, v) is expressed as

ω(1, κ, v) =
κ2

2(1 − 2κ2η2)
(1 − 2κ2η2)2 − ξ2[(1 − 2κ2η2) + 2κ2η2]2

ξ2[(1 − 2κ2η2) + 2κ2η2] − (1 − 2η2κ2)2 , (7.77)

=
κ2

2(1 − 2κ2η2)
(1 − 2η2κ2)2 − ξ2

ξ2 − (1 − 2η2κ2)2 (7.78)

= − κ2

2(1 − 2κ2η2)
< 0 ! (7.79)
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✓ ✏
Theorem 7.2.7 (Existence of solution of ω(λ∗, κ, v) = 0)
For any κ > 0 and any 0 < v ≤ 1, there exists a λ∗ ∈ (0, 1) that is a unique solution of
ω(λ∗, κ, v) = 0. The unique solution λ∗ is expressed as

λ∗± =
1
2ξ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝1 ±

√

1 − 8ξ2κ2η2

1 − 2κ2η2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ . (7.80)

✒ ✑

Proof

ω(0, κ, v) > 0 and ω(1, κ, v) < 0 hold. Furthermore, ω(λ, κ, v) is a monotonically decreasing
function with respect to λ for any given κ > 0 and for any given 0 < v ≤ 1. There always exists
a unique solution, λ∗ ∈ (0, 1) of ω(λ∗, κ, v) = 0. !

Since we show ω(λ, κ, v) = 0 has a unique solution for for any κ > 0 and 0 < v ≤ 1. We
derive the solution. From Eq. (7.62), ω(λ, κ, v) is written as

ω(λ, κ, v) =
κ2

2(1 − 2κ2η2)
λ2(1 − 2κ2η2)2 − ξ2[λ2(1 − 2κ2η2) + 2κ2η2]2

ξ2[λ2(1 − 2κ2η2) + 2κ2η2] − (1 − 2η2κ2)2 . (7.81)

By factoring the numerator, ω(λ∗, κ, v) = 0, we obtain an equivalent condition

{(1−2κ2η2)λ∗+ξ[(λ∗)2(1−2κ2η2)+2κ2η2]}{(1−2κ2η2)λ∗−ξ[(λ∗)2(1−2κ2η2)+2κ2η2]} = 0 (7.82)

For simplicity, we consider the case of λ∗ > 0 because ω(λ∗, κ, v) includes the quadratic and
the quartic terms of λ∗. From 1 − 2κ2η2 > 0 and 0 < ξ ≤ 1 for any κ > 0 and 0 < v ≤ 1, the
following inequality holds.

(1 − 2κ2η2)λ∗ + ξ[(λ∗)2(1 − 2κ2η2) + 2κ2η2] > 0. (7.83)

Therefore, Eq (7.82) reduces to

(1 − 2κ2η2)λ∗ − ξ[(λ∗)2(1 − 2κ2η2) + 2κ2η2] = 0. (7.84)

This λ∗ is given by the smaller solution of y(λ∗) = 0 which is expressed as

λ∗± =
1 − 2κ2η2 ±

√
(1 − 2κ2η2)2 − 8ξ2κ2η2(1 − 2κ2η2)

2(1 − 2κ2η2)ξ
(7.85)

=
1
2ξ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝1 ±

√

1 − 8ξ2κ2η2

1 − 2κ2η2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ . (7.86)

In the limit of κ → 0 when v = 1, ξ approaches zero. Hence, λ∗+|v=1 diverges. We take the
smaller solution of the equation y(λ∗) = 0.

λ∗ =
1
2ξ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝1 −

√

1 − 8ξ2κ2η2

1 − 2κ2η2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ . ! (7.87)
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The solution λ∗ gives the range of λ where that the trade-off relation exists. For any λ ∈
(0, λ∗), there always exists the trade-off relation. Figure 7.3 shows the result of the numerical
calculation of λ∗ plotted as a function of v. When κ is approximately less than 0.3, λ∗ is a
convex upward function of v.

In the rest frame, i.e., v = 0, λ∗ = 0 holds at any given κ > 0 because κη = 0 at v = 0, i.e., no
trade-off relation exists. From Fig. 7.3, it seems that λ∗ is close to zero at v = 1 when κ ≪ 1.
We are to show the following.✓ ✏

Lemma 7.2.8 (λ∗ at v = 1 and κ → 0)

lim
κ→0

λ∗ = 0, (7.88)

at the relativistic limit v = 1.✒ ✑

Proof

With the Taylor expansion, we have an alternative expression of λ∗ as follows.

λ∗ =
1
2ξ

∞∑

n=1

(2n − 3)!!
n!2n

(
8ξ2κ2η2

1 − 2κ2η2

)n

, (7.89)

where [72]
(2n − 3)!! = (2n − 3)(2n − 5) · · · 3 · 1, (−1)!! = 1. (7.90)

At v = 1 and at the limit of κ → 0, κη→ √π/4 and ξ → 0. Therefore, at v = 1,

lim
κ→0

λ∗ = 0. ! (7.91)

This result explains the fact that the λ∗ is close to zero when v = 1 at κ = 0.01 shown in Fig. 7.3.
At larger κs, κ = 0.3, 0.5, and 1, the λ∗ appears to be a monotonically increasing function of
v. As the κ is the spread of the wave function which is gaussian in the rest frame, the limit of
κ → 0 makes a gaussian function a delta function, which is a singularity. This suggest that the
singularity result from this effect at κ = 0.01.

Hereafter, we discuss the case for ω > 0, or the case in which the trade-off relation exists.
Then, we can set ΩTradeoff(0, κ, v) = ω(0, κ, v). When λ = 0, there exists no trade-off relation as
det(∆J−1) = 0, that is, the condition for the existence of the trade-off relation does not hold. For
the trade-off relation to exist, λ must be non-zero. No trade-off relation at λ = 0 is consistent
with the SLD CR bound not giving a trade-off relation. The λLD Fisher information matrix
coincides with the SLD Fisher information matrix by its definition. Therefore, no trade-off
relation at λ = 0.

To sum up the result so far, since the first derivative of ΩTradeoff(λ, κ, v) with respect to λ is
negative, ΩTradeoff(λ, κ, v) is a monotonically decreasing function of λ ∈ (0, λ∗). It has already
been shown that ΩTradeoff(0, κ, v) > 0 holds. ΩTradeoff(0, κ, v) gives the upper limit of the strength
of the trade-off relation. The trade-off relation exists for any λ ∈ (0, λ∗). In the following, we
investigate how significant the trade-off relation can be. In other words, we investigate how
large ΩTradeoff(λ, κ, v) can be.
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Figure 7.3: Numerically calculated λ∗ plotted as a function of v

Figure 7.4 shows the numerically calculated ΩTradeoff(0, κ, v) plotted as a function of κ at
v=0.85, 0.9, 0.95, and 1. At a given v, ΩTradeoff(0, κ, v) is a convex upward function of κ.
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Figure 7.4: Numerically calculated ΩTradeoff(0, κ, v) plotted as a function of mκ at v=0.85, 0.9,
0.95, and 1.

Figure 7.5 is plotted with a smaller range of mκ, 0 ≤ mκ ≤ 0.4. The ΩTradeoff(0, κ, v) in the
case of v = 1 looks different from others. It stays low at small mκ, approximately smaller than
0.1, the strength of the trade-off relation ΩTradeoff(0, κ, v) is almost constant, but once mκ goes
over approximately 0.1, ΩTradeoff(0, κ, v) becomes an increasing with increasing v. Eventually,
it takes the highest peak. From Fig 7.4, there appears to be a specific value of κ that gives the
most significant trade-off relation. We define the κ that gives the maximum of ΩTrade−off(0, κ, v)
by κ∗ at a given v. In other words, κ∗ is expressed by

κ∗ = argmaxΩTradeoff(λ, κ, v). (7.92)

Figure (7.6) show the numerically calculated κ∗ plotted as a function of v. κ∗ gives the maxi-
mum strength of the trade-off ΩTradeoff(0, κ, v) at a given v. The κ∗ appears to be a monotonically
increasing function of v. Figure 7.7 shows the numerically calculated maximum strength of
the trade-off ΩTradeoff(0, κ∗, v) as a function of the observer’s velocity v. We obtain κ∗ as the κ
for which the first derivative with respect to v of ΩTradeoff(0, κ∗, v) is zero. We also numerically
calculate the ΩTradeoff(0, κ∗, v) which is the ΩTradeoff(0, κ, v) at κ = κ∗. The ΩTradeoff(0, κ∗, v) is
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Figure 7.5: Numerically calculated ΩTradeoff(0, κ, v) plotted as a function of κ at v=0.85, 0.9,
0.95, and 1. This figure is the same as Fig. 7.4, but the plot range of mκ is from 0 to 0.4 so that
we can see the behavior of ΩTradeoff(0, κ, v) at low mκ.
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Figure 7.6: Numerically calculated κ∗ plotted as a function of v. κ∗ gives the maximum strength
of the trade-off relation ΩTradeoff(0, κ, v) at a given v.

also a monotonically increasing function of v. Therefore, the trade-off relation becomes more
significant for larger v.

7.3 Discussion

The parametric model in the rest frame, Eq. (6.4) is defined by

Mrest =
{
ρθ

∣∣∣ θ = (θ1, θ2) ⊂ R2}, (7.93)

where
ρθ = U(θ)ρ0U†(θ) = e−ip̂1θ1−ip̂2θ2 |Ψ↓⟩ ⟨Ψ↓| eip̂1θ1+ip̂2θ2 , (7.94)

and
|Ψ↓⟩ =

κ√
π

∫
d3 p e−

1
2 κ

2[(p1)2+(p2)2]δ(p3) |p⃗, ↓⟩ . (7.95)
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Figure 7.7: Numerically calculated maximum strength of the trade-off relation ΩTradeoff(0, κ∗, v)
as a function of v

The parametric model in the rest frame Mrest is classical for an observer in the rest frame
because the reference state is a gaussian state which is a product of two gaussian functions
of p1 and p2. Furthermore, the generators, p̂1 and p̂2 commute, the best estimate is obtained
by the measured position of each of x and y independently in the rest frame. The SLD Fisher
information matrix obtained in the rest frame is the same as the classical one. On the other hand,
the model in the moving frame,MΛ would change from a classical to a nonclassical, non-trivial
model since the wave function after the Lorentz boost changes to a more complicated form.
This change results from only the observer’s motion. Furthermore, this change gives rise to the
trade-off relation the observer sees. We also owe λLD to see that this relationship exists since
the RLD does not exist in this model,MΛ because the model is not full rank.

7.3.1 Strength of trade-off relation

We find that the λLD CR bound together with the SLD CR bound gives a trade-off relation for
any given spread of the wave function, κ > 0, and the velocity of the observer 0 < v ≤ 1. The
trade-off relation is most substantial at the limit of λ → 0 while at λ = 0, by definition, the
λLD Fisher information matrix is equal to the SLD Fisher information matrix which gives no
trade-off relation. Therefore, while the trade-off relation does not exist if λ is strictly equal to
zero, the trade-off relation comes from both the SLD and the λLD is most significant in the
limit of λ→ 0. The strength of the trade-off relation ΩTradeoff is defined by

ΩTradeoff(λ, κ, v) = −2 det(∆J−1)
tr(∆J−1)

(7.96)

for ∆ > 0. A mathematical explanation why ΩTradeoff(λ, κ, v) > 0 in the limit of λ → 0 is that
both of det(∆J−1) and tr(∆J−1) are proportional to λ2. Therefore, those λ2s cancels out when
det(∆J−1) is divided by tr(∆J−1). We obtain this non-trivial observation because we use both
the SLD and the λLD to determine the trade-off relation.
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7.3.2 Strength of trade-off relation and spread of wave function κ for
trade-off relation

The strength of the trade-off relation can be a convex upward function of the spread of the wave
function, κ as shown in Fig. 7.4. We expect that this phenomenon has something to do with the
separation distance between the peaks of the spin down and the spin up wave functions. It is
counter-intuitive that the trade-off can be the most significant with a specific spread of the wave
function in the rest frame. We have no clue about the reason for this result.

7.3.3 λ and the strength of the trade-off relation

For any κ > 0 and any 0 < v ≤ 1, we find that there always exists some λ that gives the
trade-off relation. This finding is a non-trivial result. As for the maximum λ for the trade-off
relation existence, λ∗, the plot of the λ∗ has a peak when the spread of the wave function κ is
approximately in the range 0 < κ < 0.5. When the observer’s velocity is at the relativistic limit
v = 1 and at the limit of κ → 0, λ∗ goes to 0 as shown in Eq. (7.88). We attribute this result to
the wave function in the rest frame having singularity at the spread κ = 0.

7.4 Conclusion

We investigate the trade-off relation using the λLD Cramér-Rao (CR) bound in the same phys-
ical model used in chapter 6, where the trade-off relation was analyzed using the SLD CR
bound. Using the λLD CR bound, we show analytically that there always exists a λ that gives
a trade-off relation for any given spread of the wave function κ and any given velocity of the
observer speed v. We also show analytically that the strength of the trade-off relation defined
as the distance between the intersection of the λLD CR bound and the SLD CR bound is most
significant in the limit where the λ is zero. We interpret this result as follows. When the λ is
close to zero, the vertex of the hyperbola or the curve of the λLD CR bound, goes more upward
than the asymptotes of the λLD go down as the λ becomes smaller.
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Chapter 8

Summary and outlook

8.1 Summary

We have investigated whether the error trade-off relation exists in the generic two-parameter
unitary models for finite dimensional systems with commuting generators. By analyzing the
necessary and sufficient conditions for the SLD, RLD and λLD Crameŕ-Rao (CR) bounds to
intersect each other, we obtain the necessary and sufficient conditions for the existence of a
non-trivial trade-off relation based on the SLD and RLD CR bounds for the arbitrary finite-
dimensional system.

By using the conditions, we show that a trade-off relation does not exist for the pure reference
state and the qubit reference state with the commuting generators case. We show, however, that
a trade-off relation does exist for the qutrit reference state. We offer two examples of the qutrit
system with the non-trivial trade-off relation. The result of the reference state with multi-
parameter indicates that the eigenvalues of the reference state be in a specific range. In the
other model reference state with one-parameter, we show analytically that a non-trivial trade-
off relation always exists in a specific range of the reference state parameter and that the region
with the trade-off relation is up to about half of the allowed region.

We next investigate a physical model with a continuous infinite degree of freedom. We
investigate the trade-off relation between x and y components of the position of one electron
in a uniform magnetic field by the parameter estimation in the two-parameter unitary models.
The trade-off relation between the two commuting observables, (x, y) was investigated by the
quantum estimation theory. For the mixed state (thermal state), the bound is also given by both
the SLD and RLD CR bounds with the commuting generators of the unitary transformation. We
confirmed that what we saw in our study regarding the finite is not exceptional, but common.

Finally, we investigate how the relativistic effects affect estimation accuracy in a similar set-
ting as the model above. We obtain the accuracy limit for estimating the expectation value of the
position of a relativistic particle for an observer moving in one direction at a constant velocity.
We evaluate estimation accuracy of the position by the SLD and λLD CR bounds. Although the
SLD CR bounds does not give a trade-off relation, we see that estimation accuracy is degraded
by increasing the observer’s velocity. We also see that this is because the spin up state appears
in the moving frame while the spin down state exists in the rest frame. Furthermore, it stays
finite even at the relativistic limit. Since we show that the SLD CR bound is not achievable, it
is not guaranteed that a tight CR bound gives a finite bound at the relativistic limit. However,

79



since the Wigner rotation can be expressed as a rotation matrix that acts on a state vector, we
expect that any divergent behavior will not arise from applying the Wigner rotation to a state
vector with a finite spread.

8.2 Outlook

The reason we applied the λLD instead of the RLD to a relativistic particle was that this model
happened to have no RLD. It was quite unexpected that such non-trivial results could be ob-
tained with the combination of λLD and SLD Cramér-Rao bounds. Therefore, it is worthwhile
to conduct the research we did previously using the λLD.

The model used for relativistic particles in this study is the method used in previous studies,
for example, in [23]. In this way, the model only considers a positive energy particle (an
electron). Our model does not include a negative energy particle (a positron) that appears in the
solution of the Dirac equation. This is an issue we need to look at.
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Appendix A

Supplemental materials for Chapter 2
λLD CR inequality

A.1 Canonical projection

• Setting
1. Given a vector space V (dimV = d) and consider a linear subspace T spanned by li

(i = 1, 2, · · · , n).
T = span{li}ni=1 ⊂ V (n ≤ d). (A.1)

2. Let ⟨·, ·⟩ be a inner product on V .

Definition: Canonical (orthogonal) projection✓ ✏
ΠT : V → T is said to be the canonical projection onto T with respect to ⟨·, ·⟩, if

∀v ∈ V, ∀t ∈ T, ⟨t, v⟩ = ⟨t,ΠT (V)⟩ (A.2)

hold.✒ ✑
For T = span{li}ni=1, ΠT(V) can be constructed as follows.

ΠT(V) =
n∑

i=1

⟨li, v⟩li, (A.3)

where li =
∑

j=1 g−1
ji l j and g−1

i j is the (i, j) component of inverse of the gram matrix [G]i j =

gi j, gi j := ⟨li, l j⟩.

Proof

Since t ∈ T , by sing li, t is expressed as

t =
d∑

j=1

t jl j (A.4)
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✓ ✏
Lemma A.1.1 (Lemma: Canonical projection)
For any given v ∈ V, ∥v∥ ≥ ∥ΠT∥, where ∥ · ∥ := (⟨·, ·⟩) 1

2 . Equality holds if and only if v ∈ T.✒ ✑

A.2 CR like inequality

Here are the definition of the terms used in this section.

• Setting
W: a vector space with inner product ⟨·.·⟩.
Given a set of vectors X⃗ = (Xi)(i = 1, 2, · · · n), (Xi ∈ W) such that X⃗ is locally unbiased
which is defined by

∀i, j ⟨Xi, l j⟩ = δi
j. (A.5)

• Definition The MSE matrix about X⃗ is defined by

V[X⃗] := Vi j[X⃗], Vi j[X⃗] := ⟨Xi, X j⟩. (A.6)

• li is a score function such that ⟨I, l j⟩ = 0 ∀i and T := span{li}ni=1.

✓ ✏
Theorem A.2.1 (Theorem: CR like inequality)
For any locally unbiased X⃗ at θ, its MSE matrix is bounded by

Vθ[X⃗] ≥ J−1, (A.7)

where
J := Ji j, Ji j := ⟨li, l j⟩. (A.8)✒ ✑

Proof

We prove
∀c ∈ Cn, c†V[X⃗]c ≥ c†J−1c. (A.9)

By definition

c†V[X⃗]c =
n∑

i=1

n∑

j=1

c†i Vi j[X⃗]c j (A.10)

=

n∑

i=1

n∑

j=1

c†i ⟨Xi, X j⟩c j (A.11)

=

n∑

i=1

n∑

j=1

c†i ⟨Xi, X j⟩c j, (A.12)
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where

Xc :=
n∑

i

ciXi ∈ W. (A.13)

Therefore, we have
c†V[X⃗]c = ∥Xc∥2 ≥ ∥ΠT(Xc)∥2. (A.14)

We use Lemma A1.1. Here we calculate ΠT(Xc)

ΠT(Xc) =
n∑

i=1

⟨Xc, li⟩li (A.15)

=

n∑

i=1

n∑

j=1

c∗j⟨X j, li⟩li (∵ definition of Xc) (A.16)

=

n∑

i=1

n∑

j=1

n∑

k=1

c∗j(J−1)ki⟨X j, lk⟩li (∵ definition of li) (A.17)

=

n∑

i=1

n∑

j=1

n∑

k=1

c∗j(J−1)kiδ j
kli (∵ locally unbiasedness) (A.18)

=

n∑

i=1

n∑

j=1

c∗j(J−1) jili. (A.19)

Therefore, we have

∥ΠT(Xc)∥2 = ⟨ΠT(Xc),ΠT(Xc)⟩ (A.20)

=

n∑

i, j=1

n∑

i′, j′=1

c j(J−1 ji)∗c∗j′(J−1 j′i′)⟨lili′ ⟩ (A.21)

=

n∑

i, j=1

n∑

i′, j′=1

c jc∗j′(J−1 ji)∗(J−1 j′i′)⟨lili′ ⟩ (A.22)

=

n∑

i,i′=1

n∑

j, j′=1

c jc∗j′(J−1 ji)∗(J−1 j′i′)Jii′ . (A.23)

The expression

ΠT(V) =
n∑

i

⟨V, li⟩, (A.24)
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is true only for a real vector. Here, we prove the case of real vector spaces. Then, ∥ΠT(Xc)∥2 is
calculated as

∥ΠT(Xc)∥2 =
n∑

j, j′=1

c jc∗j′
n∑

i,i′=1

(J−1 ji)∗(J−1 j′i′)Jii′ (A.25)

=

n∑

j, j′=1

c jc∗j′
n∑

i,i′=1

(J−1 ji)∗Jii′(J−1 j′i′) (∵ Jii′ = Ji′i) (A.26)

=

n∑

j, j′=1

c jc∗j′
n∑

i′=1

δ j
i′(J−1 j′i′) (A.27)

=

n∑

j, j′=1

c jc∗j′(J−1 j j′) (A.28)

= cTJ−1c. (A.29)

Therefore we have
cTV[X⃗]c = cTJ−1c. ! (A.30)✓ ✏

Lemma A.2.2 (Lemma: Holevo)
For any POVM Πx, f : X→ C, define

F :=
∑

x∈X
f (x)Πx ∈ L(H). (A.31)

Then, we have ∑

x∈X
tr(| f (x)|2ρΠx) ≥ tr(ρFF†). (A.32)

✒ ✑
We remark F† ! F in general.

Proof

Since Πx ≥ 0,
( f (x)I − F)Πx( f (x)I − F)† ≥ 0 for ∀x ∈ X. (A.33)

Eq. (A.33) can be shown as follows.
For ∀A ≥ 0, B ∈ L(H)

A ≥ 0 =⇒ BAB† ≥ 0, (A.34)
A ≥ 0⇐⇒ ∀c ∈ C, c†Ac ≥ 0, (A.35)

then for any c′ ∈ C,
c′†BAB†c′ = (B†c′)†A. (A.36)
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From Eq. (A.33), the summation over x gives
∑

x∈X
( f (x)I − F)Πx( f (x)I − F)† ≥ 0 (∵ A, B ≥ 0 =⇒ A + B ≥ 0), (A.37)

⇐⇒
∑

x∈X
[ f (x)Πx f ∗(x) − FΠx f ∗(x) − f (x)ΠxF† + FΠxF†] ≥ 0, (A.38)

⇐⇒
∑

x∈X
| f (x)|2Πx − FF† − FF†IFIF† ≥ 0, (A.39)

⇐⇒
∑

x∈X
| f (x)|2Πx ≥ FF†. (A.40)

If A ≥ B, tr(Aρ) ≥ tr(Bρ) holds. Therefore, from Eq. (A.40), we have
∑

x∈X
tr(| f (x)|2ρΠx) ≥ tr(ρFF†). ! (A.41)

A.3 λLD CR inequality

✓ ✏
Theorem A.3.1 (Theorem: λLD Cramér-Rao inequality)
For any locally unbiased estimator (Π, θ̂) at θ, its MSE matrix satisfies

Vθ[Π, θ̂] ≥ J−1
λ θ, (A.42)

where Jλ θ is the λLD Fisher information matrix.✒ ✑

Proof

From locally unbiased condition, we have the followings.

∂ j

∑

x∈X
θ̂itr(ρθΠx) = δi j,

⇐⇒
∑

x∈X
(θ̂i − θi)tr(∂ jρθΠx) = δi j

⎛
⎜⎜⎜⎜⎜⎝∵

∑

x∈X
θitr(ρθΠx) = 0

⎞
⎟⎟⎟⎟⎟⎠ ,

⇐⇒tr[∂ jρθ(
∑

x∈X
ξi(x)Πx)] = δi j where ξi(x) := θ̂i − θi,

⇐⇒tr(∂ jρθXi) = δi j where Xi :=
∑

x∈X
ξi(x)Πx, Xi is Hermitian,

⇐⇒⟨Xi, ∂ jρθ⟩HS = δi j,

⇐⇒⟨Xi, Lλ θ, i⟩λρθ = δi j.

(A.43)
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In the last line, we use the following relation.

∵ ⟨∂ jρθXi⟩HS = ⟨Xi,
1 + λ

2
ρθLλ θ, i +

1 − λ
2

Lλ θ, iρθ⟩HS

=
1 + λ

2
tr(ρθLλ θ, iXi) +

1 − λ
2

tr(ρθX†i Lλ θ, i)

= ⟨Xi, Lλ θ, i⟩λρθ .

(A.44)

Then, for any c ∈ C, the MSE matrix is expressed as

c†Vθ[Π, θ̂]c =
n∑

i, j=1

∑

x∈X
c∗i ξ

i(x)tr(ρθΠx)ξ j(x)ci (A.45)

=
∑

x∈X
ξc(x)tr(ρθΠx)ξc(x), (A.46)

where

ξc(x) =
n∑

i=1

ciξ
i(x). (A.47)

By applying Holevo’s lemma to Eq. (A.46), Lemma A.2.2, we have
∑

x∈X
ξc(x)tr(ρθΠx)ξc(x) ≥ ⟨Xc, Xc⟩λρθ . (A.48)

The term ⟨Xc, Xc⟩λρθ is expressed as

⟨Xc, Xc⟩λρθ = c†Zλ θ[X]c, (A.49)

where
Zλ θ[X]c = ⟨Xi, X j⟩λρθ , (A.50)

with
Xi =

∑

x∈X
ξi(x)Πx. (A.51)

Therefore, we have
Vθ[Π, θ̂] = Zλ θ[X]. (A.52)

The Xi is locally unbiased at θ. Then, applying the CR like inequality to Eq. (A.50) gives

Vθ[Π, θ̂] ≥ (Jλ θ)−1. ! (A.53)
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Appendix B

Supplemental materials for Chapter 3

B.1 A derivation of det(V − A) ≥ det B, Eq. (3.34)

First, we parametrize the weight matrix W as follows.

W =
(

w11 w12

w21 w22

)
=

(
w11

√
w11w22ϵ√

w11w22ϵ w22

)
. (B.1)

Since W is a real symmetric matrix, det W > 0 and trW > 0 are the necessary and sufficient
conditions for W > 0.

det W = w11w22(1 − ϵ2) > 0 and trW = w11 + w22 > 0 (B.2)
⇐⇒ |ϵ | < 1,w11 > 0, and w22 > 0. (B.3)

From Eq. (3.27), we have
tr[W(V − A)] ≥ tr|

√
WB
√

W |, (B.4)

where

A = Re(JQ
−1
θ ), (B.5)

B = Im(JQ
−1
θ )B =

(
0 b
−b 0

)
. (B.6)

By a direct calculation, the eigenvalues of
√

WB
√

W, λ± are obtained as

λ± = ±i
√

w11w22(1 − ϵ2)|b| = ±
√

det W det B. (B.7)

Since Tr|X| is a sum of the absolute values of the eigenvalues of X, tr|
√

WB
√

W | is obtained as

tr|
√

WB
√

W | = 2
√

w11w22(1 − ϵ2)|b| = 2
√

det W det B. (B.8)

By substituting Eq. (B.1) in an alternative expression of the CR inequality Eq. (3.33) which is

trW(V − A) ≥ 2
√

det W det B, (B.9)
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A direct calculation gives the left and right hand side of the inequality above as

tr[W(V − A)] = (V11 − A11)w11 + (V22 − A22)w22 + 2(V12 − A12)
√

w11w22ϵ, (B.10)

and
2
√

det W det B = 2
√

w11w22(1 − ϵ2)
√

det B (B.11)

respectively. By dividing both sides by w11, we have

(V11 − A11) + (V22 − A22)
w22

w11
+ 2(V12 − A12)

√
w22

w11
ϵ ≥ 2

√
w22

w11
(1 − ϵ2) (B.12)

We have

V11 − A11 ≥ −2δϵ(V12 − A12) − δ2(V22 − A22) + 2
√

det B
√

(1 − ϵ2) δ, (B.13)

where δ =
√

w22/w11. We define g̃(δ, ϵ) by

g̃(δ, ϵ) = −aδ2 + h(ϵ)δ, (B.14)

where a = V22 − A22 and h(ϵ) = −2ϵ(V12 − A12)+ 2
√

det B
√

(1 − ϵ2). Then, (B.13) is written as

V11 − A11 ≥ g̃(δ, ϵ). (B.15)

We maximized g̃(δ, ϵ) under the conditions δ > 0 and |ϵ | < 1. We impose another condition
a > 0, because g̃(δ, ϵ) has its maximum if and only if a > 0. Then, we have

g̃(δ, ϵ) = −aδ2 + h(ϵ)δ = −a(δ − h(ϵ)
2a

)2 +
h(ϵ)2

4a
. (B.16)

Therefore, g̃(δ, ϵ) takes its maximum g̃max(δ, ϵ)at δ =
h(ϵ)
2a

. Since h(ϵ) = 2aδ, we have

g̃max(δ, ϵ) = aδ2. (B.17)

At the extremum, the relation between ϵ and δ is given by

∂g̃(δ, ϵ)
∂δ

= −2aδ + h(ϵ) = 0, (B.18)

∂g̃(δ, ϵ)
∂ϵ

= −2(V12 − A12) + 2
√

det B
ϵ

√
(1 − ϵ2)

= 0. (B.19)

As the solutions, we have

δ =
h(ϵ)
2a

(B.20)

ϵ = ± V12 − A12√
(V12 − A12)2 + det B

(B.21)
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By using this expression of ϵ, we have 1 − ϵ2 as

1 − ϵ2 =
det B

(V12 − A12)2 + det B
> 0. (B.22)

Therefore, |ϵ| < 1 holds.

When ϵ =
V12 − A12

(V12 − A12)2 + det B
,

aδ2
+ =

det B + (V12 − A12)2

V22 − A22
(B.23)

When ϵ = − V12 − A12

(V12 − A12)2 + det B
,

aδ2
− =

[det B − (V12 − A12)2]2

[det B + (V12 − A12)2](V22 − A22)
(B.24)

Since we see aδ2
+ > aδ2

−, the maximum of g̃(δ, ϵ), g̃max(δ, ϵ) is obtained as

g̃max(δ, ϵ) = aδ2
− =

det B + (V12 − A12)2

V22 − A22
. (B.25)

From V11 − A11 > g̃(δ, ϵ),

V11 − A11 ≥
det B + (V12 − A12)2

V22 − A22
. (B.26)

We have

det(V − A) ≥ det B, (B.27)

for W ∈W. This is the same as det(V − A) ≥ det B, Eq. (3.34).
When W ∈ W̃, ϵ = 0. Then,

g̃(δ, 0) = −(V22 − A22)δ2 + 2
√

det B. (B.28)

From
dg̃(δ, 0)

dδ
= 0, we have δ =

√
det B/(V22 − A22). g̃max(δ, 0) is obtained as

g̃max(δ, 0) = (V22 − A22)δ2 =
det B

V22 − A22
. (B.29)

We obtain

(V11 − A11)(V22 − A22) ≥ det B, (B.30)

for W ∈ W̃. !
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Appendix C

Supplemental materials for Chapter 4

C.1 Derivation of [LS θ 1, LS θ 2] |ψθ⟩ = 4 ⟨ψθ| [X,Y] |ψθ⟩ |ψθ⟩

The SLD LS θ i are given by [48]

LS θ 1 = 2∂1(|ψθ⟩ ⟨ψθ|) = −2iXρθ + 2iρθX = 2i[ρθ, X], (C.1)
LS θ 2 = 2∂2(|ψθ⟩ ⟨ψθ|) = −2iYρθ + 2iρθY = 2i[ρθ,Y]. (C.2)

By using these, [LS θ 1, LS θ 2] |ψθ⟩ is written as

[LS θ 1, LS θ 2] |ψθ⟩ = −4[[ρθ, X], [ρθ,Y]] |ψθ⟩
= −4[(ρθX − Xρθ), (ρθY − Yρθ)] |ψθ⟩
= −4[ρθX, (ρθY − Yρθ)] |ψθ⟩ + 4[Xρθ, (ρθY − Yρθ)] |ψθ⟩ . (C.3)

The first term of the right hand side is

−4[ρθX, (ρθY − Yρθ)] |ψθ⟩ = − 4[ρθX, ρθY] |ψθ⟩ + 4[ρθX,Yρθ] |ψθ⟩
= − 4(ρθXρθY − ρθYρθX) |ψθ⟩ + 4(ρθXYρθ − YρθρθX) |ψθ⟩
= − 4(|ψθ⟩ ⟨ψθ| X |ψθ⟩ ⟨ψθ|Y |ψθ⟩ − |ψθ⟩ ⟨ψθ|Y |ψθ⟩ ⟨ψθ| X |ψθ⟩)
+ 4(|ψθ⟩ ⟨ψθ| XY |ψθ⟩ − Y |ψθ⟩ ⟨ψθ| X |ψθ⟩)
=4(⟨ψθ| XY |ψθ⟩ |ψθ⟩ − ⟨ψθ| X |ψθ⟩Y |ψθ⟩). (C.4)

We use ρθ = |ψθ⟩ ⟨ψθ| and ρ2
θ = |ψθ⟩ ⟨ψθ|ψθ⟩ ⟨ψθ| = |ψθ⟩ ⟨ψθ| = ρθ.

The second term of the right hand side is

4[Xρθ, (ρθY − Yρθ)] |ψθ⟩ =4[Xρθ, ρθY] |ψθ⟩ − 4[Xρθ,Yρθ] |ψθ⟩
=4(XρθY − ρθYXρθ) |ψθ⟩ − 4(XρθYρθ − YρθXρθ) |ψθ⟩)
=4(X |ψθ⟩ ⟨ψθ|Y |ψθ⟩ − |ψθ⟩ ⟨ψθ|YX |ψθ⟩
− X |ψθ⟩ ⟨ψθ|Y |ψθ⟩ + Y |ψθ⟩ ⟨ψθ| X |ψθ⟩)
=4(− |ψθ⟩ ⟨ψθ|YX |ψθ⟩ + ⟨ψθ| X |ψθ⟩Y |ψθ⟩). (C.5)
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By adding the first term Eq. (C.4) and the second term Eq. (C.5), we obtain

[LS θ 1, LS θ 2] |ψθ⟩ = 4(|ψθ⟩ ⟨ψθ| XY |ψθ⟩ − |ψθ⟩ ⟨ψθ|YX |ψθ⟩)
= 4 ⟨ψθ| [X,Y] |ψθ⟩ |ψθ⟩ . ! (C.6)

C.2 Derivation of SLD and RLD Fisher information matrix
JS and JR and their inverse matrices

C.2.1 Derivation of JS
−1, Eq. (4.19)

The SLD and the SLD Fisher information matrix is defined by

∂iρθ =
1
2

(ρθLS θ, i + LS θ, iρθ), (C.7)

[JS]i j =
1
2

tr[ρθ(LS θ iLS θ j + LS θ, jLS θ, i)], (C.8)

The SLD Fisher information matrix [JS]i j can be expressed as follows.

tr[∂iρθLS θ j] =
1
2

tr[(ρθLS θ i + LS θ, iρθ)LS θ, j] (C.9)

=
1
2

tr(ρθLS θ iLS θ, j) +
1
2

tr(LS θ, iρθLS θ, j) (C.10)

=
1
2

tr(ρθLS θ iLS θ, j) +
1
2

tr(ρθLS θ, jLS θ, i). (C.11)

At the end of the line, we use the cyclic property of the trace, i.e, the trace being invariant under
cyclic permutation. Hence, we have

[JS ]i j = tr(∂iρθLS θ j). (C.12)

i) Evaluation of ∂iρθ|θ=0

We evaluate the left hand side of the equation above, ∂iρθ. By differentiating the both sides of
Eq. (4.16), we have

∂1ρθ|θ=0 = −iXρ0 + iρ0X = i[ρ0, X], (C.13)
∂2ρθ|θ=0 = −iYρ0 + iρ0Y = i[ρ0,Y], (C.14)

where [A, B] = AB−BA. To calculate the term [ρ0, X], we first calculate ρ0X and Xρ0. By using
Eqs. (4.12, 4.17), the terms ρ0X and Xρ0 are calculated as

ρ0X =
1
2

(I + s⃗0σ⃗)(I + x⃗σ⃗) =
1
2

[I + x⃗σ⃗ + s⃗0σ⃗ + (s⃗0σ⃗)(x⃗σ⃗)], (C.15)

Xρ0 =
1
2

(I + x⃗σ⃗)(I + s⃗0σ⃗) =
1
2

[I + x⃗σ⃗ + s⃗0σ⃗ + (x⃗σ⃗)(s⃗0σ⃗)]. (C.16)

By using
(s⃗0σ⃗)(x⃗σ⃗) = (s⃗0 x⃗)I + i(s⃗0 × x⃗)σ⃗, (C.17)
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we have
[ρ0, X] = ρ0X − Xρ0 = i(s⃗0 × x⃗)σ⃗. (C.18)

In the same way, we obtain

[ρ0,Y] = ρ0Y − Yρ0 = i(s⃗0 × y⃗)σ⃗. (C.19)

Let us define x⃗1 and x⃗2 by

x⃗1 = x⃗, (C.20)
x⃗2 = y⃗. (C.21)

Hence, we have

∂ jρθ|θ=0 = −(s⃗0 × x⃗ j)σ⃗ = (x⃗ j × s⃗0)σ⃗ (C.22)

ii) SLD LS θ, j

Let us set the SLD LS θ, j as
LS θ, j = 2(x⃗ j × s⃗0)σ⃗. (C.23)

We check if this LS θ, j satisfies the definition of the SLD, Eq. (C.8).

ρ0LS θ, j =
1
2

(I + s⃗0σ⃗)2(x⃗ j × s⃗0)σ⃗ (C.24)

= (x⃗ j × s⃗0)σ⃗ + s⃗0(x⃗ j × s⃗0)I + is⃗0 × (x⃗ j × s⃗0σ⃗) (C.25)
= (x⃗ j × s⃗0)σ⃗ + i[s⃗0 × (x⃗ j × s⃗0)]σ⃗. (C.26)

Here, we use
(s⃗0σ⃗)(x⃗σ⃗) = (s⃗0 x⃗)I + i(s⃗0 × x⃗)σ⃗. (C.27)

We also use the Pauli matrices being traceless.
In the same way, we have

LS θ, jρ0 = 2(x⃗ j × s⃗0)σ⃗
1
2

(I + s⃗0σ⃗) (C.28)

= (x⃗ j × s⃗0)σ⃗ + (x⃗ j × s⃗0)s⃗0I + i[(x⃗ j × s⃗0) × s⃗0]σ⃗ (C.29)
= (x⃗ j × s⃗0)σ⃗ + i[(x⃗ j × s⃗0) × s⃗0]σ⃗ (C.30)
= (x⃗ j × s⃗0)σ⃗ − i[s⃗0 × (x⃗ j × s⃗0)]σ⃗. (C.31)

Hence, we have
1
2

(ρ0LS i + ρ0LS i) = (x⃗ j × s⃗0)σ⃗ = ∂iρθ|θ=0. (C.32)

iii) Evaluation of the SLD Fisher information [JS]i j From Eq. (C.12), we have

[JS]i j = tr(∂iρθ|θ=0 LS j) (C.33)
= 2tr[(x⃗ j × s⃗0)σ⃗(x⃗ j × s⃗0)σ⃗] (C.34)
= 4(x⃗i × s⃗0)(x⃗ j × s⃗0). (C.35)
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At the last line, we use Eq. (C.27) and use the fact that the trace of the Pauli matrices are zero.

JS = 4
(

|x⃗ × s⃗0|2 (x⃗ × s⃗0)(⃗y × s⃗0)
(x⃗ × s⃗0)(⃗y × s⃗0) |⃗y × s⃗0|2

)
. (C.36)

The determinant of JS is calculated as

det JS = 16(|x⃗ × s⃗0|2 |⃗y × s⃗0|2 − |(x⃗ × s⃗0)(⃗y × s⃗0)|2) = 16 |s⃗0| 2|s⃗0 · (x⃗ × y⃗)|2. (C.37)

Hence, we have

J −1
S =

4
det JS

(
|⃗y × s⃗0|2 −(x⃗ × s⃗0)(⃗y × s⃗0)

−(x⃗ × s⃗0)(⃗y × s⃗0) |x⃗ × s⃗0|2
)
. ! (C.38)

C.2.2 Derivation of J−1
R , Eq. (4.20)

The RLD LR i and RLD Fisher information matrix [JR]i j are defined by

∂iρθ = ρθLR, i, (C.39)

[JR]i j = tr(ρθLR jL†R i). (C.40)

We omit θ of the RLD and Fisher information matrix since our model is a unitary model. By
using ∂iρθ = L†R, iρ

−1
θ , we have We show the following holds.

[JR]i j = tr(∂ jρθ ∂iρθ ρ
−1
θ ). (C.41)

Derivation of Eq. (C.41)

The RLD is defined by

∂iρθ = ρθLR j (C.42)

⇐⇒∂iρ
†
θ = L†R jρ

†
θ (C.43)

⇐⇒∂iρθ = L†R jρθ (C.44)

⇐⇒∂iρθρ
−1
θ = L†R j (C.45)

By using the definition of RLD ∂iρθ = ρθLR j and Eq. (C.45), we have

[JR]i j = tr(ρθLR jL†R i) = tr(∂ jρθ ∂iρθ ρ
−1
θ ). ! (C.46)

Since our model is a unitary model, we can set θ = 0.

[JR]i j = tr(∂ jρθ|θ=0 ∂iρθ|θ=0 ρ
−1
0 ). (C.47)

By differentiating the both sides of Eq. (4.16), we have

∂1ρθ|θ=0 = −iXρ0 + iρ0X = i[ρ0, X], (C.48)
∂2ρθ|θ=0 = −iYρ0 + iρ0Y = i[ρ0,Y]. (C.49)
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By substituting above in Eq. (C.47), we obtain

[JR]1 1 = −tr([ρ0, X] [ρ0, X] ρ−1
0 ),

[JR]1 2 = −tr([ρ0,Y] [ρ0, X] ρ−1
0 ),

[JR]2 1 = −tr([ρ0, X] [ρ0,Y] ρ−1
0 ),

[JR]2 2 = −tr([ρ0,Y] [ρ0,Y] ρ−1
0 ),

(C.50)

To calculate the term [ρ0, X], we first calculate ρ0X and Xρ0. By using Eqs. (4.12, 4.17), the
term ρ0X and Xρ0 are calculated as

ρ0X =
1
2

(I + s⃗0σ⃗)(I + x⃗σ⃗) =
1
2

[I + x⃗σ⃗ + s⃗0σ⃗ + (s⃗0σ⃗)(x⃗σ⃗)], (C.51)

ρ0X =
1
2

(I + x⃗σ⃗)(I + s⃗0σ⃗) =
1
2

[I + x⃗σ⃗ + s⃗0σ⃗ + (x⃗σ⃗)(s⃗0σ⃗)]. (C.52)

By using
(s⃗0σ⃗)(x⃗σ⃗) = (s⃗0 x⃗)I + i(s⃗0 × x⃗)σ⃗, (C.53)

we have
[ρ0, X] = i(s⃗0 × x⃗)σ⃗. (C.54)

In the same way, we obtain
[ρ0,Y] = i(s⃗0 × y⃗)σ⃗. (C.55)

By a straightforward calculation, ρ−1
0 is obtained as

ρ−1
0 =

2
1 − |s⃗0|2

(I − s⃗0σ⃗). (C.56)

By substituting [ρ0, X], [ρ0,Y], and ρ−1
0 in Eq. (C.50) and using x⃗1 = x⃗ and x⃗2 = y⃗, we have

[JR]i j =
2

1 − |s⃗0|2
tr{[(x⃗ j × s⃗0)σ⃗][(x⃗i × s⃗0)σ⃗](I − s⃗0)σ⃗} (C.57)

=
2

1 − |s⃗0|2
tr{[(x⃗ j × s⃗0)σ⃗][(x⃗i × s⃗0)σ⃗]} − 2

1 − |s⃗0|2
tr{[(x⃗ j × s⃗0)σ⃗][(x⃗i × s⃗0)σ⃗)]s⃗0σ⃗}.

(C.58)

The first term of the right hand side is calculated as follows.

2
1 − |s⃗0|2

tr[(x⃗ j × s⃗0)σ⃗][(x⃗i × s⃗0)σ⃗] =
2

1 − |s⃗0|2
tr[(x⃗ j × s⃗0)(x⃗i × s⃗0)I + i(x⃗ j × s⃗0) × (x⃗i × s⃗0)σ⃗]

(C.59)

=
2

1 − |s⃗0|2
tr[(x⃗ j × s⃗0)(x⃗i × s⃗0)I] (C.60)

=
4

1 − |s⃗0|2
(x⃗ j × s⃗0)(x⃗i × s⃗0). (C.61)
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Let us define a⃗ and b⃗ by

a⃗ = x⃗ j × s⃗0, (C.62)

b⃗ = x⃗i × s⃗0. (C.63)

The second term is calculated as follows.

− 2
1 − |s⃗0|2

tr[(a⃗σ⃗)(b⃗σ⃗)(s⃗0σ⃗)] = − 2
1 − |s⃗0|2

tr{[a⃗b⃗I + i(a⃗ × b⃗)σ⃗]s⃗0σ⃗} (C.64)

= − 2
1 − |s⃗0|2

tr{(a⃗b⃗)s⃗0σ⃗ − i[(a⃗ × b⃗)σ⃗]s⃗0σ⃗} (C.65)

= −i
4

1 − |s⃗0|2
s⃗0(a⃗ × b⃗) (C.66)

= i
4

1 − |s⃗0|2
s⃗0(b⃗ × a⃗) (C.67)

With the formula
(A⃗ × B⃗) × (C⃗ × D⃗) = [A⃗(C⃗ × D⃗)]B⃗ − [B⃗(C⃗ × D⃗)]A⃗, (C.68)

b⃗ × a⃗ is expressed by

b⃗ × a⃗ = (x⃗i × s⃗0)(x⃗ j × s⃗0) (C.69)
= [x⃗i(x⃗ j × s⃗0)]s⃗0 − [s⃗0(x⃗ j × s⃗0)]x⃗i (C.70)
= [x⃗i(x⃗ j × s⃗0)]s⃗0 − [x⃗ j(s⃗0 × s⃗0)]x⃗i (C.71)
= [x⃗i(x⃗ j × s⃗0)]s⃗0 (C.72)
= [s⃗0(x⃗i × x⃗ j)]s⃗0. (C.73)

For the second term, we have

2
1 − |s⃗0|2

tr[(a⃗σ⃗)(b⃗σ⃗)(s⃗0σ⃗)] = i
4

1 − |s⃗0|2
|s⃗0|2[s⃗0(x⃗i × x⃗ j)]]. (C.74)

Hence, the RLD Fisher information matrix JR is given by

JR =
4

1 − |s⃗0|2
(

|x⃗ × s⃗0|2 (x⃗ × s⃗0)(⃗y × s⃗0) + i|s⃗0|2[s⃗0(x⃗ × y⃗)]
(x⃗ × s⃗0)(⃗y × s⃗0) − i|s⃗0|2[s⃗0(x⃗ × y⃗)] |⃗y × s⃗0|2

)
,

(C.75)

J −1
R = J−1

S +
4

det JS

(
0 −is⃗ 2

0 [s⃗0 · (x⃗ × y⃗)]
is⃗ 2

0 [s⃗0 · (x⃗ × y⃗)] 0

)
, (C.76)

where det JS is the determinant of JS, and it is

det JS = 16 |s⃗0| 2|s⃗0 · (x⃗ × y⃗)|2. ! (C.77)
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C.3 Solution u0 of Fζ(u0) = 0

In this section, we investigate the solution s0 of Fζ(u0) = 0. We check up to the fourth partial
derivative of Fζ(u) with respect to s to see Fζ(u) in the allowed range for t and s.

Let F(n)
ζ (u) = dnFζ (u)

∂un . Up to the fourth partial derivative of Fζ(u) with respect to u are as
follows

F(1)
ζ (u) = −45u4 − 64(1 + 7ζ) + 72u3(3 + 8ζ) + 32u(9 + 61ζ) − 9u2(43 + 224ζ), (C.78)

F(2)
ζ (u) = 2[−90u3 + 108u2(3 + 8ζ) + 16(9 + 61ζ) − 9u(43 + 224ζ)], (C.79)

F(3)
ζ (u) = −18[43 + 30u2 + 224ζ − 24u(3 + 8ζ)], (C.80)

F(4)
ζ (u) = −216(−6 + 5u − 16ζ). (C.81)

F(3)
ζ (u) is convex upward, because the coefficient of u2 in F(3)

ζ (u) is negative. Therefore, the
extremum, in this case, the maximum of F(3)

ζ (u) is given by u(4)
0 which is the solution of

F(4)
ζ (u(4)

0 ) = 0. The solution u(4)
0 is given by

u(4)
0 =

2
5

(8ζ + 3). (C.82)

u(4)
0 which gives the maximum of F(3)

ζ (u) becomes minimum at ζ = 0. At ζ = 0, u(4)
0 = 6/5 =

1.2 > 1/3. Because of u(4)
0 > 1/3, F(3)

ζ (u) increases monotonically in the range 0 < u < 1/3.

F(3)
ζ (u) at u = 1/3 is

F(3)
ζ (

1
3

) = −6(67 + 480ζ) < 0 when (0 < ζ <
1
3

). (C.83)

Then, we see F(3)
ζ (u) < 0 when 0 < u < 1/3. Therefore, F(2)

ζ (u) decreases monotonically when
0 < u < 1/3.

F(2)
ζ (u) at u = 1/3 is

F(2)
ζ (

1
3

) =
286

3
+ 800ζ > 0 when (0 < ζ <

1
3

). (C.84)

Therefore, F(1)
ζ (u) increases monotonically when 0 < u < 1/3.

F(1)
ζ (

1
3

) = −32
9
< 0 when (0 < ζ <

1
3

). (C.85)

Therefore, Fζ(u) decreases monotonically when 0 < u < 1/3. The values of Fζ(u) at the both
ends, u = 0 and u = 1/3 are

Fζ(0) = 64ζ, (C.86)

Fζ(
1
3

) = −256
27
. (C.87)

With a given ζ in the range 0 < ζ ≤ 1/3, there always exists only one solution u0 that satisfies
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Fζ(u0) = 0 in the range 0 < u0 ≤ 1/3.
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Appendix D

Supplemental materials for Chapter 5

D.1 Thermal state and Gaussian state

The thermal state for a single harmonic oscillator, ρβ is described as

ρβ = Z−1
β e−βH, (D.1)

where Zβ = tr [e−βH] and β = T−1 is the inverse temperature.
By using Hamiltonian H = ω (a†a + 1/2) and a†a |n⟩ = n |n⟩, e−βH is

e−βH =

∞∑

n=0

e−βH |n⟩ ⟨n| = e−
1
2βω

∞∑

n=0

γn |n⟩ ⟨n| , (D.2)

where γ = e−βω. Zβ is

Zβ = tr [e−βH] =
e− 1

2βω

1 − γ . (D.3)

We obtain
ρβ = Z−1

β e−βH = (1 − γ)
∑

n

γn |n⟩ ⟨n| . (D.4)

We first calculate the matrix element of ρβ by the basis as the coherent state, ⟨z1|ρβ|z2⟩. Next,
we make the same matrix element of the Gaussian state to see if they match.
⟨z1|ρβ|z2⟩ is

⟨z1|ρβ|z2⟩ = (1 − γ)
∑

n

γn ⟨z1|n⟩ ⟨n|z2⟩ (D.5)

= (1 − γ)e−
1
2 |z1 |2− 1

2 |z2 |2+γz∗1z2 . (D.6)

The Gaussian state S κ is defined by

S κ =
1

2πκ2

∫
e−

|z|2
2κ2 |z⟩ ⟨z| d2z. (D.7)

where
d2z := d(Re(z))d(Im(z)). (D.8)
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Then its matrix element ⟨z1| S κ |z2⟩ is

⟨z1| S κ |z2⟩ =
1

2πκ2

∫
e−

|z|2
2κ2 ⟨z1|z⟩ ⟨z|z2⟩ d2z (D.9)

=
1

2πκ2

∫
e−( 1

2κ2
+1)|z|2+z∗1z2+z1z∗2d2z e−

1
2 |z1 |2− 1

2 |z2 |2 . (D.10)

By using ∫
e−α|z|

2+βz+γz∗d2z =
π

α
e
βγ
α , (D.11)

we obtain

⟨z1| ρβ |z2⟩ =
1

2κ2 + 1
e
− 1

2 |z1 |2− 1
2 |z2 |2+

z∗1z2
1

2κ2
+1 . (D.12)

From (D.6) and (D.12), ⟨z1|S κ|z2⟩ = ⟨z1| ρβ |z2⟩ holds iff

2κ2 =
γ

1 − γ =
1

eβω − 1
. (D.13)

Therefore, we obtain

ρβ =
1

2πκ2

∫
e−
|z′ |2
2κ2 |z⟩ ⟨z| d2z. (D.14)

where 2κ2 is given by Eq. (D.13).

D.2 Calculation: SLD, RLD Fisher information matrices, and
Z matrix

D.2.1 SLD and RLD: The thermal state as the reference state

First, we briefly explain that SLD and RLD Fisher information matrices for the mixed state are
independent of the parameters θ = (θ1, θ2) in the unitary transformation U(θ1, θ2).

Let SLD and RLD of our m odel be LS, j(θ) and LR, j(θ), respectively. The SLD and RLD are
defined by the solutions of the following equation.

∂ρθ
∂θi
=

1
2

(ρθLS, j(θ) + LS, j(θ)ρθ), (D.15)

∂ρθ
∂θi
= ρθLR, j(θ). (D.16)

With using the unitary transformation U(θ1, θ2) = e−iθ1 pxe−iθ2 py , LS, j(0) and LR, j(0) are written
as

LS, j(θ) = U(θ1, θ2) LS, j(0) U†(θ1, θ2), (D.17)
LR, j(θ) = U(θ1, θ2) LR, j(0) U†(θ1, θ2). (D.18)

For the RLD Fisher information JR(θ) = [JR, i j(θ)], we can derive the relation below if the
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transformation is unitary.

JR, i j(θ) = tr [ρθ LR, j(θ)L†R, i(θ)] = tr [ρ0 LR, j(0)L†R, i(0)] = JR, i j(0). (D.19)

If the transformation is unitary, the RLD Fisher information JR(θ) does not depend on the
parameters θ1 and θ2. Then, we can write JR(θ) as JR = [JR, i j]. From Eqs. (D.17, D.18), we
can show that the same holds for the SLD Fisher information GS(θ). Therefore, if we have
LS, i(0) and LR, i(0), it is enough to obtain the SLD and RLD Fisher information matrices.

D.2.2 Thermal state SLD: LS , 1(0), LS , 2(0),Z matrix, Z

The SLD is defined by,
∂ρθ
∂θi
=

1
2

(ρθLS, j(θ) + LS, j(θ)ρθ). (D.20)

The unitary transformation e−iθ1 pxe−iθ2 py is expressed by

e−iθ1 pxe−iθ2 py = eξ1a†−ξ∗1aeξ
∗
2b†−ξ2b, (D.21)

where
ξ1 =

1
2κ
θ1 − iθ2, ξ2 = ξ

∗
1. (D.22)

By using these, we obtain the SLD as

LS, 1(0) =
1

κ(1 + 4κ2
a)

(a + a†) +
1

κ(1 + 4κ2
b)

(b + b†), (D.23)

LS, 2(0) =
i

κ(1 + 4κ2
a)

(a − a†) − i
κ(1 + 4κ2

b)
(b − b†). (D.24)

With using px, py and x, y,

LS, 1(0) = (
1

1 + 4κ2
a
+

1
1 + 4κ2

b

)py +
1
κ2 (

1
1 + 4κ2

a
− 1

1 + 4κ2
b

) x, (D.25)

LS, 2(0) = −(
1

1 + 4κ2
a
− 1

1 + 4κ2
b

)px +
1
κ2 (

1
1 + 4κ2

a
+

1
1 + 4κ2

b

) y. (D.26)

The SLD Fisher information matrix JS is calculated as

JS =
1
κ2 (

1
1 + 4κ2

a
+

1
1 + 4κ2

b

)
(
1 0
0 1

)
=

2(1 + κ2
a + κ

2
b)

κ2(1 + 4κ2
a)(1 + 4κ2

b)

(
1 0
0 1

)
(D.27)

Z matrix Z is calculated as

Z =
κ2

1 + 2κ2
a + 2κ2

b

(1
2 + 2κ2

a + 2κ2
b + 8κ2

aκ
2
b i (2κ2

b − 2κ2
a)

−i (2κ2
b − 2κ2

a) 1
2 + 2κ2

a + 2κ2
b + 8κ2

aκ
2
b

)
. (D.28)

From this expression, we have

Z = (JR)−1 + ∆g
(
1 0
0 1

)
. (D.29)
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Since ∆g ! 0, we see that Z ! (JR)−1. This implies the model is not D-invariant [68].

D.2.3 Thermal state RLD: LR, 1(0), LR, 2(0)

By using the definition of RLD,
∂ρθ
∂θi
= ρθLR, j(θ), (D.30)

the unitary transformation eξ1a†−ξ∗1aeξ∗2b†−ξ2b, and the reference state, we obtain the RLD.

LR, 1(0) =
1
2κ

(
1

1 + 2κ2
a
a +

1
2κ2

a
a†) +

1
2κ

(
1

1 + 2κ2
b

b +
1

2κ2
b

b†), (D.31)

LR, 2(0) = − i
2κ

(− 1
1 + 2κ2

a
a +

1
2κ2

a
a†) +

i
2κ

(− 1
1 + 2κ2

b

b +
1

2κ2
b

b†). (D.32)

The RLD Fisher information matrix JR is calculated as

JR =
1

4κ2

⎛
⎜⎜⎜⎜⎜⎝

1
1+2κ2

a
+ 1

2κ2
a
+ 1

1+2κ2
b
+ 1

2κ2
b
−i [ 1

2κ2
a(1+2κ2

a) −
1

2κ2
b(1+2κ2

b) ]
i [ 1

2κ2
a(1+2κ2

a) −
1

2κ2
b(1+2κ2

b) ]
1

1+2κ2
a
+ 1

2κ2
a
+ 1

1+2κ2
b
+ 1

2κ2
b

⎞
⎟⎟⎟⎟⎟⎠ . (D.33)
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Appendix E

Supplemental materials for Chapter 6

E.1 Wigner Rotation

For a massive particle with spin-1/2, we have the relation [31, 32],

U(Λ) |p,σ⟩ =
√

(Λp)0

p0

∑

σ′=↓,↑
D( 1

2 )
σ′,σ(W(Λ, p)) |Λp,σ′⟩ , (E.1)

where W(Λ, p) = L−1(Λp)ΛL(p). The Lorentz boost L(p) = [Li
j(p)] is chosen as in [32].

Li
j(p) = δi j +

(
√

m2 + | p⃗ | 2 − m)pi p j

m| p⃗ | 2 , (E.2)

Li
0(p) =

pi

m
, (E.3)

L0
0(p) =

√
m2 + | p⃗ | 2

m
. (E.4)

A direct calculation for our setting p⃗ = (p1, p2, 0) gives the explicit representation of the matrix
W(Λ, p) as follows.

[W(Λ, p)]0
0 = 1, (E.5)

[W(Λ, p)]1
0 = [W(Λ, p)]0

1 = 0, (E.6)
[W(Λ, p)]2

0 = [W(Λ, p)]0
2 = 0, (E.7)

[W(Λ, p)]3
0 = [W(Λ, p)]0

3 = 0, (E.8)

[W(Λ, p)]1
1 = [W(Λ, p)]2

2 =
p0[m(p1)2 + p0(p2)2] sinh2 χ + | p⃗ |2[(p1)2 cosh χ + (p2)2]

| p⃗ |2
[
(p0)2 sinh2 χ + | p⃗ |2

] , (E.9)
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[W(Λ, p)]2
1 = [W(Λ, p)]1

2 = −
p1 p2(cosh χ − 1)(p0 − m)
| p⃗ |2(p0 cosh χ + m)

, (E.10)

[W(Λ, p)]3
1 = −[W(Λ, p)]1

3 = −
p1 sinh χ

p0 cosh χ + m
, (E.11)

[W(Λ, p)]3
2 = −[W(Λ, p)]2

3 = −
p2 sinh χ

p0 cosh χ + m
, (E.12)

[W(Λ, p)]3
3 =

p0 + m cosh χ
m + p0 cosh χ

. (E.13)

A 3 × 3 real matrix [R(Λ, p)] jk defined by the spatial part of W(Λ, p) as

[R(Λ, p)] jk = [W(Λ, p)] j
k , ( j, k = 1, 2, 3). (E.14)

This is a real rotation matrix acting on the three-dimensional vector space. We next decompose
the rotation matrix R(Λ, p) with the Euler angles. A straightforward calculation shows that we
need only two Euler angles in this case. The matrices R2(α) and R3(φ) that express a rotation
by angles α and φ around the 2 and 3-axis, respectively [74], i.e.,

R(Λ, p) = R3(−φ)R2(α)R3(φ), (E.15)

where

R2(α) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cosα 0 − sinα
0 1 0

sinα 0 cosα

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (E.16)

R3(φ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos φ − sin φ 0
sin φ cos φ 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (E.17)

As we have the Euler rotation representation, Eq. (E.15), we obatain the 2 × 2 matrix represen-
tation of the rotation for the spin-1/2 particle [74], D( 1

2 )(W(Λ, p)) as

D( 1
2 )(W(Λ, p)) = eiφσ3

2 e−iασ2
2 e−iφσ3

2 (E.18)

=

(
cos α

2 −eiφ sin α
2

e−iφ sin α
2 cos α

2

)
. (E.19)

By substituting the expression of D( 1
2 )(W(Λ, p)) in (E.1), we obtain Eqs. (6.28), (6.30), (6.31),

and (6.32).
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E.2 Inner product ⟨ψΛσ(θ)|ψΛσ′(θ)⟩

E.2.1 Spins in the same direction: ⟨ψΛσ(θ)|ψΛσ(θ)⟩

From Eq. (6.30), ⟨ψΛσ(θ)|ψΛσ(θ)⟩ is calculated as

⟨ψΛσ(θ)|ψΛσ(θ)⟩ =
∫

d3 p
∫

d3 p′
√

(Λp)0

p0 F∗θ,σ(p1, p2)δ(p3)

×
√

(Λp′)0

p′0
Fθ,σ(p′1, p′2)δ(p′3) ⟨−−→Λp|−−→Λp′⟩

=

∫ ∞

−∞

∫ ∞

−∞
|Fθ,σ(p1, p2)|2dp1dp2.

(E.20)

We use the relation [32],

⟨−−→Λp|−−→Λp′⟩ = p0

(Λp)0 ⟨p⃗|p⃗′⟩ =
p0

(Λp)0 δ( p⃗ − p⃗′). (E.21)

As given by Eqs. (6.31), (6.32), (6.35), and (6.36), the expression of Fθ,σ(p1, p2) (σ =↓, ↑) is
explicitly written as

Fθ, ↓(p1, p2) = ϕ0(p1)ϕ0(p2)e−ip1θ1−ip2θ2 cos
α(| p⃗ |)

2
, (E.22)

Fθ, ↑(p1, p2) = −ϕ0(p1)ϕ0(p2)e−ip1θ1−ip2θ2eiφ(p1, p2) sin
α(| p⃗ |)

2
, (E.23)

| p⃗ | =
√

(p1)2 + (p2)2, (E.24)

eiφ(p1, p2) =
p1

| p⃗ | + i
p2

|p⃗ | , (E.25)

cosα(| p⃗ |) =
√

m2 + |p⃗ |2 + m cosh χ
√

m2 + |p⃗ |2 cosh χ + m
, (E.26)

sinα(| p⃗ |) = − |p⃗ | sinh χ
√

m2 + | p⃗ |2 cosh χ + m
. (E.27)

Therefore, ⟨ψΛ↓(θ)|ψΛ↓(θ)⟩ is calculated as follows.

⟨ψΛ↓(θ)|ψΛ↓(θ)⟩ =
∫ ∞

−∞

∫ ∞

−∞
|Fθ, ↓(p1, p2)|2dp1dp2,

=

∫ ∞

−∞

∫ ∞

−∞
|ϕ0(p1)ϕ0(p2)|2 cos2 α(|p⃗ |)

2
dp1dp2.

=
1
2

∫ ∞

−∞

∫ ∞

−∞
|ϕ0(p1)ϕ0(p2)|2(1 + cosα(| p⃗ |))dp1dp2.

=
1
2

(1 +
∫ ∞

−∞

∫ ∞

−∞
|ϕ0(p1)ϕ0(p2)|2 cosα(| p⃗ |))dp1dp2).

(E.28)
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At the last line, we use ∫ ∞

−∞

∫ ∞

−∞
|ϕ0(p1)ϕ0(p2)|2dp1dp2 = 1. (E.29)

As for ⟨ψΛ↑(θ)|ψΛ↑(θ)⟩,

⟨ψΛ↑(θ)|ψΛ↑(θ)⟩ =
∫ ∞

−∞

∫ ∞

−∞
|Fθ, ↑(p1, p2)|2dp1dp2,

=

∫ ∞

−∞

∫ ∞

−∞
|ϕ0(p1)ϕ0(p2)|2 sin2 α(|p⃗ |)

2
dp1dp2.

=
1
2

∫ ∞

−∞

∫ ∞

−∞
|ϕ0(p1)ϕ0(p2)|2(1 − cosα(|p⃗ |))dp1dp2.

=
1
2

(1 −
∫ ∞

−∞

∫ ∞

−∞
|ϕ0(p1)ϕ0(p2)|2 cosα(|p⃗ |)dp1dp2.

(E.30)

We define ξ by

ξ =

∫ ∞

−∞

∫ ∞

−∞
|ϕ0(p1)ϕ0(p2)|2 cosα(|p⃗ |)dp1dp2. (E.31)

By converting to the two dimensional polar coordinate and integrating over the angle, we have

ξ =

∫ ∞

−∞

∫ ∞

−∞
|ϕ0(p1)ϕ0(p2)|2 cosα(|p⃗ |)dp1dp2, (E.32)

= 2κ2
∫ ∞

0
dt t e−κ

2t2
√

m2 + t2
√

1 − v2 + m√
m2 + t2 + m

√
1 − v2

. (E.33)

Hence, we have

⟨ψΛ↓(θ)|ψΛ↓(θ)⟩ =
1
2

(1 + ξ), (E.34)

⟨ψΛ↑(θ)|ψΛ↑(θ)⟩ =
1
2

(1 − ξ), (E.35)

where

ξ = 2κ2
∫ ∞

0
dt t e−κ

2t2
√

m2 + t2
√

1 − v2 + m√
m2 + t2 + m

√
1 − v2

. (E.36)

From the equation above, we see that ξ is a monotonically decreasing function of
√

1 − v2.
Therefore, ξ is a monotonically increasing function of v. When v = 1, ξ takes its minimum, ξrel

which is evaluated as follows.

ξrel = 2κ2
∫ ∞

0

t e−κ2 p2

√
m2 + t2

dt =
√
πmκem2κ2

erfc(mκ). (E.37)

The erfc(mκ) is called complementary error function which is defined by

erfc(mκ) := 1 − 2√
π

∫ x

0
e−t2dt. (E.38)

Performing the standard gaussian integration, we see ξ = 1 when v = 0.
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E.2.2 Spins in the opposite direction: ⟨ψΛ↑(θ)|ψΛ↓(θ)⟩

From Eq. (6.30), ⟨ψΛ↑(θ)|ψΛ↓(θ)⟩ is calculated as

⟨ψΛ↑(θ)|ψΛ↓(θ)⟩ =
∫

d3 p
∫

d3 p′
√

(Λp)0

p0 F∗θ, ↑(p1, p2)δ(p3)

×
√

(Λp′)0

p′0
Fθ, ↓(p′1, p′2)δ(p′3) ⟨−−→Λp|−−→Λp′⟩

=

∫ ∞

∞

∫ ∞

∞
F∗θ, ↑(p1, p2)Fθ, ↓(p1, p2)dp1dp2.

(E.39)

With Eqs. (6.31, 6.32), we have the explicit expression of the right hand side above as follows.

⟨ψΛ↑(θ)|ψΛ↓(θ)⟩ = −
κ2

π

∫ ∞

∞

∫ ∞

∞
e−κ

2[(p1)2+(p2)2]eip1θ1+ip2θ2 cos
α(|p⃗ |)

2
e−ip1θ1−ip2θ2(

p1

| p⃗ | + i
p2

| p⃗ | ) sin
α(| p⃗ |)

2

= − κ
2

2π

∫ ∞

∞

∫ ∞

∞
e−κ

2 | p⃗ |2(
p1

|p⃗ | + i
p2

| p⃗ | ) sinα(| p⃗ |)
(E.40)

where |p⃗ | =
√

(p1)2 + (p2)2. Since e−κ2 | p⃗ |2 p1

|p⃗ | sinα(|p⃗ |) and e−κ2 | p⃗ |2 p2

| p⃗ | sinα(| p⃗ |) are odd functions
of p1 and p2, respectively, integral of these terms from negative infinity to infinity over p1 and
p2 vanishes. Hence, we obtain

⟨ψΛ↑(θ)|ψΛ↓(θ)⟩ = 0. (E.41)

E.3 Probability density of a spin-1/2 particle: coordinate rep-
resentation

We define the wave function of a particle with up spin in coordinate representation ψΛ↑(x) by

ψΛ↑(x) = ⟨x|ψ̄Λ↑(θ)⟩
∣∣∣
θ=0. (E.42)

From Eqs. (6.32) and (6.43), the wave function ψΛ↑(x) is given by

ψΛ↑(x) = −
√

2
1 − ξ

∫
d3 p

√
(Λp)0

p0 ϕ0(p1, p2)eiφ(p1, p2)

× sin
α(p)

2
δ(p3) ⟨x |Λp⟩ ,

(E.43)
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where ϕ0(p1, p2) = ϕ0(p1)ϕ0(p2). By a direct calculation, we have the wave function ψΛ↑(x) as
follows.

ψΛ↑(x) = −
√

2
1 − ξ

κ

(2π)2

√
cosh χ

×
∫

dp1dp2e−κ
2[(p1)2+(p2)2]+iφ(p1, p2)

× sin
α(p)

2
e−ip1 x1−ip2 x2−i

√
(p1)2+(p2)2+m2 sinh χx3

.

(E.44)

From the expression above, we see the probability density ψΛ↑(x1, x2)∗ψΛ↑(x1, x2) has a property

ψΛ↑(x1, x2)∗ψΛ↑(x1, x2) = ψΛ↑(−x1, x2)∗ψΛ↑(−x1, x2), (E.45)

ψΛ↑(x1, x2)∗ψΛ↑(x1, x2) = ψΛ↑(x1,−x2)∗ψΛ↑(x1,−x2). (E.46)

E.4 SLD and SLD Fisher information matrix

E.4.1 SLD Fisher information matrix

The state we are considering ρΛ(θ) is written by

ρΛ(θ) =
1
2

(1 + ξ) |ψ̄Λ↓(θ)⟩ ⟨ψ̄Λ↓(θ)| +
1
2

(1 − ξ) |ψ̄Λ↑(θ)⟩ ⟨ψ̄Λ↑(θ)| . (E.47)

By using the formula given in Section F.1, the SLD Fisher information matrix JΛ for the state
ρΛ(θ) which is non-full rank is calculated as

JΛ jk = 2(1 + ξ)[Re ⟨∂ jψ̄
Λ
↓(θ)|∂kψ̄

Λ
↓(θ)⟩ − ⟨∂ jψ̄

Λ
↓(θ)|ψ̄Λ↓(θ)⟩ ⟨ψ̄Λ↓(θ)|∂kψ̄

Λ
↓(θ)⟩]

+ 2(1 − ξ)[Re ⟨∂ jψ̄
Λ
↑(θ)|∂kψ̄

Λ
↑(θ)⟩ − ⟨∂ jψ̄

Λ
↑(θ)|ψ̄Λ↑(θ)⟩ ⟨ψ̄Λ↑(θ)|∂kψ̄

Λ
↑(θ)⟩]

− 4(1 − ξ)(1 + ξ)Re(⟨ψ̄Λ↑(θ)|∂ jψ̄
Λ
↓(θ)⟩

∗ ⟨ψ̄Λ↑(θ)|∂kψ̄
Λ
↓(θ)⟩). (E.48)

Regarding the calculation, see for example [59]. The terms below appear in the second and
fourth terms of Eq. (E.48) vanish, because their integrands are an odd function of pj, i.e.,

⟨∂ jψ̄
Λ
σ(θ)|ψ̄Λσ(θ)⟩ = 0, (σ =↓, ↑). (E.49)

From Eqs. (6.30), (6.31), and (6.32), the inner products ⟨∂ jψ̄Λσ(θ)|∂ jψ̄Λσ(θ)⟩, ( j = 1, 2) are
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obtained as follows.

Fθ, ↓(p1, p2) = ϕ0(p1)ϕ0(p2)e−ip1θ1−ip2θ2 cos
α(| p⃗ |)

2
, (E.50)

Fθ, ↑(p1, p2) = −ϕ0(p1)ϕ0(p2)e−ip1θ1−ip2θ2eiφ(p1, p2) sin
α(| p⃗ |)

2
, (E.51)

| p⃗ | =
√

(p1)2 + (p2)2, (E.52)

eiφ(p1, p2) =
p1

| p⃗ | + i
p2

|p⃗ | , (E.53)

cosα(| p⃗ |) =
√

m2 + |p⃗ |2 + m cosh χ
√

m2 + |p⃗ |2 cosh χ + m
, (E.54)

sinα(| p⃗ |) = − |p⃗ | sinh χ
√

m2 + | p⃗ |2 cosh χ + m
. (E.55)

The term ⟨∂1ψ̄Λ↓(θ)|∂1ψ̄Λ↓(θ)⟩ is calculated as follows.

⟨∂1ψ̄
Λ
↓(θ)|∂1ψ̄

Λ
↓(θ)⟩ =

2
1 + ξ

⟨∂1ψ
Λ
↓(θ)|∂1ψ

Λ
↓(θ)⟩ ,

=
2

1 + ξ

∫ ∞

−∞

∫ ∞

−∞
|(p1)2Fθ, ↓(p1, p2)|2dp1dp2,

=
2

1 + ξ

∫ ∞

−∞

∫ ∞

−∞
(p1)2|ϕ0(p1)ϕ0(p2)|2 cos2 α(|p⃗ |)

2
dp1dp2,

=
1

1 + ξ

∫ ∞

−∞

∫ ∞

−∞
(p1)2|ϕ0(p1)ϕ0(p2)|2(1 + cosα(| p⃗ |))dp1dp2,

=
1

1 + ξ
(

1
2κ2 +

∫ ∞

−∞

∫ ∞

−∞
(p1)2|ϕ0(p1)ϕ0(p2)|2 cosα(| p⃗ |))dp1dp2).

(E.56)

At the last line we use,
∫ ∞

−∞

∫ ∞

−∞
dp1dp2(p1)2[ϕ0(p1, p2)]2 =

1
2κ2 . (E.57)

We see that ⟨∂1ψ̄Λ↓(θ)|∂1ψ̄Λ↓(θ)⟩ = ⟨∂2ψ̄Λ↓(θ)|∂2ψ̄Λ↓(θ)⟩. We define ζ by

ζ :=
∫ ∞

−∞

∫ ∞

−∞
dp1dp2(p1)2[ϕ0(p1, p2)]2 cosα(|p⃗ |). (E.58)

Then, we have

⟨∂ jψ̄
Λ
↓(θ)|∂ jψ̄

Λ
↓(θ)⟩ =

(2κ2)−1 + ζ

1 + ξ
. (E.59)
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Therefore, ⟨∂1ψ̄Λ↑(θ)|∂1ψ̄Λ↑(θ)⟩ is calculated as follows.

⟨∂1ψ̄
Λ
↑(θ)|∂1ψ̄

Λ
↑(θ)⟩ =

2
1 − ξ ⟨∂1ψ

Λ
↑(θ)|∂2ψ

Λ
↑(θ)⟩ ,

=
2

1 − ξ

∫ ∞

−∞

∫ ∞

−∞
|(p1)2Fθ, ↓(p1, p2)|2dp1dp2,

=
2

1 − ξ

∫ ∞

−∞

∫ ∞

−∞
(p1)2|ϕ0(p1)ϕ0(p2)|2 sin2 α(| p⃗ |)

2
dp1dp2,

=
1

1 − ξ

∫ ∞

−∞

∫ ∞

−∞
(p1)2|ϕ0(p1)ϕ0(p2)|2(1 − cosα(| p⃗ |))dp1dp2,

=
1

1 − ξ (
1

2κ2 −
∫ ∞

−∞

∫ ∞

−∞
(p1)2|ϕ0(p1)ϕ0(p2)|2 cosα(| p⃗ |))dp1dp2),

=
1

1 − ξ (
1

2κ2 − ζ).

(E.60)

∴ ⟨∂ jψ̄
Λ
↑(θ)|∂ jψ̄

Λ
↑(θ)⟩ =

(2κ2)−1 − ζ
1 − ξ , (E.61)

We also use Eq. (6.3)

ϕ0(pj) =
κ1/2

π1/4 e−
1
2 κ

2(p j)2
, (E.62)

and ∫ ∫
dp1dp2(p1)2[ϕ0(p1, p2)]2 =

1
2κ2 . (E.63)

As for ⟨∂ jψ̄Λ↓(θ)|ψ̄Λ↑(θ)⟩ ( j = 1, 2), a direct calculation gives

⟨∂1ψ̄
Λ
↓(θ)|ψ̄Λ↑(θ)⟩ = −

iη
√

(1 + ξ)(1 − ξ)
, (E.64)

⟨∂2ψ̄
Λ
↓(θ)|ψ̄Λ↑(θ)⟩ = −

η
√

(1 + ξ)(1 − ξ)
, (E.65)

where
η = −

∫ ∞

−∞

∫ ∞

−∞
dp1dp2 (pj)2

| p⃗ | [ϕ0(p1, p2)]2 sinα(| p⃗ |). (E.66)

The SLD Fisher information matrix JΛ is expressed as follows.

JΛ = 2(κ−2 − 2η2)
(
1 0
0 1

)
. (E.67)

It turns out the ζ has no effect on the SLD Fisher information.
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E.4.2 SLD

By using the formula given in Section F.1, we have LΛ(θ) j ( j = 1, 2) which are expressed by

LΛ1(θ) =
4

1 + ξ
∂1(|ψ̄Λ↓(θ)⟩) ⟨ψ̄Λ↓(θ)|)

+
4

1 − ξ∂1(|ψ̄Λ↑(θ)⟩) ⟨ψ̄Λ↑(θ)|)

+ 2iξη(|ψ̄Λ↓(θ)⟩ ⟨ψ̄Λ↑(θ)| − |ψ̄Λ↑(θ)⟩ ⟨ψ̄Λ↓(θ)|),

(E.68)

LΛ2(θ) =
4

1 + ξ
∂2(|ψ̄Λ↓(θ)⟩) ⟨ψ̄Λ↓(θ)|)

+
4

1 − ξ∂2(|ψ̄Λ↑(θ)⟩) ⟨ψ̄Λ↑(θ)|)

+ 2ξη(|ψ̄Λ↓(θ)⟩ ⟨ψ̄Λ↑(θ)| − |ψ̄Λ↑(θ)⟩ ⟨ψ̄Λ↓(θ)|).

(E.69)

By using these, we can show that LΛ1(θ) and LΛ2(θ) do not commute, i.e., [LΛ1(θ), LΛ2(θ)] ! 0.
Furthermore, by a direct calculation, we can evaluate the weak commutativity condition as

tr(ρΛ(θ)[LΛ1(θ), LΛ2(θ)]) = 8iξη2 ! 0. (E.70)

This shows that the SLD CR bound is not achievable even in the asymptotic setting.

E.5 Maximum and minimum of κη

From Eq. (6.53), η is expressed as

η = −
∫ ∞

−∞

∫ ∞

−∞
dp1dp2 (p1)2

| p⃗ | [ϕ0(p1)ϕ0(p2)]2 sinα(| p⃗ |). (E.71)

where

ϕ0(pj) =
κ1/2

π1/4 e−
1
2 κ

2(p j)2
, (E.72)

sinα(| p⃗ |) = − | p⃗ | sinh χ
√

m2 + |p⃗ |2 cosh χ + m
= − v| p⃗ |

√
m2 + | p⃗ |2 + m

√
1 − v2

(E.73)

Then, κη is written as

κη = κ

∫ ∞

−∞

∫ ∞

−∞
dp1dp2 κ

2

π

(p1)2

|p⃗ | e−κ
2[(p1)2+(p2)2] v|p⃗ |

√
m2 + | p⃗ |2 + m

√
1 − v2

(E.74)

=

∫ ∞

−∞

∫ ∞

−∞
dp1dp2 κ

3v
π

(p1)2

| p⃗ | e−κ
2 | p⃗ |2 |p⃗ |

√
m2 + | p⃗ |2 + m

√
1 − v2

(E.75)

(E.76)

110



upper bound ● v=0.95 △ v=0.70 ▽ v=0.10 lower bound
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Figure E.1: κη/V as a function of mκ at v = 0.95, 0.7, and 0.1.

We convert to the two dimensional polar coordinate system, i.e.,

p1 = t cos θ, p2 = t cos θ. (E.77)

Then,

κη =

∫ 2π

0
dθ

∫ ∞

0
tdt
κ3v
π

(t)2 cos2 θ

t
e−κ

2t2 t√
m2 + t2 + m

√
1 − v2

, (E.78)

=
κ3v
π

∫ 2π

0
dθ cos2 θ

∫ ∞

0
dt

t3e−κ2t2

√
m2 + t2 + m

√
1 − v2

, (E.79)

= v
∫ ∞

0
dt

κ3t3e−κ2t2

√
m2 + t2 + m

√
1 − v2

, (E.80)

= v
∫ ∞

0
dt

κ′3t3e−κ′
2t2

√
1 + t2 +

√
1 − v2

. (E.81)

where κ′ = mκ. By the velocity dependence of the integrand, we have an upper bound with
v = 1, and the lower bound with v = 0. We obtain the following inequality for κη/v.

∫ ∞

0
dt

κ′3t3e−κ′
2t2

√
1 + t2 + 1

≤ κη
v
≤

∫ ∞

0
dt
κ′3t3e−κ′

2t2

√
1 + t2

. (E.82)

These integrations are explicitly written as

∫ ∞

0
dt

κ′3t3e−κ′
2t2

√
1 + t2 + 1

=

√
π

4
eκ
′2

erfc(κ′), (E.83)

∫ ∞

0
dt
κ′3t3e−κ′

2t2

√
1 + t2

=
κ′

2
+

√
π

4
eκ
′2

(1 − 2κ′2) erfc(κ′). (E.84)

The right hand sides of Eqs. (E.83), and (E.84) are monotonically decreasing functions of κ′, or
mκ. Their maxima at the limit of κ → 0 for both are

√
πV/4, i.e., κη <

√
πV/4 for any κ > 0.

Figure E.1 shows numerically calculated |κη|/V together with the upper and lower bounds.
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By using the asymptotic expansion of the complimentary error function erfc(x),

erfc(x) =
e−x2

√
πx

∞∑

n=0

(−1)n (2n − 1)!!
2nx2n , (E.85)

for κ′ ≫ 1, we have
∫ ∞

0
dt

κ′3t3e−κ′
2t2

√
1 + t2 + 1

≃ 1
4κ′
, (E.86)

∫ ∞

0
dt
κ′3t3e−κ′

2t2

√
1 + t2

≃ 1
2κ′
. (E.87)

Therefore, when κ = mκ ≫ 1, κη decreases as (mκ)−1 with increasing mκ. Then, ∆(v) is
approximately expressed as

1 +
v2

8κ′2
≤ ∆(v) ≤ 1 +

v2

2κ′2
. (E.88)

For κ′ ≪ 1, by the Taylor expansion, we have

1
1 − πv2

8

⎛
⎜⎜⎜⎜⎜⎝1 −

π

4
V4κ′2

1 − πv2

8

⎞
⎟⎟⎟⎟⎟⎠ ≤ ∆(v) ≤ 1

1 − πv2

8

⎛
⎜⎜⎜⎜⎜⎝1 −

√
π

2
v2κ′

1 − πv2

8

⎞
⎟⎟⎟⎟⎟⎠ . (E.89)
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Appendix F

Supplemental materials for Chapter 7

F.1 λLD for an n-parameter non-full model

Given a n-parameter model which is not full-rank:

M = {ρθ|θ = (θ1, θ2, · · · , θn) ∈ Θ}, (F.1)

where rank ρθ = r ≥ d = dim H for all θ ∈ Θ. We drive λLD Fisher information matrix. Here
is the index convention.

• α, β, γ, · · · for {1, 2, · · · , d}: All indices
• i, j, k, · · · for {1, 2, · · · , r}: Support of ρ
• a, b, c, · · · for {r + 1, · · · , d}: Kernel of ρ

In the following, we drop θ. A state at θ is decomposed by an orthogonal normalized basis as

ρ =
r∑

i=1

ρi |ei⟩ ⟨ei| . (F.2)

If we use ρα = 0 for the kernel space of ρ, we can also write

ρ =
d∑

α=1

ρα |eα⟩ ⟨eα| . (F.3)

The λLD is defined by a solution to

∂ jρ =
1 + λ

2
ρLj +

1 − λ
2

Ljρ, (F.4)

where
∂ j =

∂

∂θ j
. (F.5)

We expand L in the |eα⟩ basis as

L =
d∑

α,β=1

lα,β |eα⟩ ⟨eβ| . (F.6)
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Here we omit the subscription of the direction of the theta because we fix the direction. The
coefficients lα,β are determined by

⟨eα|∂ρ|eβ⟩ =
[
1 + λ

2
ρα +

1 − λ
2

ρβ

]
lα,β (F.7)

This equation determines lα,β for α, β " {r + 1, · · · , d} only.

lα,β =

⎧⎪⎪⎨
⎪⎪⎩

1+λ
2 ρα +

1−λ
2 ρβ for α, β " {r + 1, · · · , d},

indetermined otherwise.
(F.8)

For convenience, we denote λ±i =
1±λ

2 ρi. Therefore,

λi,a = λ
+
i , (F.9)

λa,i = λ
−
i . (F.10)

The λLD is obtained as
L =

∑′

α,β
lα,β |eα⟩ ⟨eα|∂ρ|eβ⟩ ⟨eβ| , (F.11)

where the prime indicates summing over α, β " {r + 1, · · · , d}. By using the projectors Pi =

|ei⟩ ⟨ei|, we can express

L =
r∑

i=1

(λ+i )
−1Pi∂ρ +

r∑

i=1

(λ−j)
−1∂ρPj +

∑

i, j=1

[
(λi, j)−1 − (λ+i )

−1 − (λ−j)
−1

]
Pi∂ρPj (F.12)

By substituting Eq. (F.2), we obtain an alternative expression.

L =
r∑

i=1

∂ρi

ρi
+

r∑

i=1

(λ+i )
−1 |ei⟩ ⟨∂ei| +

r∑

i=1

(λ−i )
−1 |∂ei⟩ ⟨ei| +

∑

i, j=1

[
(λi, j)−1 − (λ+i )

−1
]
ρi ⟨∂ei|e j⟩ |ei⟩ ⟨e j|

+
∑

i, j=1

[
(λi, j)−1 − (λ−i )

−1
]
ρ j ⟨ei|∂e j⟩ |ei⟩ ⟨e j|

(F.13)

The λLD Fisher information matrix Jλ is calculated by

Jλ = tr(∂ρL′) (F.14)

where L′ denotes the λLD with respect to ∂′. To get the usual expression, we need to replace ∂
and ∂′ by ∂m and ∂n, respectively. Therefore, the (m, n) component of Jλ is expressed as

Jλ = tr(∂ρL′)⇐⇒ [Jλ]mn = tr(∂mρLn). (F.15)
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The final expression for Jλ is

Jλ =
r∑

i=1

(λ+i )
−1 ⟨ei|∂′ρ∂ρ|ei⟩ +

r∑

i=1

(λ−i )
−1 ⟨ei|∂ρ∂′ρ|ei⟩

+
∑

i, j=1

[
(λi, j)−1 − (λ+i )

−1 − (λ−j)
−1

]
⟨ei|∂′ρ|e j⟩ ⟨e j|∂ρ|ei⟩ . (F.16)

With further calculation, we have

Jλ =
r∑

i=1

∂′ρi∂ρi

ρi
+

r∑

i=1

(λ+i )
−1(ρi)2 ⟨∂′ei|∂ei⟩ +

r∑

i=1

(λ−i )
−1(ρi)2 ⟨∂ei|∂′ei⟩

+
∑

i, j=1

[
(λi, j)−1(ρi − ρ j)2 − (λ+i )

−1(ρi)2 − (λ−j)
−1(ρ j)2

]
⟨ei|∂′e j⟩ ⟨e j|∂ei⟩ . (F.17)

Taking the SLD limit (λ = 0) gives λi, j = (ρi + ρ j)/2 and λ±i = ρi. These lead to the following
expression of the SLD Fisher information matrix JS.

JS =

r∑

i=1

∂′ρi∂ρi

ρi
+ 2

r∑

i=1

ρi ⟨∂′ei|∂ei⟩ + 2
r∑

i=1

ρi ⟨∂ei|∂′ei⟩ + 2
∑

i, j=1

[
(ρi − ρ j)2

ρ1 + ρ j
− ρi − ρ j

]
⟨ei|∂′e j⟩ ⟨e j|∂ei⟩ ,

(F.18)

JS =

r∑

i=1

∂′ρi∂ρi

ρi
+ 2

r∑

i=1

ρi ⟨∂′ei|∂ei⟩ + 2
r∑

i=1

ρi ⟨∂ei|∂′ei⟩ − 8
∑

i, j=1

ρiρ j

ρ1 + ρ j
⟨ei|∂′e j⟩ ⟨e j|∂ei⟩ .

(F.19)

F.2 Evaluation of λLD Fisher information matrix Jλ

As given by Eq. (6.48), the reference state we are considering is ρΛ(θ) which is written as

ρΛ(θ) =
1
2

(1 + ξ) |ψ̄Λ↓(θ)⟩ ⟨ψ̄Λ↓(θ)| +
1
2

(1 − ξ) |ψ̄Λ↑(θ)⟩ ⟨ψ̄Λ↑(θ)| . (F.20)

The state vectors |ψ̄Λ↓(θ)⟩ and |ψ̄Λ↑(θ)⟩ are orthogonal. This is two rank model. The ρ1 and ρ2 in
Eq. (F.17) are written as

ρ1 =
1
2

(1 + ξ), ρ2 =
1
2

(1 + ξ). (F.21)

|e1⟩ and |e2⟩ are written as
|e1⟩ = |ψ̄Λ↓(θ)⟩ , |e2⟩ = |ψ̄Λ↑(θ)⟩ . (F.22)
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F.2.1 First term in Jλ,mn

The first term is as follows.
∑

i

(λ+i )
−1(ρi)2 ⟨∂nei|∂mei⟩ =

(ρ1)2

λ+1
⟨∂ne1|∂me1⟩ +

(ρ2)2

λ+2
⟨∂ne2|∂me2⟩

=
2

1 + λ
(ρ1 ⟨∂ne1|∂me1⟩ + ρ2 ⟨∂ne2|∂me2⟩). (F.23)

We use λ±i =
1 ± λ

2
ρi. In the following, we evaluate the terms that appear in the equation above.

Proof of ⟨∂1e1|∂2e1⟩ = 0

The term ⟨∂1e1|∂2e1⟩ = 0 is explicitly written as

⟨∂1e1|∂2e1⟩ =
1
ρ1

∫
d3 p

∫
d3 p′(ip1)

√
(Λp)0

p0 Fθ, ↓(p1, p2)δ(p3) ⟨−−→Λp |−−→Λp′⟩ (F.24)

× (−ip′2)

√
(Λp′)0

p′0
Fθ, ↓(p′1, p′2)δ(p′3) (F.25)

=
1
ρ1

∫
dp1

∫
dp2(p1)(p2)|Fθ, ↓(p1, p2)|2 (F.26)

=
1
ρ1

∫
dp1

∫
dp2(p1)(p2)|ϕ0(p1, p2)|2 cos2 α(|p⃗|)

2
(F.27)

=
1

2ρ1

∫
dp1

∫
dp2(p1)(p2)|ϕ0(p1, p2)|2(1 + cosα(|p⃗|)). (F.28)

From the first line to the second line, we use

⟨−−→Λp |−−→Λp′⟩ =
√

p0

(Λp)0 δ(p⃗ − p⃗′). (F.29)

ϕ0(p1, p2) is a gaussian function of p1 and p2. Therefore, it is a function of | p⃗| =
√

(p1)2 + (p2)2.
We execute the integration in two dimensional polar coordinate.

⟨∂1e1|∂2e1⟩ =
1

2ρ1

∫ ∫
d|p⃗| |ϕ0(|p⃗|)|2| p⃗|3[1 + cosα(| p⃗|)]

∫ 2π

0
dθ sin θ cos θ. (F.30)

The integration with respect to θ vanishes. Therefore, we have

⟨∂1e1|∂2e1⟩ = 0. (F.31)

We can show ⟨∂1e2|∂2e2⟩ = 0 in the same way.
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Calculation of ⟨∂ie1|∂ie1⟩ , (i = 1, 2)

When i = 1, we have

⟨∂1e1|∂1e1⟩ =
1
ρ1

∫
d3 p

∫
d3 p′(ip1)

√
(Λp)0

p0 Fθ, ↓(p1, p2)δ(p3) ⟨−−→Λp |−−→Λp′⟩ (F.32)

× (ip′1)

√
(Λp′)0

p′0
Fθ, ↓(p′1, p′2)δ(p′3) (F.33)

=
1
ρ1

∫ ∞

−∞
dp1

∫ ∞

−∞
dp2(p1)2|Fθ, ↓(p1, p2)|2 (F.34)

=
1
ρ1

∫ ∞

−∞
dp1

∫ ∞

−∞
(p1)2|ϕ0(p1, p2)|2 cos2 α(|p⃗|)

2
(F.35)

=
1

2ρ1

∫ ∞

−∞
dp1

∫ ∞

−∞
(p1)2|ϕ0(p1, p2)|2(1 + cosα(| p⃗|)). (F.36)

We defined ζ by

ζ =

∫ ∞

−∞
dp1

∫ ∞

−∞
(p1)2|ϕ0(p1, p2)|2 cosα(| p⃗|). (F.37)

By using the explicit expression of ϕ0(p1, p2), we have
∫ ∞

−∞
dp1

∫ ∞

−∞
(p1)2|ϕ0(p1, p2)|2 =

∫ ∞

−∞
dp1

∫ ∞

−∞
(p1)2 κ√

π
e−κ

2[(p1)2+(p2)2] =
1

2πκ2 . (F.38)

By substituting Eqs. (F.38, F.37) in Eq. (F.36), we obtain

⟨∂1e1|∂1e1⟩ =
1
ρ1

(
1

2κ2 + ζ). (F.39)

When i = 2, we can calculate in the same way and have

⟨∂2e1|∂2e1⟩ =
1

2ρ2

∫ ∞

0
dp(p1)2|ϕ0(p1, p2)|2[1 − cosα(| p⃗|)]

∫ 2π

0
dθ cos2 θ (F.40)

=
π

2ρ2

∫ ∞

0
dp(p1)2|ϕ0(p1, p2)|2[1 − cosα(| p⃗|)]. (F.41)

Then, we obtain
⟨∂2e1|∂2e1⟩ =

1
ρ2

(
1

2κ2 − ζ) (F.42)

We finally obtain the first term as follows.

∑

i

(λ+i )
−1(ρi)2 ⟨∂nei|∂mei⟩ =

2
1 + λ

(ρ1 ⟨∂ne1|∂me1⟩ + ρ2 ⟨∂ne2|∂me2⟩) =
1

(1 + λ)κ2 . (F.43)
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F.2.2 Second term in Jλ,mn

The second term is as follows.
∑

i

(λ−i )
−1(ρi)2 ⟨∂nei|∂mei⟩ =

(ρ1)2

λ−1
⟨∂ne1|∂me1⟩ +

(ρ2)2

λ−2
⟨∂ne2|∂me2⟩

=
2

1 − λ (ρ1 ⟨∂ne1|∂me1⟩ + ρ2 ⟨∂ne2|∂me2⟩). (F.44)

Therefore, we have
∑

i

(λ−i )
−1(ρi)2 ⟨∂nei|∂mei⟩ =

2
1 − λ (ρ1 ⟨∂ne1|∂me1⟩ + ρ2 ⟨∂ne2|∂me2⟩) =

1
(1 − λ)κ2 . (F.45)

F.2.3 Third term in [Jλ]mn

The third term is as follows.
∑

i, j

[(λi, j)−1(ρi − ρm)2 − λ+i (ρi)2 − λ−i (ρi)2] ⟨ei|∂ne j⟩ ⟨∂me j|ei⟩ . (F.46)

Since ⟨ei|∂nei⟩ = 0 holds, there is no contribution from the terms with i = j. We need to
calculate the case of i = 1, j = 2 and i = 2, j = 1 only.

i = 1, j = 2 :

[
1
λ1,2

(ρ1 − ρ2)2 − 2ρ1

1 + λ
− 2ρ2

1 − λ ] ⟨e1|∂ne2⟩ ⟨∂me2|e1⟩ . (F.47)

By the definition of λi, j, we have λ1,2 =
1+λ

2 ρ1 +
1−λ

2 ρ2. Then, the third term can be written as

[
2(ρ1 − ρ2)2

(1 + λ)ρ1 + (1 − λ)ρ2
− 2ρ1

1 + λ
− 2ρ2

1 − λ ] ⟨e1|∂ne2⟩ ⟨∂me2|e1⟩ (F.48)

= − 8ρ1ρ2

(1 − λ)(1 + λ)[ρ1 + ρ2 + λ(ρ1 − ρ2)]
⟨e1|∂ne2⟩ ⟨∂me2|e1⟩ (F.49)

= − 8ρ1ρ2

(1 − λ2)[1 + λ(ρ1 − ρ2)]
⟨e1|∂ne2⟩ ⟨∂me2|e1⟩ (F.50)

At he last line, we use ρ1 + ρ2 = 1. Furthermore, by the definition of ξ is expressed by

ρ1 =
1
2

(1 + ξ), (F.51)

ρ2 =
1
2

(1 − ξ). (F.52)

Then, we have ρ1 − ρ2 = ξ. The term for i = 1, j = 2 is expressed as

[
2(ρ1 − ρ2)2

(1 + λ)ρ1 + (1 − λ)ρ2
− 2ρ1

1 + λ
− 2ρ2

1 − λ ] ⟨e1|∂ne2⟩ ⟨∂me2|e1⟩ = −
8ρ1ρ2

(1 − λ2)(1 + λξ)
⟨e1|∂ne2⟩ ⟨∂me2|e1⟩

(F.53)
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i = 2, j = 1

The term for i = 2, j = 1 : is

[
1
λ2,1

(ρ2 − ρ1)2 − 2ρ2

1 + λ
− 2ρ1

1 − λ ] ⟨e2|∂ne1⟩ ⟨∂me1|e2⟩ . (F.54)

From λ2,1 =
1+λ

2 ρ2 +
1−λ

2 ρ1, the third term can be written as

[
2(ρ1 − ρ2)2

(1 + λ)ρ2 + (1 − λ)ρ1
− 2ρ2

1 + λ
− 2ρ1

1 − λ ] ⟨e2|∂ne1⟩ ⟨∂me1|e2⟩ (F.55)

= − 8ρ1ρ2

(1 − λ2)(1 − λξ) ⟨e2|∂ne1⟩ ⟨∂me1|e2⟩ . (F.56)

We use ρ1 + ρ2 = 1 and ρ1 − ρ2 = ξ here also.

F.2.4 Evaluation of Jλ, 11

The contribution from the third term to [Jλ]11 is obtained by substituting m, n = 1 in Eqs. (F.2.5, F.56).

− 8ρ1ρ2

(1 − λ2)
(
⟨e1|∂1e2⟩ ⟨∂1e2|e1⟩

1 + λ2ξ2 +
⟨e2|∂1e1⟩ ⟨∂1e1|e2⟩

1 − λ2ξ2 ) = − 16ρ1ρ2

(1 − λ2)(1 − λ2ξ2)
| ⟨e1|∂1e2⟩ |2

(F.57)

We use ⟨e1|∂1e2⟩ = − ⟨∂1e1|e2⟩. We also have

⟨∂1e1|e2⟩ = −
iη

2√ρ1ρ2
, (F.58)

⟨∂2e1|e2⟩ =
η

2√ρ1ρ2
. (F.59)

A detailed explanation about their derivation is at the end of this section. The contribution from
the third term is, then

− 4η2

(1 − λ2)(1 − λ2ξ2)
. (F.60)

By adding the contributions of the first and the second terms, we obtain [Jλ]11 as

[Jλ]11 =
1

(1 + λ)κ2 +
1

(1 − λ)κ2 −
4η2

(1 − λ2)(1 − λ2ξ2)
(F.61)

=
2

(1 − λ2)κ2 −
4η2

(1 − λ2)(1 − λ2ξ2)
(F.62)

=
2
κ2

1 − 2κ2η2 − λ2ξ2

(1 − λ2)(1 − λ2ξ2)
. (F.63)
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Calculation of ⟨∂1e1|e2⟩

⟨∂1e1|e2⟩ =
1√
ρ1ρ2

∫
d3 p

∫
d3 p′(ip1)

√
(Λp)0

p0 Fθ, ↓(p1, p2)δ(p3) ⟨−−→Λp |−−→Λp′⟩ (F.64)

×
√

(Λp′)0

p′0
Fθ, ↑(p′1, p′2)δ(p′3) (F.65)

=
1√
ρ1ρ2

∫ ∞

−∞
dp1

∫ ∞

−∞
dp2(ip1)F∗θ, ↓(p1, p2)Fθ, ↑(p1, p2) (F.66)

=
1√
ρ1ρ2

∫ ∞

−∞
dp1

∫ ∞

−∞
dp2(ip1)(

p1

|p⃗| + i
p2

| p⃗| )|ϕ0(p1, p2)|2 cos
α(| p⃗|)

2
sin

α(| p⃗|)
2

(F.67)

=
1

2√ρ1ρ2

∫ ∞

−∞
dp1

∫ ∞

−∞
dp2 i(p1)2

| p⃗| |ϕ0(p1, p2)|2 sinα(| p⃗|). (F.68)

We define η by

η = −
∫ ∞

−∞
dp1

∫ ∞

−∞
dp2 (p1)2

| p⃗| |ϕ0(p1, p2)|2 sinα(| p⃗|). (F.69)

By using η, we can write

⟨∂1e1|e2⟩ = −
iη

2√ρ1ρ2
. (F.70)

Calculation of ⟨∂2e1|e2⟩

We can calculate ⟨∂2e1|e2⟩ in the same way we use above.

⟨∂2e1|e2⟩ =
1√
ρ1ρ2

∫ ∞

−∞
dp1

∫ ∞

−∞
dp2(ip2)(

p1

|p⃗| + i
p2

| p⃗| )|ϕ0(p1, p2)|2 cos
α(| p⃗|)

2
sin

α(| p⃗|)
2

(F.71)

= − 1
2√ρ1ρ2

∫ ∞

−∞
dp1

∫ ∞

−∞
dp2 (p2)2

|p⃗| |ϕ0(p1, p2)|2 sinα(| p⃗|) (F.72)

=
η

2√ρ1ρ2
. (F.73)

F.2.5 Evaluation of Jλ, 12

Since ⟨∂nei|∂mei⟩ vanishes, there is no contribution from the first and the second term. The
contribution from the third term is a sum of Eqs. (F.2.5, F.56). From Eq. ,

[Jλ]12 = −
8ρ1ρ2

(1 − λ2)(1 + λξ)
⟨e1|∂2e2⟩ ⟨∂1e2|e1⟩ −

8ρ1ρ2

(1 − λ2)(1 − λξ) ⟨e2|∂2e1⟩ ⟨∂1e1|e2⟩ . (F.74)

120



By using,

⟨∂1e1|e2⟩ = −
iη

2√ρ1ρ2
, (F.75)

⟨∂2e1|e2⟩ =
η

2√ρ1ρ2
. (F.76)

we obtain

[Jλ]12 =
2i

(1 − λ2)(1 + λξ)
− 2i

(1 − λ2)(1 − λξ) = −
4iη2λξ

(1 − λ2)(1 − λ2ξ2)
. (F.77)

The λLD information matrix Jλ is written as follows.

Jλ =
2
κ2

1
(1 − λ2)(1 − λ2ξ2)

(
1 − 2κ2η2 − λ2ξ2 −2iκ2η2λξ

2iκ2η2λξ 1 − 2κ2η2 − λ2ξ2

)
. (F.78)

Its inverse Its inverse J −1
λ is given by

J −1
λ =

κ2

2
1 − λ2

(1 − 2κ2η2)2 − λ2ξ2

(
1 − 2κ2η2 − λ2ξ2 2iκ2η2λξ
−2iκ2η2λξ 1 − 2κ2η2 − λ2ξ2

)
. (F.79)
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