
Trusted Execution Environment
with Silicon Level Root-of-Trust

based on RISC-V Computer
System

TRONG-THUC HOANG

Department of Computer and Network Engineering

The University of Electro-Communications

A dissertation submitted for the degree of
Doctor of Engineering

March 24, 2022



This page intentionally left blank.

ii



Trusted Execution Environment
with Silicon Level Root-of-Trust

based on RISC-V Computer
System

APPROVED

Prof. Cong-Kha PHAM, Chairman

Prof. Koichiro ISHIBASHI

Prof. Akashi SATOH

Prof. Kazuo SAKIYAMA

Assoc. Prof. Takeshi SUGAWARA

Data approved by Chairman:

iii



This page intentionally left blank.

iv



Copyright © 2022 Trong-Thuc HOANG
All Rights Reserved.

v



This page intentionally left blank.

vi



I would like to dedicate this dissertation to my entire
family, who encouraged me to pursue higher education.

"We can only see a short distance ahead, but we can see plenty there that needs to be
done."

— Alan Turing

vii



This page intentionally left blank.

viii



Acknowledgements

First of all, I would like to express my deep respect and appreciation to my
advisors, Prof. Cong-Kha PHAM and Prof. Koichiro ISHIBASHI, for their
mentorship throughout the research process. I would also like to express
my sincere appreciation to the committee members, including Prof. Akashi
SATOH, Prof. Kazuo SAKIYAMA, and Assoc. Prof. Takeshi SUGAWARA, for
their critical questions and valuable comments on this dissertation.

Second, the completion of this dissertation is due largely to the support of
my friends in the PHAM laboratory. I would like to thank CKRISTIAN Duran
for his sincere assistance. I also thank Ba-Anh DAO, Anh-Tien LE, Binh Kieu-
Do-NGUYEN Khai-Duy NGUYEN, DANG Tuan Kiet, Marco SARMIENTO, and
Ronaldo SERRANO for their countless hours of brainstorming and helping.
I also thank all of my Vietnamese friends, Japanese friends, as well as other
international friends for keeping my spirits up.

Third, I would like to thank Dr. Kuniyasu SUZAKI and Mr. Akira TSUKAMOTO,
researchers at the National Institute of Advanced Industrial Science and Tech-
nology (AIST), for their guidance and support. I also thank all Cyber-Physical
Security Research Center (CPSEC) members at the AIST for their coopera-
tion.

Fourth, the research was supported by the New Energy and Industrial Tech-
nology Development Organization (NEDO). It was also supported by the
VLSI Design and Education Center (VDEC), the University of Tokyo, colla-
borating with Synopsys, Inc., Cadence Design Systems, Inc., and Mentor
Graphics, Inc.

Fifth, I sincerely thank the University of Electro-Communications and the
Ministry of Education, Culture, Sports, Science, and Technology for provi-
ding me with an excellent opportunity to experience my study and life in
Japan.

Last but not least, I am grateful to my entire family, especially my father,
Hoang Van Manh, my mother, Phan Hoang Yen Phuong, and my little sister,
Hoang Ngoc Thanh Truc, for offering their love and sharing their wisdom
with me throughout my life.

ix



This page intentionally left blank.

x



和文要旨

RISC-Vコンピュータシステムに基づくシリコンレベルの信頼ルートを
有する信頼できる実行環境

ホン　チョン　トゥク

信頼できる実行環境（TEE）は、認証されていないプログラム等の実行
を防ぐための安全な環境を提供することを目的としている。TEEの強度
は、一連のハッシュ、署名、および検証によって作成された信頼の鎖
（CoT）に依存する。CoTの開始点は、Root-of-Trust（RoT）と呼ばれる。
今日、RISC-Vのオープンソースの命令セットアーキテクチャ（ISA）は、
セキュリティの目的でコンピュータシステムを再検討する機会を提供して
いる。RISC-Vを使用することでシリコンレベルまで前述のような安全な
ハードウェアRoTを作成できる。このRoTにおいて、理論的には、ルート
キーをハッキングすることは、チップ製造プロセスに干渉することを意味
する。

本論文の目的は、安全なハードウェアRoTを備えたRISC-VベースのTEEコ
ンピュータシステムを提案する。提案したSoCはLinuxで起動可能であ
り、TEEの構築に必要な複数のハードウェア暗号化アクセラレータが含
まれている。本SoCの目標は、代替ハードウェアを使用してTEEを完全
に起動し、ブートローダーソフトウェアから暗号化機能を保護すること
でである。提案アーキテクチャは、Linux対応プロセッサと32ビットの隠
しMCUを組み合わせたヘテロジニアス・システム・アーキテクチャ（複数
の種類のプロセッサ）である。32ビットMCUはTEE側から分離され、ルー
トキーなどの機密データ、およびZero Stage BootLoader（ZSBL）やキー
生成プログラムなどの機密動作を処理する。分離されたサブシステム内
にRoTが実装されているため、起動後にTEE側からRoTにアクセスすること
はできなくなる。さらに、MCUがブートシーケンスを実行するため、キー
の生成は柔軟なアルゴリズムを使用するため、任意のセキュリティスキー
ムに合わせて更新可能となる。

本論文は、安全性の高いコンピュータシステムを提案することだけでな
く、将来使用するためのフレームワークにも注目する。提案フレームワー
クは使いやすく、長期的に将来の脅威に適応するためのある程度の柔軟性
を有している。 RISC-Vアーキテクチャの柔軟性により、ユーザーはセキュ
リティ機能をオンまたはオフにできるため、コストとセキュリティの懸
念のバランスをとることが可能となる。また、フレームワークをオープン
ソースプロジェクトとして維持することにより、本提案は、今後数年間、
コンピュータセキュリティ開発者にとって強力な開発ツールになると期待
できる。
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Abstract

Trusted Execution Environment (TEE) aims to provide a secure environment
to prevent unauthenticated code execution. Currently, this is the most com-
mon security extension for a secure Operating System (OS). Several major
vendors have developed and released TEEs. The strength of TEE depends
on the Chain-of-Trust (CoT) created by a series of hashes, signatures, and
verifications. The starting point of CoT is called the Root-of-Trust (RoT), and
it is often hard-coded or locally generated before boot. TEE uses multiple
cryptographic functions during boot to authenticate the bootloader and then
validate other sensitive data and applications such as OS-related software.
The certification of this layer is signed by the previous lower layer and veri-
fied by the next upper layer. By this, the generated certificates of all layers are
linked together to create the CoT. As a result, only a trusted application with
a valid authentication can gain the intended privileges after boot. Untrusted
codes and infected codes will lose their valid signatures, making them im-
possible to achieve any special right.

Typical TEEs nowadays are based on closed-source systems tailored for a
specific hardware of the relevant manufacturer. Thus, many innovative ideas
are stuck with limited options; and many of them have to work around the
given limitations. Nowadays, the open-source Instruction Set Architecture
(ISA) of RISC-V has created a chance to revisit the computer system for secu-
rity purposes. RISC-V ISA is developed based on the idea that it needs only
a minimal integer instruction set to operate. And then, many extensions can
be added to the basic set to satisfy any system requirement. The RISC-V
Foundation and the open-source community have developed a new toolset,
some of which uses the Scala language with the Chisel library to generate a
Register Transfer Level (RTL) code. The generated RTL code can be used for
Very Large Scale Integrated (VLSI) implementations. This approach allows
developers to share and reuse each other’s designs. The processors and com-
puter systems can be shared and reconfigured as we wanted, thus signifi-
cantly reducing the research and development time compared to the con-
ventional approach. Furthermore, the open-source community continuously
researches and releases new ISA extensions for many different applications.
With RISC-V, it is possible to create such a secure hardware RoT, even down
to the silicon level. With this RoT, in theory, hacking the root key means
interfering with the chip manufacturing process.

Although the secure boot process is not new, it needs to be constantly re-
viewed and updated to fight newly found attack vectors. TEE is just an
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isolated environment, and it shouldn’t be the RoT or does the secure boot.
Hence, secure boot with hardware RoT in TEE is still an ongoing problem
that needs research and development. In this dissertation, the primary goal
is to present a RISC-V-based architecture that can do the secure boot for TEE
with a flexible boot program while wholly isolated from the TEE processors.
The proposed design supports various cryptographic accelerators necessary
for the secure boot process. The main idea is a heterogeneous design by com-
bining 64-bit or 32-bit Linux-capable processors with a 32-bit hidden Micro-
Controller Unit (MCU). The 32-bit MCU is isolated from the TEE-side, and
it will take care of the sensitive data, like the root key, and sensitive activi-
ties, such as Zero Stage BootLoader (ZSBL) and keys generation program.
With RoT implemented inside the isolated sub-system, the RoT is inaccessi-
ble from the TEE-side after boot by any means. Furthermore, with the MCU
to do the boot sequence, the keys generation is flexible and could be up-
dated to fit any security scheme. Two chips were made for the proposed
implementation, including one 32-bit version and one 64-bit version; both
are ROHM-180nm.

Besides the presented architectures, the secondary goal of this proposal is
the framework that is easy to use and has a certain degree of flexibility to
adapt to future threats in the long term. By using such a framework, security
developers can increase the security level of their systems by continuing to
add state-of-the-art protection methods. And the flexibility of the RISC-V
architecture allows users to turn on or off any security feature, resulting in
balancing between cost and security concerns. Finally, by maintaining the
framework as an open-source project, the framework is expected to be a good
development tool for computer security developers over the years to come.
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Chapter 1

Introduction

1.1 What Is Trusted Execution Environment?

A typical boot process in a computer system usually starts with the Base-
board Management Controller (BMC) or Platform Controller Hub (PCH) on
the motherboard. BMC or PCH prepares the necessary hardware configura-
tions and allows the Central Processing Unit (CPU) to boot. The first thing
that the CPU does is load the boot firmware (often from the flash outside)
like in the Unified Extensible Firmware Interface (UEFI) boot flow [17]. The
boot firmware then prepares the boot sector and loads the bootloader into
the main memory. Initial Operating System (OS) settings are ready by the
bootloader, and then the actual OS image is loaded into the system memory.
Finally, the machine boots into the loaded OS. The whole process is like "a
relay race where one team member passes a baton to another to win the
race" [18], where you trust each member in the team to do their part correctly.
However, trust in the computer world needs more than that. As a result, a
trust mechanism is necessary. A mechanism that you can verify in each step
of the boot sequence that nothing is compromised. Then, a Trusted Execution
Environment (TEE) can be built based on that trust.

TEE models, commonly known as the Trusted Computing Base (TCB), were
proposed and improved from time to time. The most common TEE imple-
mentations are the Intel Software Guard eXtensions (SGX) [1, 19–21] and
its variations (i.e., Haven [22], Graphene [23], and Scone [24]), ARM Trust-
Zone [2, 25] and its modifications (i.e., Komodo [26], OP-TEE [27], and Sanc-
tuary [28]), and AMD Secure Encrypted Virtualization (SEV) [3] with its de-
scendants (i.e., AMD SEV-ES [29] and AMD SEV-SNP [30]). However, they
are closed-source TEEs; thus, we cannot modify their boot flow or the hard-
ware primitives. Recently, with RISC-V emerging, many new RISC-V-based
TEE models were proposed, such as Hex-Five MultiZone [4], Sanctum [5],
TIMBER-V [6], Keystone [7], and CUstomizable and Resilient Enclaves (CURE)
[8]. Nowadays, nearly all smartphones have a TEE-like feature, and multiple
companies, from software to hardware, market their products with built-in
security features. In academics, many major security conferences publish
their works related to TEE every year. Clearly, the demand for TEE is ever-
increasing, especially in the Internet-of-Things (IoT) era.
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The design philosophy of TEE is to isolate trusted codes and untrusted codes
by a divide-and-conquer approach. In most cases, the isolation was done
using privilege separation, thus creating a barrier between programs. Nowa-
days, recent TEE models are gearing up with barrier enforcers implemented
in software and hardware at many architectural levels. The end goal of TEE
is to allow only the authenticated codes to run; unauthenticated code cannot
run on the trusted side or gain any privilege.

The strength of TEE relies on the Chain-of-Trust (CoT), which is a series of
cryptographic functions such as hashing, signing, verification, and encryp-
tion/decryption processes. The CoT is created by authenticating a layer
signed by the previous lower layer (higher privilege) and making the sub-
sequent signature for the next higher layer (lower privilege) to verify. The
foundation of CoT is the very first authentication of the system at reset, and
it is called the Root-of-Trust (RoT). For security reasons, the RoT should be
inaccessible from the Rich Execution Environment (REE) or even the TEE
processors after boot. RoT could be anything from a randomly generated
value, an asymmetric secret key, to a device’s certificate pre-signed by a root
Certificate Authority (CA). For simplicity, in most crypto-systems, the RoT
is often elaborated from a hard-coded Read-Only Memory (ROM) or gene-
rated locally before boot. As a result, the confidentiality of the secret root key
and the integrity of the whole TEE system rely on the secure boot process to
establish the RoT.

1.2 What Is RISC-V?

From the beginning of the 21st century, the Reduced Instruction Set Com-
puter (RISC) architecture was already dominant in the mobile marketplace
because of its low-power and low-cost characteristics [31]. There were RISC-
based CPUs like ARM CPUs in most of the hand-held devices [32], Micro-
processor without Interlocked Pipelined Stages (MIPS) based CPUs in most
of the gaming consoles [33]. And very recently, an open-source commu-
nity about RISC-V Instruction Set Architecture (ISA) was emerged [13, 16].
The development of RISC-V was expanding and turning the silicon industry
more efficiently than ever. Compared to the conventional Integrated Cir-
cuit (IC) development flow, the RISC-V ecosystem is like "one barbarian is at
the gates with a refurbished siege engine" [34]. Up to now, there are plenty
of RISC-V processors that have been presented in both academic and indus-
trial forums [35–39]. Some worth-mention works are the highly customizable
Rocket cores of the Berkeley architecture group [40], the high-performance
32-bit E-core series [41] and 64-bit U-core series [42] of the SiFive Inc., and
the 32-bit RI5CY cores [43] and 64-bit Ariane cores [44] of the PULP-platform
research group.

RISC-V is an open-source ISA, the interface between software and hardware
developers. It was first presented by the Berkeley architecture group in 2014
[45], and now it is maintained by the RISC-V Foundation group [46]. The
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primary goal of the RISC-V Foundation is to provide a completely open ISA
to support the research, development, and education in both academia and
industry areas. The idea of RISC-V is that it needs only the base integer
instruction set to operate. Then, depending on the requirements, more ISA
extensions can be added. This is to avoid the "over-architecting" in micro-
architecture [16]. Currently, the ISA can support 32-bit, 64-bit, and 128-bit
addressing spaces. The most used ISA extensions are the "M" for multipli-
cation and division, the "A" for atomic, the "F" for floating-point, the "D" for
double floating-point, and the "C" for compressed instruction sets. Together,
the default RISC-V’s ISA is the RV64IMAFDC, also called the RV64GC.

The RISC-V ecosystem is rich with many development tools for software and
hardware designers. Among those tools is the novel idea of using Scala lan-
guage with the Chisel library to generate a Register Transfer Level (RTL)
code. The chisel generator first generates an intermediate RTL represen-
tation named Flexible Intermediate Representation for RTL (FIRRTL) [47]
and then converts the FIRRTL to conventional Verilog Hardware Description
Language (HDL). The generated Verilog file can be used for Field-Programmable
Gate Array (FPGA) and Very Large Scale Integrated circuit (VLSI) implemen-
tations [48, 49]. This approach created a new playground for developers to
share and reuse each other designs with virtually no effort [50]. As a result,
the whole computer system can be easily modified to satisfy consumers’ spe-
cific needs. With RISC-V, the development procedure of a computer can be
reduced significantly.

1.3 Motivation and Key Contributions

1.3.1 Motivation

The secure boot process is not a new idea, and the typical secure boot stan-
dard is the UEFI [17] that was being used widely in commercial Personal
Computers (PCs). In UEFI, the processor verifies each stage’s integrity by
checking its cryptographic signature. If any integrity in the flow fails, the
boot process will be abandoned. If the secure boot succeeds, the computer
is expected to be run in a trusted state [51]. However, recently, many attack
vectors have been discovered that can corrupt the secure boot flow or re-
veal the root key [52], thus making the whole TEE system vulnerable. The
TEE is just an isolated environment; it cannot be the RoT. As a general rule
of thumb, a secure boot process with RoT is recommended to be run by
hardware primitives. Many TEE models begin with the assumption that
their trusted firmware was securely loaded into the stack by a hardware-
provided secure boot procedure. In practice, common TEEs use extra hard-
ware or third-party Intellectual Properties (IPs). For instance, Intel SGX relies
on the Intel Active Management Technology (AMT) [53], ARM TrustZone
uses ARM CryptoCell [54], AMD SEV requires Platform Security Processor
(PSP) [55], and for RISC-V, many RoT IPs are presented such as Rambus
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CryptoManager [56] and OpenTitan [57]. To summarize, the secure boot with
RoT in TEE is still an ongoing problem that needs research and development.

On the current development trend in the cryptography world, open-source
is inevitable. The open-source ISA of RISC-V with an open-source TEE is the
match in heaven. With RISC-V architecture, custom hardware can be tailored
for custom TEE, thus creating many potentials for solving long-lasting pro-
blems. As mentioned earlier, the secure boot process with RoT is one of the
TEE issues. The TEE’s remote attestation has to be done based on the RoT,
and the RoT must be established by the secure boot process. However, the
secure boot program itself should not be done by the TEE but by a hardware
module/primitive or another party inaccessible for the TEE processors after
boot. Furthermore, the RoT is also the recommended place for storing and
managing the device’s root key and certificates. According to the standard
of the International Organization for Standardization (ISO) and the Interna-
tional Electrotechnical Commission (IEC) [58], such a hardware platform that
can provide secure boot with RoT must have the following features:

• Can generate cryptographic keys.

• Can wrap and bind keys.

• Can seal and unseal keys.

• Have a True Random Number Generator (TRNG).

• Have an integrity measurement.

• Can do keys attestation.

Now, with RISC-V, we have the chance to revisit the hardware architecture
for a better TEE and bring the RoT down to the lowest possible level, the
silicon level, while maintaining a flexible and adaptable secure boot program.
As a result, in theory, hacking the silicon RoT means interfering with the chip
fabrication process. Moreover, with the developing open-source mindset,
the strength of CoT can be enhanced from time to time with state-of-the-art
protections. To summarize, the main contribution in this dissertation is about
introducing a way to seal the RoT off the TEE processors but still provide the
flexibility for updating the boot sequence.

The secondary object of this dissertation is about developing a TEE Hard-
Ware (TEE-HW) framework. Because cyber-security is a race between attac-
ker and defender, by having an open-source TEE-HW framework, we can
quickly gear up the system for future fights. Moreover, the RISC-V founda-
tion is a solid open-source community that constantly updates and shares
new ideas and designs [50]. With RISC-V, we have the freedom to shape
the processors and the computer architecture as our will. And that is the
most potent weapon for cyber-security developers in the fight against vari-
ous threats.
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1.3.2 Key Contributions

The work of this dissertation can be categorized into three major contribu-
tions as follows:

1. The TEE-HW framework. The goal is not just to develop a high-security
computer system but a framework, an open-source TEE-HW frame-
work to match up with the open-source TEE software framework, named
Keystone [7]. The proposed TEE-HW framework must satisfy these cri-
teria: secure, easy to use, flexible for various security purposes, and
most importantly, easy to update a new protection method. Many archi-
tecture aspects are kept optional and can be quickly reconfigured by
changing parameters in the Makefile system. The source codes of this
TEE-HW framework [59] is kept open to the RISC-V open-source com-
munity for reuse purposes. Such open-source TEE hardware is benefi-
cial for security developers in future improvements.

2. TEE-HW with cryptographic accelerators. Based on the proposed TEE-
HW framework, a custom system was made exclusively for accelera-
ting the TEE. Multiple crypto-cores were introduced, including Ad-
vanced Encryption Standard (AES), Secure Hash Algorithm 3 (SHA-3),
Ed25519, and TRNG. The Ed25519 crypto-core also has a secret write-
only memory that can be read only by other crypto-cores, not by the
TEE processors. This write-only memory will store the keys generated
by the Ed25519 module. The performances of the proposed TEE hard-
ware with crypto-cores were explored with the FPGA and VLSI imple-
mentation. The TEE boot performance was also investigated.

3. TEE-HW with isolated RoT. For the secure boot process with RoT, a he-
terogeneous architecture was proposed in this dissertation. The idea is
to combine 64-bit Linux-capable TEE processors with a 32-bit isolated
Micro-Controller Unit (MCU). The TEE side executes the TEE’s soft-
ware stack as usual, while the hidden MCU takes care of the secure boot
process, keys generation, and keeping safe the root key. At reset, the
isolated MCU boots first, does the first authentication, and generates
the subsequent keys elaborated from the root key pre-stored in ROM.
After that, the TEE processors are woken up by the MCU to follow the
conventional TEE boot flow. The MCU can access all the resources in
the system, but the TEE processors cannot access the peripherals in the
isolated bus of the MCU. By taking the RoT and the secure boot pro-
cess out of the TEE domain, the RoT is safe, and the secure boot process
is flexible, providing the ability to adapt to future threats. The pro-
posed architecture was developed and tested on both FPGA and VLSI
implementations. Two ROHM-180nm chips were made, and the mea-
surements were given.
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1.4 Dissertation Layout

The dissertation is divided into six chapters as follows.

Chapter 1: Introduction

In this chapter, the definition and a brief history of TEE are described. Several
legacy TEE models and recent publications are discussed together with the
trending of development. The ever-increasing need for TEE in the IoT era
is mentioned, and some insights into the recent implementations are given.
The current problem of RoT in the existing TEE models is explained, together
with the potential solutions.

This chapter also introduces the novelty of the open-source RISC-V ISA with
current state-of-the-art developments. On the current open-source trending
in the cryptography world, hardware RISC-V is the match in heaven for the
next step in the evolution of TEE. Therefore, the potential of solving long-
lasting problems in TEEs, old and new alike, can be done by leveraging the
open-source RISC-V architecture.

Finally, this chapter summarizes this dissertation’s motivation and key con-
tributions and presents the dissertation layout.

Chapter 2: Literature Review

In this chapter, all critical or within-five-year publications related to TEE,
RISC-V, or RoT are sorted into one single Venn diagram, presented together
with their one-line description.

Additionally, deep-dive analysis of the most common TEE models, RISC-V-
based or not-RISC-V-based alike, is done for each model. Then, a comparison
table is presented comparing those TEEs regarding their security-related fea-
tures.

Similarly, the same deep-dive analysis is made for each of the most recent
security-driven RISC-V-based computer architectures. And then, a compari-
son table is made based on the investigation.

Chapter 3: Background Research

In this chapter, the goal of the open-source RISC-V is defined, and the key
ideas in the ISA are depicted together with its ecosystem. The novelty of
using Chisel and FIRRTL to generate a VLSI-friendly Verilog code is also ex-
plained. Then, the definition, the typical structure, and the usage of TEE are
mentioned together with its advantages and disadvantages. Additionally,
the implementation of Keystone, a TEE framework, is described in detail.

Two RISC-V computer systems are also investigated in this chapter. They
are the 32-bit MCU named VexRiscv and the 64-bit Linux-capable processor
called Rocket-chip. Both architectures are described, and their implementa-
tions are shown in FPGA and VLSI. Two silicon-proofs were made for the
VexRiscv MCU, one for the ROHM-180nm process and one for the SOTB-
65nm process. For the Rocket-chip computer, one ROHM-180nm chip was
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also made. All three chips’ measurement results were reported in this chap-
ter.

Chapter 4: TEE Hardware Computer Systems

In this chapter, the proposed TEE-HW framework is shown. And based on
the framework, two developments are made. They are the quick boot for TEE
using cryptographic accelerators and the TEE’s secure boot procedure using
isolated RoT.

The architecture of TEE-HW with crypto-cores is also shown in this chapter.
The design and implementation of each crypto-core, including SHA-3, AES,
Ed25519 base-point multiplier, and Ed25519 sign algorithm, are described.
The boot procedure using the aforementioned crypto-cores is also given.

This chapter also depicts the heterogeneous TEE-HW design with 64-bit TEE
processors and an isolated 32-bit MCU. The complete isolation between the
hidden MCU and the TEE domain is explained. By storing the root key in-
side the isolated MCU and having the MCU does the secure boot process, the
RoT and the boot-flow are inaccessible to the TEE processors after boot. Fur-
thermore, by introducing the MCU, the boot flow is flexible and adaptable
for future changes. The detail of the secure boot procedure is also described.

Chapter 5: Performance Analysis

In this chapter, the FPGA and VLSI implementations of the TEE-HW are
given, including TEE-HW with crypto-cores and TEE-HW with isolated RoT.
By alternating the boot-flow with cryptographic accelerators, the boot per-
formance is improved, and its result is shown.

Two ROHM-180nm chips were made for the proposed TEE-HW architecture
(crypto-cores plus isolated MCU), and their implementations are given. The
two chips are 5×5-mm2 and 5×7.5-mm2 for the 32-bit and 64-bit TEE-HW
versions, respectively. The chips’ measurement results are done and shown
in the chapter. Finally, the comparison with recent works is discussed.

Chapter 6: Conclusion and Future Work

This chapter summarizes the achievements and limitations of the disserta-
tion. Several ideas are discussed based on the limits to improve the current
design. And on top of that, potential developments are given to conclude the
dissertation.
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Chapter 2

Literature Review

2.1 Overview

Figure 2.1 show the summary of the related publications in RISC-V, Trusted
Execution Environment (TEE), and Root-of-Trust (RoT). In the figure, the
white eclipses are the references, and the yellow squares are the content of
this dissertation. The numbers in the white eclipses are the references’ num-
bers, and the numbers in the yellow squares are the subsections’ numbers.
The references in Figure 2.1 are either major publications or recent publica-
tions (less than five years).

RISC-V related TEE related

RoT related

[85]

[63-64]

[74]

[9-12]

[2-3]

[19-30]

[62]
[65-66]

[69]

[78]

[68]

[4-8]

[94]

[42-47]

3.3

3.4

4.2

4.3

This work

[50-51]

[61]

[67]

[83]

[92-93]
[86]

[95]

[88]

[90]

[32] [60]

[70-73]

[75-77]

[79-82]
[84]

[87]
[89]

[91]
[96-97]

FIGURE 2.1: Literature review summary.
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• ARM TrustZone (Apr. 2009) [2]: is TEE implementation explicitly de-
signed for ARM processors.

• A. Furtak et al. (2014) [52]: describes many attack vectors that target the
Basic Input/Output System (BIOS) and the conventional secure boot
process in Personal Computers (PCs).

• Haven (Oct. 2014) [22]: introduces the prototype named Haven that can
provide the shielded execution feature for Intel Software Guard eXten-
sions (SGX) to protect the confidentiality and integrity of a program
and its data. It can be used on unmodified legacy applications.

• S. Zhao et al. (Nov. 2014) [60]: provides the RoT for ARM TrustZone
using on-chip Static Random Access Memory (SRAM).

• V. Costan and S. Devadas (Jan. 2016) [19]: explains the structure, me-
chanism, and applications of the Intel SGX. It also discusses about ad-
vantages and disadvantages of the Intel SGX implementation.

• Rocket-chip generator (Apr. 2016) [40]: guides how to use the Rocket-
chip generator to generate the RISC-V rocket core with the desired fea-
tures.

• C. Duran et al. (Apr. 2016) [61]: introduces a 32-bit RISC-V Micro-
Controller Unit (MCU) with 10-bit Successive-Approximation-Register
(SAR) Analog-to-Digital Converters (ADC).

• F. McKeen et al. (Jun. 2016) [62]: presents a method for dynamic me-
mory management inside an Intel SGX’s enclave.

• Sanctum (Aug. 2016) [5]: is a RISC-V-based TEE implementation for
user-space enclaves with some methods for preventing basic Side-Channel
Attacks (SCAs).

• Parallel Ultra-Low-Power (PULP) (Sep. 2016) [63]: is an Ultra-Low-
Power (ULP) processor based on RISC-V architecture that promises
high energy efficiency and flexible embedded applications.

• Scone (Nov. 2016) [24]: describes a secure Linux container mecha-
nism, named Scone, for Intel SGX’s docker to protect container pro-
cesses from outside attacks.

• RI5CY (Feb. 2017) [43]: presents a ULP RISC-V core that can operate
at near-threshold voltage. It also has Digital Signal Processing (DSP)
extensions for Internet-of-Things (IoT) devices.

• C. Duran et al. (Feb. 2017) [64]: presents the chip measurement results
for the 32-bit RISC-V MCU in [61].

• Intel SGX book I & II (Jul. 2017) [20,21]: describes the Intel SGX architec-
ture in detail. The book also compares the similar approach of Sanctum,
a RISC-V-based TEE.
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• Yogesh Swami et al. (Jul. 2017) [65]: reports the findings of enclaves’
security in Intel SGX architecture, including positive and negative results.

• Graphene (Jul. 2017) [23]: presents a port of Graphene to SGX with
some improvements to make the security benefits of SGX more usable.

• Sancus (Aug. 2017) [66]: describes the design of Sancus with Field-
Programmable Gate Array (FPGA) evaluation. The prototype extends
an MSP430 processor with hardware support for memory access con-
trol and cryptographic functionalities.

• Komodo (Oct. 2017) [26]: proposes an alternative approach to attested,
on-demand, user-mode, concurrent isolated execution. The implemen-
tation is a prototype in verified assembly code on ARM TrustZone.

• PULPv2 (Oct. 2017) [67]: is the next evolution of PULP in [63], tar-
geting a wide range of emerging near-sensor processing tasks for IoT
applications.

• D. K. Dennis et al. (Dec. 2017) [38]: shows a development of a fully
synthesizable 32-bit processor based on RISC-V, targeting low-cost em-
bedded devices.

• Identity-Based Broadcasting Encryption (IBBE) SGX (Jun. 2018) [68]:
constructs an encryption scheme for group access control over the cloud
secured by Intel SGX.

• M. Staffa et al. (Aug. 2018) [69]: presents a study of the security treats
over humanoid robots and the first hardware-based solution using TEEs.

• Y. Fan et al. (Aug. 2018) [70]: implements TEEs on mobile devices.

• K. Patsidis et al. (Sep. 2018) [39]: proposes a method that allows 32-bit
RISC-V processors to execute compressed 16-bit instructions.

• Z. Ning et al. (Oct. 2018) [71]: investigates the typical hardware-assisted
TEEs and evaluates the performance of these TEEs to help analyze the
feasibility of deploying them on the IoT edge platforms.

• E. Gür et al. (Nov. 2018) [37]: presents a 32-bit open-source RISC-V pro-
cessor with web-based assembler/disassembler tools. The tools allow
users to generate and download their machine codes over the web.

• A. Munir et al. (Dec. 2018) [36]: proposes a reusable framework for
the end-to-end verification of RISC-V cores against the Instruction Set
Architecture (ISA) specs using the Universal Verification Methodology
(UVM).

• Sanctuary (Feb. 2019) [28]: presents an architecture, named Sanctuary,
that allows unconstrained TEEs in the ARM TrustZone ecosystem, en-
abling the execution of security-sensitive applications within strongly
isolated compartments.
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• TIMBER-V (Feb. 2019) [6]: is a RISC-V-based TEE implementation with
a "Tag" procedure across all layers to isolate one enclave.

• M. A. Mukhtar et al. (Mar. 2019) [72]: analyses popular TEEs, including
Intel SGX and ARM TrustZone, for better protection insights regarding
functionality, implementation, and security.

• L. Guan et al. (May 2019) [73]: shields applications over compromised
operative systems and physical attacks using a lightweight run-time
system based on ARM TrustZone.

• Y. Wang and N. Tan (Jun. 2019) [35]: proposes novel instructions for
energy accumulation of energy metering. The prototype was realized
in a 32-bit RISC-V microprocessor.

• R. Höller et al. (Jun. 2019) [74]: evaluates open-source 32-bit Cen-
tral Processing Unit (CPU) Intellectual Property (IP) cores suitable for
FPGAs and supports the upcoming RISC-V ISA extensions.

• M. Bailleu et al. (Jun. 2019) [75]: offers performance measurement tools
for TEEs, injecting profiling code, and tracing the program execution.

• A. Gollamudi et al. (Jun. 2019) [76]: presents a core calculus for secure
decentralized distributed applications using standard cryptographic me-
chanisms and the TEE platforms.

• Ariane (Jul. 2019) [44]: proposes a 64-bit RISC-V ISA variant called
Ariane with a detailed analysis of power, performance, and applica-
tions efficiency.

• SPEED (Jul. 2019) [77]: proposes a secure and generic deduplication
system in Intel SGX, improving performance by reusing computation
results by identifying redundant computation.

• E. M. Benhani et al. (Aug. 2019) [78]: highlights the security issue of
complex System-on-Chips (SoCs) and presents six efficient attacks on
the ARM TrustZone.

• DER-TEE (Aug. 2019) [79]: presents a smart inverter using a TEE-based
architecture.

• HyperMI (Aug. 2019) [80]: presents Virtual Machine (VM) protection,
featuring security against compromised hypervisors by isolating guests
in a secure execution environment.

• MicroTEE (Aug. 2019) [81]: designs a TEE on a microkernel software
architecture with the necessary services for the application layer.

• R. Ladjel et al. (Aug. 2019) [82]: evaluates the use of TEE-based compu-
ting for personal data in a large number of participants.

• OP-TEE [27]: was proposed in Jun. 2014, now been transferred to
TrustedFirmware.org since Sep. 2019. It is an open-source TEE imple-
mentation designed to companion a non-secure Linux kernel running
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on ARM processors. OP-TEE implements TEE Internal Core Applica-
tion Programming Interface (API) defined in the GlobalPlatform API
specifications.

• ITUS (Mar. & Sep. 2019) [11,12]: attempts to solve the RoT for TEE by a
hardware approach. It uses mainly two hardware modules of the Key
Management Unit (KMU) and Code Authentication Unit (CAU) to do
the keys generation, keys provisioning, and enclaves authentication.

• MI6 (Oct. 2019) [83]: proposes a method to secure RISC-V-based Out-
of-Order processors by modifying the queue structure of the Last Level
Cache (LLC).

• S. Pinto and N. Santos (Nov. 2019) [25]: presents an in-depth study of
ARM TrustZone technology and a comprehensive survey of relevant
works.

• AMD Secure Encrypted Virtualization (SEV) (Nov. 2019) [3]: is a TEE
implementation designed for AMD secure processors aiming for the
cloud computing market.

• AMD SEV Encrypted State (SEV-ES) (Feb. 2017) [29]: adds the encryp-
tion for core register states, thus blinding the hypervisor from seeing
the data used by VMs.

• AMD SEV Secure Nested Paging (SEV-SNP) (Jan. 2020) [30]: introduces
some new hardware-based security enhancements for protecting me-
mory integrity.

• J. V. Bulck et al. (Nov. 2019) [84]: analyzes the vulnerability space
arising in TEEs when interfacing a trusted enclave with untrusted app-
lications and OS, exposing several sanitizations at the level of Applica-
tion Binary Interface (ABI) and API.

• T.-T. Hoang et al. (Apr. 2020) [85]: presents a RISC-V system compatible
with TEEs featuring security algorithm accelerators, including Secure
Hash Algorithm 3 (SHA-3) hash and Ed25519 elliptic curve algorithms.

• Keystone (Apr. 2020) [7]: presents Keystone, the first open-source frame-
work for building customized TEEs.

• BOOMv3 (SonicBOOM) (May 2020) [86]: presents SonicBOOM, the third
generation of the open-source Berkeley Out-of-Order Machine (BOOM)
based on RISC-V architecture.

• D. Cerdeira et al. (May 2020) [87]: presents a security analysis of po-
pular TrustZone-assisted TEE systems (targeting Cortex-A processors)
developed by Qualcomm, Trustonic, Huawei, Nvidia, and Linaro. The
goal is to the main challenges to build them correctly.

• Elasticlave (Jul. 2020) [88]: presents Elasticlave, a new TEE memory
model which allows sharing, aiming to balance security and flexibility
in managing access permissions.
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• RIPTE (Sep. 2020) [89]: proposes a novel and practical scheme, named
RIPTE, for trusted software execution based on lightweight trust, using
the combination of dynamic measurement and control flow integrity
with Physical Unclonable Function (PUF).

• S. Moritz et al. (Oct. 2020) [90]: proposes new security properties
relevant for platforms that enclaves can utilize a dynamic hardware
Trusted Computing Base (TCB).

• J. Jang and B. B. Kang (Oct. 2020) [91]: constructs a TEE defense frame-
work using a partially privileged process that can communicate with
the hypervisor and TrustZone without depending on the kernel.

• VexRiscv [92]: is an open-source 32-bit RISC-V core developed on Spinal-
HDL language.

• T.-T. Hoang et al. (Oct. 2020) [93]: presents chip measurement results
of the 65-nm Silicon-On-Thin-BOX (SOTB) MCU based on the 32-bit
VexRiscv core in [92].

• Hex-Five MultiZone [4]: is a RISC-V-based TEE development that is
small, portable, multi-purpose, and requires only Physical Memory Pro-
tection (PMP) to work. It promises a lightweight and robust security
solution with multiple domains.

• SiFive WorldGuard [10]: is a RISC-V-based computer system with secu-
rity primitives developed for strengthening the isolation in TEEs.

• M. Boubakri et al. (Feb. 2021) [94]: explores the feasibility of imple-
menting a software-only Trusted Platform Module (TPM) on RISC-V
hardware.

• HECTOR-V (Jun. 2021) [9]: is a RISC-V-based SoC system aiming for
TEE purposes. Its goal is to separate the TEE processor from the Rich
Execution Environment (REE) domain.

• K.-D. Nguyen et al. (Aug. 2021) [95]: presents a 32-bit RISC-V MCU
with a COordinate Rotation DIgital Computer (CORDIC) accelerator.

• CUstomizable and Resilient Enclaves (CURE) (Aug. 2021) [8]: is a
RISC-V-based TEE architecture. Its goal is to provide multiple types
of enclaves to fit in various situations, i.e., kernel-space enclaves, user-
space enclaves, and self-contained sub-space enclaves.

• K. Suzaki et al. (Sep. 2021) [96]: proposes a compiler-based perfor-
mance measurement for TEE and REE on Intel SGX, ARM TrustZone,
and RISC-V Keystone.

• SGX-FPGA (Dec. 2021) [97]: presents SGX-FPGA, a trusted hardware
isolation path enabling the first FPGA-based TEE by bridging SGX en-
claves and FPGAs in the heterogeneous CPU-FPGA architecture.
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2.2 TEE Implementations

2.2.1 Intel SGX

Intel Core(s)

Operating System (OS)

MMU

App

Intel SGX

PRM

H/S-mode

U-modeApp App

EPC

Machine code M-mode

FIGURE 2.2: Intel SGX TEE implementation [1] (clear-box:
trusted; gray-box: untrusted).

Intel SGX is a set of extensions used to provide TEE for Intel architecture [1],
and its implementation is given in Figure 2.2. The idea is to create an isolated
virtual address space called enclave to execute a user’s code [19]. The pro-
gram and data of each enclave are isolated from other enclaves and normal
programs, including Operating System (OS) and hypervisor applications,
thus protecting that enclave’s confidentiality and integrity. On top of that, the
conventional software stack in the Intel architecture remains the same; hence
the standard OS kernel and hypervisor are compatible with the SGX [20].

The life cycle of an enclave begins with the creation of an Enclave Page Cache
(EPC) inside the Processor Reserved Memory (PRM), as shown in Figure
2.2. The SGX protects the PRM against non-enclave, Direct Memory Access
(DMA), and peripherals accesses [19]. An EPC has 4-KB and contains only
one enclave’s data and program. During the initiation process, the enclave’s
initial code is loaded from outside the PRM into its corresponding EPC inside
the PRM, and the processor hashes its content. That hash value will become
the enclave’s measurement hash and will be used for attestation later. The en-
clave is always executed in the protected mode with address translation set
up by the OS kernel and hypervisor [19]. A user can do the remote attestation
to make sure that he/she is communicating with a specific enclave running
in trusted hardware. In addition, the remote computation service will refuse
to load the data if the hash does not match the expected value [20].

The drawbacks of Intel SGX are because the enclaves have to run on top of
an untrusted OS and host applications, relying on the potentially malicious
system software stack for its services and resources [21]. For example, the 4-
KB EPC is assigned to an enclave by the untrusted system software, and the
enclave’s initial code is loaded to its EPC from an untrusted memory region
and by an untrusted system service.
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2.2.2 ARM TrustZone

ARM Processor(s)

Operating System (OS)

Trusted Firmware (TF)

MMU

App

ARM TrustZone

Enclave

Monitor

App

M-mode

H/S-mode

U-mode

Cache 
controller GIC TZPC

FIGURE 2.3: ARM TrustZone TEE implementation [2] (clear-
box: trusted; gray-box: untrusted).

TrustZone is a TEE explicitly designed for ARM processors [2, 25], and its
architecture is described in Figure 2.3. ARM TrustZone has many versions
with slight differences depending on which version of the ARM core is being
used (i.e., ARMv7-A, ARMv7-M, ARMv8-A). But the core idea is the same
with the two "worlds" implemented, as shown in Figure 2.3. As seen in the
figure, sensitive applications called "enclaves" are run in the secure world
and based on the monitor, isolated from the normal world based on an OS.
Both worlds are built upon the Trusted Firmware (TF) at Machine-mode (M-
mode). The underlying mechanism is the isolation enforced by the Not-
Secure (NS) bit in all operations, including memory bus and peripheral accesses
[87]. TF is aware of the NS bit and can allow or disallow access across the two
worlds accordingly. The hardware features needed for ARM TrustZone are
many and can be varied depending on the processor’s version. But the note-
worthy mentions are the TrustZone Address Space Controller (TZASC) for
partitioning Advanced eXtensible Interface (AXI) bus’s memory-mapped de-
vices, the TrustZone Memory Adapter (TZMA) for dividing on-chip memo-
ries, the Generic Interrupt Controller (GIC) to handle prioritized interrupts,
and the TrustZone Protection Controller (TZPC) to protect control signals.

The limitation of ARM TrustZone is that it has only two hardware-enforced
partitions. Hence, multiple TEEs system is impossible to be implemented.
Furthermore, because the secure side cannot use the normal world’s services
directly, it must provide and manage its resources. And on top of that, exe-
cuting multiple enclaves requires multiplexing via a dedicated secure-world
OS.
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2.2.3 AMD SEV
AMD Secure Processor(s)

Operating 
System (OS)

SEV Firmware
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AMD SEV
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S-mode

U-mode

Hypervisor

Operating 
System (OS)

App App

VM2VM1

H-mode

FIGURE 2.4: AMD SEV TEE implementation [3] (clear-box:
trusted; gray-box: untrusted).

AMD SEV [3] is designed for AMD secure processors, and its architecture
is shown in Figure 2.4. The target market of the SEV is cloud computing,
where each user often has his/her VMs running on the hardware infrastruc-
ture provided by a cloud administrator via a share hypervisor layer, as de-
picted in Figure 2.4. As a result, AMD proposed their solution to isolating
an entire VM from its untrusted hypervisor and other VMs that may co-
exist on one physical server [3]. The underlying mechanism of SEV uses Ad-
vanced Encryption Standard (AES) and key management modules to assign
a unique key to each VM and then encrypts that VM’s main memory to pre-
vent higher-privileged accesses. This approach protects an entire VM rather
than a specific user-level code. In addition, SEV also provides a remote attes-
tation method for users to verify their VMs’ integrity.

Because SEV is developed based on an untrusted hypervisor layer, it is sub-
jected to software and physical adversaries. To overcome this issue, AMD
introduced the SEV-ES [29] in 2017, and then the SEV-SNP [30] in 2020 as the
next evolution of the original design. The SEV-ES added the encryption for
core register states, thus blinding the hypervisor from seeing the data that is
being used by VMs [29]. Moreover, SEV-ES extends the support for memory
encryption, thus protecting the memory confidentiality [98]. If the memory
confidentiality is protected in SEV-ES, then the SEV-SNP [30] aims for me-
mory integrity by introducing some new hardware-based security enhance-
ments. SEV-SNP states that it could prevent malicious hypervisor-based
attacks such as data replay and memory re-mapping [30]. Furthermore, SEV-
SNP also addressed the recent SCAs by offering some protections related to
interrupting behavior.
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2.2.4 Hex-Five MultiZone
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Drivers
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FIGURE 2.5: Hex-Five MultiZone TEE implementation [4]
(clear-box: trusted; gray-box: untrusted).

MultiZone is a RISC-V-based TEE developed by the Hex-Five, Inc. [4], and its
architecture is given in Figure 2.5. The source codes of MultiZone are avai-
lable on the Github repository [99]. The requirements to implement Multi-
Zone are the PMP feature in hardware and 32/64-bit RISC-V processors with
the User-mode (U-mode) privilege. MultiZone promises a lightweight and
strong security solution with multiple domains. The philosophy in design
is to separate the software stack into zones by the firmware at M-mode, as
shown in the figure. Each domain has complete control over its data and re-
sources but cannot overstep on the other domains. Hex-File MultiZone also
inherits the open-source mindset with its source codes are being open on
Github, and its license is free for evaluation and commercial use [4]. Further-
more, it supports real-time monitoring, secure boot, and remote firmware
updates [4].

The "zone" in Figure 2.5 could be U-mode-only applications or Supervisor-
mode (S-mode) to U-mode applications with a Unix-like OS. In theory, one
zone or a part of one zone could be hacked, but that couldn’t affect the neigh-
boring zones because the barriers are guaranteed by the trusted firmware
below. The underlying mechanism is that each application block will be
written, compiled, and linked separately. Then, the MultiZone will set the
desired Random Access Memory (RAM), Read-Only Memory (ROM), In-
put/Output (I/O), and interrupt isolation for each zone [4]. Finally, the
MultiZone configurator is invoked to combine the zones’ elf/hex files with
the runtime into one single signed firmware image [4].

Although the MultiZone provided strong security over many zones, for prac-
tical implementations, it falls under the category of embedded application or
MCUs rather than rich OS applications own to the fact that the sharing re-
sources between them zones are restricted.
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2.2.5 Sanctum
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FIGURE 2.6: Sanctum TEE implementation [5] (clear-box:
trusted; gray-box: untrusted).

Sanctum is a RISC-V based TEE developed by V. Costan et al. [5], and its
implementation is given in Figure 2.6. The source codes of Sanctum are avai-
lable on the Github repository [100]. As shown in the figure, enclaves are
isolated at U-mode with the assumption of a compromised OS layer under-
neath. This software stack of Sanctum resembles that of the Intel SGX, but
with RISC-V processors instead of Intel cores [21]. In Sanctum, the integrity
of an enclave is ensured by a prior verification process using local or remote
attestation [5]. The isolation in Sanctum is enforced by the customized Page
Table Walker (PTW) in the Memory Management Unit (MMU). The changes
in PTW can deny access to one enclave’s memory from the OS or other en-
claves. Furthermore, it could prevent the addresses translation from virtual
space to physical space if the current execution context does not have the
right to access. As seen in Figure 2.6, a Security Monitor (SM) is deployed at
M-mode to increase the security level, especially for the purpose of preven-
ting SCAs. The SM is verified from the beginning by a secure boot process.

To combat with SCAs, Sanctum utilized two mechanisms of L2 partitioning
and L1 flushing (including the Translation Lookaside Buffer, the TLB). How-
ever, because its cache partitioning method is based on the memory page co-
loring scheme, it is quite impractical since we have to rearrange the complete
OS memory layout according to their colors at run time. Furthermore, due to
the struggle against SCAs, Sanctum cannot provide a direct secure periphe-
ral connection to its enclaves because it would need a privileged driver code
to run under an untrusted environment, thus introducing a potential secu-
rity threat. This limits the Sanctum’s range of applications. To summarize,
similar to Intel SGX, Sanctum has to rely on the untrusted OS for managing
resources (like memory) and providing services (e.g., interrupt and I/Os);
hence some adversaries and attack vectors could be realized in the future
with the compromised OS.
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2.2.6 TIMBER-V
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FIGURE 2.7: TIMBER-V TEE implementation [6] (clear-box:
trusted; gray-box: untrusted).

TIMBER-V is a RISC-V-based TEE design by S. Weiser et al. [6], and its soft-
ware stack is given in Figure 2.7. The source codes of TIMBER-V are avai-
lable on the Github repository [101]. The idea of TIMBER-V is to utilize a
"Tag" procedure across all layers, as shown in the figure, for the isolation of
one enclave’s operation from other enclaves and the usual OS domain. The
underlying mechanism is the memory tagging process done by the Memory
Protection Unit (MPU) and the tag engine in hardware [6]. The memory tag-
ging is used for assigning memory regions, and the tag engine enforces the
isolation by checking every memory access rights by its tags during the cur-
rent execution program. Additionally, each DMA-capable peripheral must
include a tag engine inside to defend against DMA-based peripheral attacks.
At the S-mode layer, a trusted TagRoot is introduced, as seen in Figure 2.7, for
setting up the U-mode enclaves and providing several services such as cross-
domain communication, sealing, and attestation. TagRoot is also responsible
for assigning tags and sub-process enclaves separation.

Compared to similar approaches of Sanctum and Intel SGX, the TIMBER-V
allows more fine-grained settings for its enclaves and sub-process enclaves.
However, it still suffers from some SCAs due to the untrusted OS. For exam-
ple, TIMBER-V does not have a protection mechanism against cache-based
and interrupt-based SCAs because the untrusted OS does the interrupts handling,
and the cache states are still shared in the system. In addition, TIMBER-
V can not provide a secure Enclave-to-peripheral communication because
introducing peripheral drivers into the TagRoot would increase the overall
attack surface. Finally, TIMBER-V needs custom instructions with 2-bit tags
for every 32-bit memory, which would increase the area overhead and de-
crease the performance.
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2.2.7 Keystone
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FIGURE 2.8: Keystone TEE implementation [7] (clear-box:
trusted; gray-box: untrusted).

Keystone is a RISC-V-based TEE developed by D. Lee et al. [7], and its archi-
tecture is described in Figure 2.8. The source codes of Keystone are available
on the Github repository [102]. The goal of Keystone is not to present one
TEE implementation but to propose a TEE framework that is open-sourced,
portable, and flexible with a modular design approach [7]. According to
Figure 2.8, Keystone’s enclaves comprise not only the user code but also the
runtime at S-mode as well. Multiple enclaves with the untrusted OS share
the same SM at the M-mode layer. In the figure, the Eyrie runtime at S-mode
provides the OS-equivalent services such as memory management and inter-
rupts handling, and the SM at M-mode enforces the isolation by using the
PMP feature of RISC-V [13]. SM uses PMP to assign memory regions and
define the memory access rights for each active enclave and the OS. Similar
to Sanctum and MultiZone, the M-mode SM is verified by a prior authenti-
cation during the secure boot procedure. Because Keystone’s enclaves have
a complete software stack from U-mode to M-mode, they are not scheduled
like OS programs and do not rely on the OS for critical functions. As a result,
Keystone can defense against strong software adversary and controlled SCA
that exploit the sharing states across domains, like interrupt handlers and
table paging.

For preventing SCAs, Keystone supports a list of features that can be in-
cluded as plugins. Currently, the supported plugins are memory isolation,
memory encryption, enclave encryption, enclave self-paging, enclave’s me-
mory dynamic resizing, edge call and syscall services, and cache partitio-
ning [7]. The L2 cache partitioning technique used in Keystone is a way-
based method, which can be an under-utilization implementation in prac-
tice. Therefore, the communication between an enclave and an untrusted
application might harm the system’s performance. Finally, although Key-
stone allows peripheral drivers to be included in the Eyrie runtime, thus
making an Enclave-to-peripheral connection, it is not a two-way binding pro-
cess, allowing DMA-capable peripherals attacks.
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2.2.8 CURE

RISC-V Processor(s)

Operating 
System (OS)

Firmware

Cache 
Partitioning (SP3)Bus Access Control (SP2)

App

CURE

Enclave

M-mode

S-mode

U-mode

Runtime

App

Enclave

Enclave (SM)

Enclave
Runtime

Enclave Execution (SP1)

FIGURE 2.9: CURE TEE implementation [8] (clear-box: trusted;
gray-box: untrusted).

CURE is a RISC-V-based TEE architecture introduced by R. Bahmani et al. [8],
and its implementation is shown in Figure 2.9. CURE presented a strong
isolation solution for its enclaves across multiple layers and use cases. Its
goal is to provide multiple types of enclaves to fit in various situations [8],
i.e., kernel-space enclaves (S-mode only), user-space enclaves (U-mode only),
and self-contained sub-space enclaves (S-to-U-mode), as seen in the figure.
Although CURE shows an interesting structure and implementation of TEE,
its source codes are not available in public.

The underlying mechanism of the CURE is based on the new hardware secu-
rity primitives developed at three different privileged levels of computer
architecture. As depicted in Figure 2.9, they are enclave execution (SP1)
added in core’s register files, bus access control (SP2) added in the system
bus’s arbitrator, and cache partitioning (SP3) added in the shared cache of
L2. Newly developed hardware primitives can be configured to fit different
security requirements, and they were proven to be small sizes with a reason-
able performance overhead [8]. With three proposed SPs, CURE can assign
system resources from caches to peripherals exclusively for a single enclave.

The SM manages all enclaves in CURE at M-mode, as shown in Figure 2.9.
After being called by the host application, the life-cycle of an enclave begins
with the OS loading its binary and configuration file, then does a context
switch to the SM. The SM then verifies the enclave code by checking its sig-
nature and certificate. If the enclave’s signature is valid, the SM continues to
configure hardware primitives according to the configuration file, including
exclusively physical memory regions, caches, and peripherals. At this step,
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the enclave’s authentication and encryption keys are also created by the SM
for attestation purposes. SM also handles all interruptions in and out of the
enclaves at run time, thus providing supervisor-level services. In contrast,
enclaves can still use services provided by the untrusted OS as long as they
do not require direct sensitive data access. Furthermore, the enclave can use
its encryption key, generated by the SM at the enclave setup time, to protect
its sensitive data and perform communication over the untrusted OS layer.

To combat with SCAs, CURE disables the hyper-threading during an enclave
execution to prevent leaks via shared resources between threads. All caches,
including L1, TLB, and Branch Target Buffer (BTB), are flushed by the SM to
prevent leakage across execution programs at every setup and teardown of
an enclave or an enclave’s context switch. Furthermore, the shared cache of
L2 is protected due to the way-based cache partitioning method that allows
cache lines assignment exclusively. For the limitations, because user-space
enclaves don’t have a trusted runtime, they can not securely execute device
drivers to bind with peripherals. For the kernel-space enclaves, the trusted
runtime needs to be added, which increases the binary size and memory con-
sumption. Furthermore, to set up a runtime enclave, the selected cores need
to be freed first, then detached from the OS, and booted to the desired run-
time; this would introduce performance overhead for the system. Finally,
although CURE guarantees the secure enclave-to-peripheral connection that
can defend DMA-based peripheral attacks, it assumes that the underlying
hardware is trusted and bug-free. Therefore, the SCAs that exploit hardware
flaws such as fault injection and physical attacks are not considered.

2.2.9 Comparison

To summarize, TEEs nowadays have various designs and purposes. For ex-
ample, some TEEs are based on open-source RISC-V (MultiZone [4], Sanc-
tum [5], TIMBER-V [6], Keystone [7], CURE [8]), and some TEEs are for con-
ventional closed-source processors (Intel SGX [1], ARM TrustZone [2], AMD
SEV [3]). The purposes of TEE are also different, from aiming for embedded
market and IoT (ARM TrustZone [2], Hex-Five MultiZone [4]) to providing a
cloud computing service (AMD SEV [3]), from wanting to preserve the tradi-
tional OS software stack (Intel SGX [1], Sanctum [5]) to multi-type enclaves
for multi-purposes (CURE [8]). Different goals make different developing
mindsets. Therefore, a fair and complete comparison would be impossible.
The comparison in Table 2.1 considers security-related and flexible features
of the commonly used TEEs. The comparison keys are:

• Open-source. The source codes are available for modification.

• Enclave type. Type(s) of enclaves that the TEE supported.

• Software adversary. Can protect against a software attacker that can
control host applications, OS services, network communications, un-
protected memory regions, and replay messages.
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• Physical adversary. Can protect against a physical attacker that can
intercept, modify, and replay messages in and out of the chip.

• SCA resilience. The ability to prevent a particular type of SCA, inclu-
ding cache-based attacks, controlled-channel attacks, and DMA-based
peripheral attacks.

• Secure enclave-to-peripheral. Could bind a peripheral to an enclave to
make a direct secure connection.

• Small trusted firmware. Require a small firmware to make a trusted
base; millions Line-Of-Codes (LOCs) are large, thousands LOCs are
medium, and less than a thousand LOC is small.

• Hardware modification. The TEE implementation needs hardware mo-
difications to operate. The best is no modifications, the medium is se-
veral modules included, and the worst is intensive modifications, in-
cluding micro-architecture.

• Resource management. The enclaves can manage their assigned re-
sources.

• Wide-range applications. The proposed TEE can be applied for many
purposes.

• High expressiveness. The TEE allows forking, syscalls, multi/hyper-
threading, shared memory, and so on.

• Low porting effort. The development effort for adapting/porting the
proposed TEE structure to another design/hardware.

In Table 2.1, the speculative execution attacks and timing-based SCAs are
deemed out of scope. The Denial-of-Service (DoS) attacks are not considered
because the compromised OS can always starve enclaves or shut down the
system entirely. The attacks that exploit hardware flaws such as memory-bit
flipping, dynamic clock/power management, and physical SCAs like power
analysis are also out of scope.
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TABLE 2.1: TEE implementations comparison regarding the
security-related features;  , G#, and # rank the performance

from best/supported to worst/not-supported, respectively.
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Open-source # #  # #   # # # # G#    #
Enclave User-space     # # # # # # # #   #  

type Kernel-space # # # #         # #   

Adversary Software         G#        
Physical     #   # G#    #    

SCA Cache-based # # # # # G# G# G# # # G#   #   

resilience Ctrl-channel # # # # #  # # # # #   #  G#
DMA-based # # # #     # # #  #  #  

Secure enclave-to-peripheral # # # # G# G# G# G# # # #  # # #  
Small trusted firmware  # # G# # G# # #    G# G#  G# G#
Hardware modification #    #    # # #  # #  #
Resource management # G# G# #  G#  G#    # G#    

Wide-range applications # G# G# G#        # G# G#   
High expressiveness #     G#      # G#  G# G#
Low porting efforts #   G# #       G#  G#  #

2.3 Security-driven RISC-V Computer Systems

2.3.1 CURE

USENIX Association 30th USENIX Security Symposium    1079

FIGURE 2.10: CURE hardware security primitives at core regis-
ter files (SP1), system bus (SP2), and shared cache (SP3) [8].
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1082    30th USENIX Security Symposium USENIX Association

FIGURE 2.11: Detail CURE hardware implementation based on
Rocket cores [8].

CURE [8] proposes a strong enclaves isolation for TEE based on new hard-
ware security primitives using the RISC-V architecture. In CURE, we can
have many types of enclaves coexisted in the same system, i.e., kernel-space
enclaves, user-space enclaves, and sub-space enclaves. To achieve that, three
main hardware modifications, named SP1, SP2, and SP3, are added. As
shown in Figure 2.10, the SP1 is registers added in the core for enclave exe-
cution, the SP2 is in the system bus’s arbitrator for controlling bus’ accesses,
and the SP3 is related to the partitioning in the shared cache. With three pro-
posed SPs, CURE hardware can strengthen the isolation of TEE and can assist
in the fight with SCAs. A prototype was realized based on Rocket cores, and
Figure 2.11 describes its implementation.
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In Figure 2.10, SP1 is used to store enclave IDs, thus indicating which enclave
is currently executed by which core. The ID values are set during enclave
setup/teardown and enclave’s context switch. Inside the Rocket core, the
enclave IDs are also considered during the address translation process in the
PTW. Therefore, even if a compromised enclave tries to modify its page table,
the PTW transactions will be blocked by the system bus’ access control due
to ID mismatch. The conventional TileLink bus is extended by a 4-bit ID
signal to carry the IDs throughout the system. Only the A and C channels are
modified because they are the transactions from CPU/DMA to the memory;
the other channels remain the same.

In Figure 2.11, SP2 is the added components in the peripheral and memory
arbiters. They are used for bus access control. Whenever a memory access
request happens, the arbiters will check the access rights based on the en-
clave’s ID signal that came together with the transaction. If there is a viola-
tion, the transaction will be redirected to an unused, forbidding the transac-
tion to continue. In CURE, a DMA device can be assigned exclusively to a
single enclave. Therefore, to protect an enclave from DMA-based peripheral
attacks, a register is added in front of every DMA port, and a DMA device
can access the main memory but not other peripherals. The added register
in DMA ports defines which memory regions the DMA can access. The re-
gister will be updated accordingly whenever a DMA device is assigned to an
enclave. For the enclave-to-peripheral binding, since no party can access the
memory regions without permission, no encryption or authentication was
done on the communication between the enclave and the peripheral.

For mitigating SCAs, two main methods were used in CURE. They are the L1
flushing at every enclave’s context switch and L2 cache partitioning. The L2
cache partitioning has two options of strict partitioning across all enclaves
or randomization-based scheme; both options are way-based partitioning.
Each cache is allocated exclusively to an enclave, and it will be flushed at the
enclave’s context switch. In Figure 2.11, the added components of SP3 in the
shared cache enforce cache access rights based on the enclave’s ID signal.

About the RoT, the CURE doesn’t do the RoT but assumes that the secure
boot process was done on reset. And the first bootloader stored in ROM
would verify the firmware (including the SM) and load the firmware to the
designated RAM.
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2.3.2 HECTOR-V

HECTOR-V [9] is a RISC-V-based SoC tailoring for the isolation effect of the
existing TEEs, and its architecture is given in Figure 2.12. Unlike CURE,
HECTOR-V is not proposing a new TEE model; it enhances the security
strength for the conventional TEEs at the architectural level. The HECTOR-
V design approach comes from two main ideas, the heterogeneous multicore
architecture and the security-hardened RISC-V Secure CoProcessor (RVSCP).

The RVSCP (the ï symbol in Figure 2.12) is designed exclusively for TEE
with many SCA resilient features, and the heterogeneous design is for sepa-
rating the TEE processor from the application processors (the ÷ symbol in
Figure 2.12). As seen in the figure, the two processors of TEE and REE are
coupled tightly together with many hardware primitives, enforcing strong
isolation between secure and non-secure domains.

The threat model of HECTOR-V considers a strong software adversary that
directly exploits architectural weaknesses, and a strong physical adversary
that can corrupt the peripherals and memory communication. It also con-
siders that a malicious enclave is trying to attack the system. Therefore, a
trusted I/O path mechanism is the central element of the HECTOR-V [9].
The trusted I/O paths were done by the identifier-based strategy and exe-
cuted by the communication fabric (the AXI4 buses of 1 , 2 , 3 , and C in
Figure 2.12), thus making fine-grain protection between cores, peripherals,
and DMA devices. To carry the IDs, the AXI4 bus protocol was extended by
a 16-bit user signal with 1-bit core ID, 4-bit process ID, and 10-bit peripheral
ID. Based on the IDs, every transaction is checked by the SM module (the �
symbol in Figure 2.12), and any illegitimate access will be turned down. The
core ID is permanently fixed in hardware, and the process and peripheral IDs
are assigned at run time. Since the core IDs are hard-coded directly into the
bus interface, no attacker can change those IDs.

The key difference of HECTOR-V from the CURE is that a hardware module
does the SM, and the concept of SM ownership is introduced, which can be
dynamically transferred between participants, thus providing a variety of
uses. Only one SM owner was allowed at a time, and only the SM owner
could define the access rights of resources. When the SM grants a peripheral,
the corresponding participant (OS or enclave) will do the peripheral claiming
process, and then it should do the peripheral releasing process afterward.
Furthermore, to prevent the abuse of enclave-to-peripheral binding (such as
in DoS attacks), HECTOR-V also allows the peripheral access withdrawal
procedure to be initialized by other parties, as long as they also have valid
IDs. When peripheral access withdrawal is issued and approved by the SM
owner, the SM starts a timer and notifies the peripheral’s owner accordingly,

via the dedicated interrupt line (the � symbol in Figure 2.12). After recei-
ving the notification, the peripheral’s owner should start the cleanup func-
tion to clear secrets. When the timeout is reached, the SM will force release
the peripheral by removing the ID field in the firewall.
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For the RVSCP design, two main ideas were deployed. They are the control-
flow integrity unit with secure I/O to prevent control-flow hijack attacks,
and the hardware scheduling (the / symbol in Figure 2.12) that allows TEE
processor to multi-tasking even with bare-metal codes. The hardware sche-
duling module is also responsible for securing the enclave’s context switch.
For SCA resilience, due to the clean separation of TEE and REE processors, all
cache-based and micro-architecture-based SCAs are prevented because there
are no sensitive components (i.e., caches, branch predictors, and execution
pipelines) are shared between the two domains. However, the attack surface
still exists in the system. For example, a malicious SM owner could influence
the availability of the system by permanently withdrawing peripherals, thus
starving the enclaves [9].

In HECTOR-V, the secure boot process is achieved by only allowing the vir-
tual core of VC0 to access the secure storage element and executes codes

from the secure code storage (the ¤ and � symbols in Figure 2.12, res-
pectively). The access rights of these two elements are permanently hard-
coded and exclusively owned by the VC0. The other virtual processors of
VC1, V2, and VC3 can only fetch the codes from the claimable Block RAM
(BRAM), the � symbol in Figure 2.12. At reset, the reset unit (the Ê
symbol in Figure 2.12) configures the SM owner to be VC0 and starts the
VC0 while keeping the REE processors halted. Then, the VC0 executes the

Zero Stage BootLoader (ZSBL) in the secure code storage � , thus making
the first authentication of the system; this is the RoT of HECTOR-V. Sub-
sequently, the code in ZSBL configures the MPU (the  symbol in Figure
2.12) for external memory access rights, like the Secure Digital card (SD-card)
or Double Data Rate (DDR) memory. VC0 compares the hash value of the
Berkeley BootLoader (BBL) with the expected one in secure storage element
¤ . If the BBL is successfully verified, it will be loaded to the main memory,

and the VC0 will release the SD-card driver together with claimed DDR me-
mory regions. Finally, the VC0 transfers the SM owner privilege over the
REE processors and triggers the reset unit Ê to start the REE. Compared
to CURE, HECTOR-V has a clear secure boot procedure, while in CURE, the
RoT is assumed by reset. Furthermore, HECTOR-V guarantees that the sec-

rets stored in secure storages ( ¤ and � ) are still protected after boot.
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2.3.3 SiFive WorldGuard

WorldGuard [10] was developed by SiFive for strengthening TEE isolation,
and its hardware architecture is shown in Figure 2.13. WorldGuard resem-
bles CURE and HECTOR-V in many ways because it relies too on ID im-
plementation across the entire system for strong isolation at many levels. In
WorldGuard, each core has an assigned world ID, and each process on the
core has a process ID. Similar to CURE and HECTOR-V, these IDs are propa-
gated throughout the system, including cores, caches, buses, memories, peri-
pherals, and DMA devices. The difference is that WorldGuard leverages the
PMP and Physical Memory Attributes (PMA) supported in the RISC-V ISA,
while CURE and HECTOR-V are not. In HECTOR-V, an exclusive processor
is reserved only for TEE, wholly separated from the application processors,
while in WorldGuard, TEE and REE share the same processor complex.

About the secure boot process, WorldGuard uses a similar approach with
HECTOR-V that stores the first bootloader and root keys in ROM at the time
manufactured. The bootloader then verifies and loads the SM into RAM for
further processing. The difference is, in WorldGuard, the bootloader’s source
code is open for examination. Furthermore, because WorldGuard doesn’t
have an exclusive processor for the boot process, it also doesn’t have secure
storages exclusively for TEE that cannot be accessed by an application pro-
cessor (REE processor) after boot.
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2.3.4 ITUS

Memory Protection Unit (MPU) that was integrated into RISC-
V SoC. The proposed framework provides integrity and con-
fidentiality of the external memory (DRAM). Keystone [10]
initiated an open-source project for building trusted execution
environments (TEE) with secure hardware enclaves, based on
the RISC-V architecture. Sanctum [11] introduced software
based secure boot and remote attestation process. However,
their work focus on software implementation of secure boot
that have several drawbacks compared to hardware imple-
mentation, as explained in section V. This work presents a
lightweight hardware based secure boot architecture for RISC-
V SoC, and describes Key Management Unit that uses PUF.

A. Secure Boot

The first boot protection mechanism was proposed by
Arbaugh et al. in [12]. They describe a way to verify the
integrity of a system by constructing a chain of integrity checks
of every stage of the boot process. Every stage in the boot
process has to verify the integrity of the next stage.

Secure boot is described in the Unified Extensible
Firmware Interface (UEFI) specification since version 2.2 [13].
UEFI secure boot verifies the integrity of each stage of the
boot process by computing a hash and comparing the result
with a cryptographic signature. A key database of trustworthy
public keys needs to be accessible during boot time so that the
signature can be verified. In secure boot, if any integrity check
fails, the boot will be aborted. If the boot process succeeds,
the system is expected to be running in a trusted state. This
definition of secure boot is widely accepted in the security
community ([14] and references therein).

Additional terms and variants of secure boot that describe
the integrity checks process, such as - Trusted Boot, verified
boot, authenticated boot, certified boot, or measured boot - are
also found in commercial products and some research articles,
all with different connotations. For example, Intel processors
support secure boot in two modes - measured and verified
modes. For both modes microcode on the processor is the root
of trust for the boot sequence [15]. In the measured mode a
Trusted Platform Module (TPM) is responsible for storing and
attesting to the measurements, while in verified mode each
component is signed by the manufacturer and these signatures
are verified prior to loading the component. Another variant
of secure boot mechanism is where the root of trust is built on
immutable hardware that is integrated inside a dedicated secure
processor. For instance, Hardware Validated Boot (HVB) is an
AMD-specific form of secure boot that roots the trust to Read
Only Memory (ROM) [16]. The ROM validates the secure boot
key, which will later be used to validate the larger processor
firmware that is fetched from the system flash.

B. Digital Signature Authentication

Digital signature based authentication is a well-known
technique arising from public-key cryptography. It is used in
most web browsers (for SSL) and email packages. All public-
key cryptographic systems have their security based on certain
mathematical problems that are difficult to solve. For example,
RSA [17], has its security based on the difficulty of factoring
integers. Similarly, Elliptic Curve Cryptography (ECC) [18]
has its security based on the elliptic curve discrete logarithm
problem (ECDLP). The most popular signature scheme which

uses elliptic curves is called the Elliptic Curve Digital Signa-
ture Algorithm (ECDSA), the most popular encryption scheme
is called the Elliptic Curve Integrated Encryption Scheme
(ECIES) and the most popular key agreement method is called
Elliptic Curve Diffie-Hellman (ECDH) [19].

NISTs standard for Digital Signatures [20] recommends us-
ing a prime field, GF (p) , or a binary extension field GF (2m)
for Elliptic Curves. Binary Extension Fields have the advantage
that field additions can be performed by XOR operations,
therefore no carry is involved. This leads to implementations
that require lesser area and have better performance. While
Standards for Efficient Cryptography Group (SECG) [21] has
defined the Koblitz curve secp256k1 that is used by online
cryptocurrency Bitcoin [22]. NIST curves are more widely
used and has received more scrutiny than other SECG curves.

C. Physical Unclonable Function (PUF)

Physical Unclonable Functions extract volatile secret keys
from semiconductor manufacturing variation that only exist
when the chip is powered on. The first documented use of
PUF generated keys in a secure processor setting was in
the AEGIS processor [23]. The PUF was used to generate a
symmetric key shared with the client through a cryptographic
protocol. Recently, PUFs are used as symmetric key generators
in commercial products such as Xilinx Ultrascale Zynq FPGAs
[24] and Intel/Altera [25] FPGAs. For Public Key Algorithms
(PKA), PUF can be used to generate a random seed for
asymmetric (public/private) key generator inside of a secure
processor, such as [26].

III. OVERVIEW OF SECURE RISC-V SOC
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Fig. 2. Architecture of our secure SoC. Main security units are highlighted:
(1) Key Management Unit, (2) Code Authentication Unit, (3) Secure Debug,
(4) Trusted Execution Environment and (5) Memory Protection Unit.

FIGURE 2.14: ITUS architecture [11, 12].

ITUS is a RISC-V-based SoC aiming for the secure boot process with RoT in
TEE. The new hardware primitives were first introduced by V. B. Y. Kumar
et al. in [11], and then the complete secure boot procedure was realized by
J. H.-Yajya et al. in [12]. Figure 2.14 shows the ITUS architecture [11, 12].
ITUS is not proposing a new TEE model like CURE or focusing on isolating
environments and SCA resilience like HECTOR-V and WorldGuard. ITUS
attempts to solve the RoT problem in TEEs by a pure hardware approach. As
seen in Figure 2.14, the developed hardware modules are the KMU (num-
ber 1 ) for keys generation and keys distribution, CAU (number 2 ) for the
authentication process, secure debug module (number 3 ) for some SCA pro-
tections over the debug channel, and MPU (number 5 ) for enforcing isola-
tion and providing off-chip communication encryption. All the 1 , 2 , 3 ,
and 5 are for providing a secure boot flow completely out of touch of the
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TEE processors in number 4 . In the secure boot process, the CAU is used
for verifying the Chain-of-Trust (CoT) integrity based on the Elliptic Curve
Digital Signature Algorithm (ECDSA) and SHA3 accelerators. The keys are
generated in KMU using PUF and True Random Number Generator (TRNG)
based on the One-Time Programmable (OTP) memory seed. In MPU, the
AES Galois/Counter Mode (AES-GCM) is used to guarantee the confiden-
tiality of the external memory. The secure memory-range registers are added
at the MPU’s bus interface for the authentication process. Furthermore, a
simplified Bonsai Merkle Tree (BMT) is used in MPU as a countermeasure
against memory replay attacks. At boot, the boot sequencer, a Finite State
Machine (FSM), first activates the KMU to retrieve the root key, then passes
it to the CAU to generate the subsequent asymmetric keys. Finally, if the
BBL authentication is corrected, the boot sequencer wakes up the TEE cores.
In summary, ITUS provides a TCB for TEEs with many hardware features
for secure boot, encryption and authentication of the off-chip memory, key
management, and cryptographic accelerators [12].

By using all hardware modules for boot and keys provisioning, the root keys
are inaccessible to the eyes of the TEE processors after boot, thus achieving
the set goal. However, there are two major disadvantages to this approach.
The first one is due to the fixed hardware solution, the boot procedure is
not flexible and unadaptable compared to other approaches, especially the
HECTOR-V architecture. The second disadvantage is that because of the
complete hardware implementation, all the cryptographic functions used in
the boot process will need to be realized in hardware, thus increasing the
resources significantly if the complexity of those cryptographic functions is
high.

2.3.5 Comparison

Up to now, the major publications that has a security-driven TEE-related
RISC-V-based computer system are the CURE [8], HECTOR-V [9], SiFive
WorldGuard [10], and ITUS [11,12]. Although their designs have some ideas
that resemble each other, their implementations and set goals were quite
different. For instance, the main goal of the CURE [8] is to propose a new
TEE model with multi-type enclaves to fit multi-purposes while maintaining
strong isolation enforced by hardware modifications at many levels through-
out the entire system. On the other hand, the goal of HECTOR-V [9] is to
make a clear separation between secure and non-secure domains by using a
security-harden co-processor designed exclusively for TEE. WorldGuard [10]
was being developed nearly at the same time as the HECTOR-V, and its goal
was nearly the same. The differences are, WorldGuard didn’t have a he-
terogeneous architecture, and it relied on the PMP and PMA features sup-
ported by the RISC-V ISA for their implementations. For the ITUS [11, 12],
the achievement was implementing a secure boot process executed purely by
hardware, removing TEE processors completely from the boot scheme. Table
2.2 shows the comparison between the implementations as mentioned earlier
regarding their security features and flexibilities. The comparison keys are:
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• Open-source. The source codes are available for modification.

• Secure boot. Has a clear secure boot process with RoT.

• Flexible boot process. The boot process is flexible and can be updated.

• TEE and secure boot isolation. The secure boot process is done by the
TEE processor or by another party?

• Exclusive TEE processor. TEE is executed by an exclusive processor or
sharing processors with the REE?

• Exclusive secure storage. The proposed system has a safe place to store
the root key(s) and the first bootloader. The storage could be ROM or
otherwise, as long as it is inaccessible for the application processors
after boot.

• Secure I/O paths. The proposed architecture could bind a peripheral to
an isolated environment and make a direct secure connection.

• Cryptographic accelerators. Hardware accelerators for cryptographic
functions are provided in the system.

• SCA resilience. The ability to prevent some SCAs.

• Hardware cost. The amount of resources that the proposed architecture
needs, compared in the overhead ratio. Low is around 5-10%, medium
is around 20%-25%, and high is around 50%.

• High expressiveness. The proposed architecture allows multi/hyper-
threading, flexible isolation enforcement, memory encryption, cache
partitioning, and so on.

• Low porting effort. The development effort for adapting/porting the
proposed design.

35



Chapter 2. Literature Review

TABLE 2.2: Security-driven RISC-V computer systems compa-
rison regarding the security and flexibility features;  , G#, and
# rank the performance from best to worst, respectively.

CURE HECTOR-V WorldGuard ITUS
[8] [9] [10] [11, 12]

Open-source # # G# #
Secure boot G#  G#  

Flexible boot process    #
TEE & secure boot iso. # # #  

Exclusive TEE processor G#  G# #
Exclusive secure storage #  #  

Secure I/O paths   G# #
Crypto. accel. # # G#  
SCA resilience   G# #
Hardware cost  G#  #

High expressiveness G#  G# #
Low porting efforts # # G#  
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Background Research

3.1 RISC-V Architecture

3.1.1 Overview

RISC-V is an open-source Instruction Set Architecture (ISA) with the goal to
support research and education, also aiming for a free and open standard
for industry implementations [13, 16]. RISC-V was initially developed by
the Berkeley architecture group in 2014 [45]. Now it is maintained by the
RISC-V Foundation, and the latest released versions can be found at their
website [46]. The key features of the RISC-V ISA are:

• Completely open for both academic and industry.

• Suitable for direct native hardware implementation.

• Avoids "over-architecting."

• Separated into a small base integer ISA with optional extensions.

• Support IEEE-754 floating-point standard [103].

• Support extensive extensions with specialized variants.

• 32-bit/64-bit address spaces have variants for custom applications.

• Support highly-parallel multicore/manycore.

• Optional variable-length instructions.

• Fully virtualizable to ease hypervisor development.

• Simplifies experiments with new privileged architecture designs.

With the benefits of open-source ISA, many cores and System-on-Chips (SoCs)
were released under the free license. Currently, on the foundation web-
site [50], there are over a hundred RISC-V cores and a couple of dozen RISC-V
SoCs to be chosen.

The key innovation of RISC-V is that it needs only the base integer instruction
set to operate. Then many extensions can be added depending on needs.
According to the specifications [16], the base integer ISAs and extension ISAs
are listed in Table 3.1.
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TABLE 3.1: List of base and extension ISAs [16].

RV32I 32-bit base integer
RV32E reduced version of RV32I, designed for embedded systems
RV64I 64-bit base integer

RV128I 128-bit base integer
M multiplication and division extension
A atomic instructions extension
F single-precision floating-point extension
D double-precision floating-point extension
Q quad-precision floating-point extension
L decimal floating-point extension
C compressed instructions extension
B bit manipulation instructions extension
J dynamically translated languages extension
T transactional memory extension
P packed-SIMD instructions extension
V vector operations extension

Zam misaligned atomics extension
Ztso total store ordering extension

Besides the keywords listed in Table 3.1, the "G" keyword (shorted for Generic)
is frequently used to represent the combination of "IMAFD." For example,
RV32GC means RV32IMAFDC.

The base integer and extension ISAs in Table 3.1 are called the unprivileged
ISAs. The privileged instructions sets are also standardized in [13]. Three
privilege levels are currently used as shown in Table 3.2.

TABLE 3.2: RISC-V privilege levels [13].

Level Encoding Name Abbreviation
0 00 User/Application U
1 01 Supervisor S
2 10 Reserved
3 11 Machine M

Privilege levels are used to provide protection between different software
stack components. The machine-level has the highest privileges and is the
only mandatory privilege level for a RISC-V hardware platform. Code run in
Machine-mode (M-mode) is usually inherently trusted, as it has low-level
access to the machine implementation. M-mode can be used to manage
secure execution environments on RISC-V. User-mode (U-mode) and Supervisor-
mode (S-mode) are intended for conventional application and operating sys-
tem usage, respectively. Each privilege level has a core set of privileged ISA
extensions with optional extensions and variants. For example, M-mode sup-
ports an optional standard extension for Physical Memory Protection (PMP).
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Besides the M, S, and U modes, there is also the Debug-mode (D-mode) that
basically can be counted as a privilege because it has more access than even
the M-mode. Implementations might provide anywhere from 1 to 3 privilege
modes trading off reduced isolation for lower implementation cost, as shown
in Table 3.3.

TABLE 3.3: Supported combinations of privilege modes [13].

No. of levels Supported modes Intended usage
1 M Simple embedded systems
2 M, U Secure embedded systems
3 M, S, U Unix-like systems

Figure 3.1 shows some of the possible software stacks supported by the RISC-
V architecture. The left-hand side shows a simple system that supports only a
single application running on an Application Execution Environment (AEE).
The Application Binary Interface (ABI) includes the supported U-mode plus
a set of ABI calls to interact with the AEE. The ABI hides the AEE from the
application to allow greater flexibility in implementing the AEE.

The middle configuration shows a conventional Operating System (OS) that
can support multiple applications. Each application communicates over an
ABI with the OS, which provides the AEE. Just as applications interface with
an AEE via an ABI, RISC-V operating systems interface with a Supervisor
Execution Environment (SEE) via a Supervisor Binary Interface (SBI), which
comprises U-mode and S-mode.

Finally, the rightmost configuration shows a virtual machine monitor confi-
guration where a single hypervisor supports multiple OSs. Each OS commu-
nicates via an SBI with the hypervisor, which provides the SEE. The hypervi-
sor communicates with the Hypervisor Execution Environment (HEE) using
a Hypervisor Binary Interface (HBI) to isolate the hypervisor from details of
the hardware platform. Hardware implementations of the RISC-V ISA will
generally require additional features beyond the privileged ISA to support
the various execution environments (AEE, SEE, or HEE).2 Volume II: RISC-V Privileged Architectures V20211203
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Figure 1.1: Different implementation stacks supporting various forms of privileged execution.

The middle configuration shows a conventional operating system (OS) that can support multipro-
grammed execution of multiple applications. Each application communicates over an ABI with
the OS, which provides the AEE. Just as applications interface with an AEE via an ABI, RISC-V
operating systems interface with a supervisor execution environment (SEE) via a supervisor binary
interface (SBI). An SBI comprises the user-level and supervisor-level ISA together with a set of
SBI function calls. Using a single SBI across all SEE implementations allows a single OS binary
image to run on any SEE. The SEE can be a simple boot loader and BIOS-style IO system in a
low-end hardware platform, or a hypervisor-provided virtual machine in a high-end server, or a
thin translation layer over a host operating system in an architecture simulation environment.

Most supervisor-level ISA definitions do not separate the SBI from the execution environment
and/or the hardware platform, complicating virtualization and bring-up of new hardware plat-
forms.

The rightmost configuration shows a virtual machine monitor configuration where multiple multi-
programmed OSs are supported by a single hypervisor. Each OS communicates via an SBI with
the hypervisor, which provides the SEE. The hypervisor communicates with the hypervisor execu-
tion environment (HEE) using a hypervisor binary interface (HBI), to isolate the hypervisor from
details of the hardware platform.

The ABI, SBI, and HBI are still a work-in-progress, but we are now prioritizing support for
Type-2 hypervisors where the SBI is provided recursively by an S-mode OS.

Hardware implementations of the RISC-V ISA will generally require additional features beyond the
privileged ISA to support the various execution environments (AEE, SEE, or HEE).

1.2 Privilege Levels

At any time, a RISC-V hardware thread (hart) is running at some privilege level encoded as a mode
in one or more CSRs (control and status registers). Three RISC-V privilege levels are currently
defined as shown in Table 1.1.

Privilege levels are used to provide protection between different components of the software stack,
and attempts to perform operations not permitted by the current privilege mode will cause an

FIGURE 3.1: Different implementation stacks supporting vari-
ous forms of privileged execution [13].
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3.1.2 Ecosystem

Applications
Debian Busybox OpenEmbeddedGentoo

Clang/LLVM GCC

newlib glibc

Proxy kernel Linux kernel

Rocket BOOM Spike QEMU Verilator Angel

Distribution

Compiler

System library

OS kernel

Implementation

Hardware Simulation / Emulation

FIGURE 3.2: RISC-V software stack.

Figure 3.2 describes the software stack for the RISC-V ecosystem. Most of the
above components are built and provided free by the open-source commu-
nity. It will be an excellent motivation for scientists and start-up companies
to participate in research in the field of computer architecture.

RISC-V GCC is a C compiler program for RISC-V architecture. The toolchain
is open-source at [104]. It supports many ISA configurations with diffe-
rent ABIs. For example, the architecture could be RV32I, RV32E, RV64I, and
RV128I with the option for all standard extensions. When compiled, a user
must specify the toolchain configuration. RISC-V GCC is mandatory for crea-
ting a system library and Linux kernel. Currently, the toolchain supports
GCC version 11.1 (commit 5964b5c). To use an older GCC version, just check
out the corresponding commit:

• GCC 7.2: commit 36e932c

• GCC 7.3: commit 87fb575

• GCC 8.1: commit 3c148a7

• GCC 8.2: commit be9abee

• GCC 8.3: commit bdf3ad8

• GCC 9.1: commit 1df2a6b

• GCC 9.2: commit 3e6d81b

• GCC 10.1: commit 602fad9

System libraries are special functions or programs using which application
programs or system utilities access Kernel’s features. These libraries imple-
ment most of the functionalities of the OS do not require kernel module’s
code access rights. The system libraries are essential components in building
a full image of the Linux OS. The most used libraries are Glibc and Newlib:
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• Glibc: system library for the Linux kernel. The GNU C Library project
provides the core libraries for the GNU system and GNU/Linux sys-
tems, and many other Linux systems. Github repository of RISC-V
Glibc can be found at [105].

• Newlib: system library for the proxy kernel. Newlib is a C standard
library implementation intended for use on embedded systems. It is
a conglomeration of several library parts under free software licenses,
making them easily usable on embedded products. Github repository
of RISC-V Newlib can be found at [106].
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FIGURE 3.3: RISC-V debug architecture.

Figure 3.3 shows the RISC-V debug architecture. The most common tool
used for debugging is the Open On-Chip Debugger (OpenOCD). OpenOCD
is open-source software that interfaces with a hardware debugger’s Joint
Test Action Group (JTAG) port. It provides debugging and in-system pro-
gramming for embedded target devices. It also provides the ability to access
NAND/NOR flash memory devices attached to the processor on the target
system. RISC-V OpenOCD source codes are open at [107].

Besides the OpenOCD, GDB is also an irreplaceable part of the debug archi-
tecture. GDB allows you to see what is going on ‘inside’ another program
while it executes – or what another program was doing at the moment it
crashed. Four crucial tasks that GDB allows developers to do: start your pro-
gram, add break-points (either soft or hard) to your program, examine what
has happened, and change things in your program. RISC-V GDB is included
in the toolchain [104].
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For the simulation/emulation tools, the followings are currently the most
common ones:

• Spike. Spike is an interpreting simulator that provides an instruction-
by-instruction trace accurate simulation of a RISC-V processor. Spike is
the "golden reference" simulator for the RISC-V ISA, and its behavior
is the reference for hardware and software. The focus of an interpreter
is typically behavioral accuracy for verification. The input of the spike
simulation can be RISC-V Linux image or bare-metal machine code.
Spike program communicates with host machine via command line.
The binary load into spike memory via command line or proxy kernel.
The output of the simulation is a file consist value of register and me-
mory. Spike allows debugging programs over GDB. Spike program is
published on a Github repository [108].

• QEMU. Quick EMUlator (QEMU) is a fast binary translator and offers
Linux U-Mode simulation and full system emulation. Given that it is
the fastest RISC-V simulator up to now, QEMU is the most frequently
used tool for tasks that would be too costly to run on simulated hard-
ware—for instance, testing GCC, Binutils, and Glibc library. Further-
more, QEMU is fast enough to simulate a Linux environment contai-
ning a build environment for self-hosted builds. The input of QEMU
is a RISC-V Linux binary image. The image passes to QEMU via the
command line parameter. The simulation output is shown in the com-
mand line or QEMU simulation interface. Source codes of QEMU can
be found at [109].

• Verilator. Verilator is a cycle-accurate software simulation based on
Register Transfer Level (RTL) implementations. Hence, Verilator can
provide the exact cycle-by-cycle behavior of one particular RISC-V im-
plementation. Upon the simulated hardware, the software can be simu-
lated with the input of a binary file. The output can be a file containing
register values or a waveform. Necessary parameters can be passed to
the simulated program over the command line. Verilator Github repo-
sitory is at [110].

• Angel. Angel is a Javascript RISC-V ISA simulator often used to run
RISC-V Linux with busybox. The primary goal of the Angel is to create
an interactive Linux session with minimal work. Angel does not re-
quire the RISC-V toolchain to be installed. Sources of Angel are open
at [111].

Table 3.4 shows a brief comparison between RISC-V simulations tools.

TABLE 3.4: Comparison of RISC-V simulation tools.

Verilator Spike QEMU Angel
Simulation Cycle- Trace- Functional Functionallevel accurate accurate

Speed (inst./s) 10k ∼ 100k 10mil. ∼ 100mil. 100mil. ∼ 1bil. ∼13.5mil.
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3.1.3 Chisel and FIRRTL

Chisel is a hardware construction language embedded in the high-level pro-
gramming language of Scala. In other words, Scala is the language, and
Chisel is the library. Chisel was first developed at UC Berkeley to support ad-
vanced hardware design and circuit generation. The latest iteration of Chisel
is Chisel3, which uses Flexible Intermediate Representation for RTL (FIR-
RTL) as an intermediate hardware representation language [47, 112]. Figure
3.4 shows the workflow of the Chisel program, which can create C++ code to
simulate, Verilog code to demo in Field-Programmable Gate Array (FPGA)
board or even synthesis in Application Specific Integrated Circuit (ASIC) lay-
out.

Chisel 
library

Scala

C/C++ 
compiler

FPGA 
tools

ASIC 
tools

C/C++ 
code

FPGA 
Verilog

ASIC 
Verilog

C/C++ 
simulation

FPGA 
boards

GDS 
layout

FIGURE 3.4: Typical Chisel workflow.

FIRRTL is an intermediate representation for digital circuits designed as a
platform for writing circuit-level transformations. A FIRRTL compiler is con-
structed by chaining together transformations such as simplification, verifi-
cation, transmittance, and emittance of the input circuit. Furthermore, the
FIRRTL compiler can support custom user-defined circuit transformations.
Therefore, either in simulation, FPGA, or VLSI, as long as the primitive cir-
cuits are defined, FIRRTL-based Chisel can generate the final RTL sources.

3.2 Trusted Execution Environment
3.2.1 Overview

Typically, security issues cannot be solved with remote computing systems.
For example, users cannot control the physical components running on their
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computers. Data can be dumped, and malicious programs can be run on
your computer from another computer in the system or over the internet.
The efforts of hardware manufacturers to overcome these issues are to get
a trusted mechanism. Thus, the idea of a Trusted Execution Environment
(TEE) is presented. Traditionally, TEEs provide the following three guaran-
tees:

• Integrity. The code and data cannot be tampered with (e.g., by running
arbitrary code within a partition).

• Confidentiality. The attacker cannot learn the runtime content of the
application (e.g., secret keys and code control flow).

• Attestation. The integrity proof is provided to a remote party that the
environment has not been tampered with and is safe.

The idea of TEE is to provide isolation between applications, thus creating a
barrier between programs. The barrier is often done by a privilege separa-
tion approach and enforced by hardware primitives such as memory isola-
tion. To isolate low-privilege codes (user’s applications) from high-privilege
codes (OS’s services) or vice versa, the earlier version of TEEs simply en-
crypts the want-to-be-protected codes and has some form of authentication
between involving parties. Modern TEEs nowadays have much more com-
plex than that for the trusting mechanism. However, the main idea stays the
same. A typical setup for an isolated program in TEE, called enclave, will
need a True Random Number Generator (TRNG) for keys generation and se-
veral cryptographic functions for creating the crypto-keys, hashing, signing,
verification, and even cipher encryption/decryption. To protect an enclave
completely, modern TEEs often have a Trusted Firmware (TF) at M-mode for
exclusive services, i.e., not relying on the OS’s services. Common TF’s ser-
vices are the dedicated memory allocation, flushing caches at every enclave’s
context switch, and message encryption in and out of an enclave. Further-
more, TF also plays the role of Trusted Computing Base (TCB) for setting up
the trusted domain and ensuring enclaves’ barriers. Because of the vital role
of TF, checking TF integrity must be done by a secure boot process, and the
TF authentication is often called the Root-of-Trust (RoT) in a TEE system.
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Keystone platformprovider purchasesmanufactured hard-
ware; operates the hardware; makes it available for use to
its customers; configures the SM.
Keystone programmer develops Keystone software com-
ponents including SM, RT, and eapps; we refer to the respec-
tive programmers who develop these specific components.
Keystone user chooses a Keystone configuration of RT and
an eapp. They instantiate an enclave which can execute on
hardware provisioned by the Keystone platform provider.
Eapp user interacts with the eapp executing in an enclave
on the TEE instantiated using Keystone.
In real-world deployments, a single entity can perform mul-
tiple roles. For example, consider Acme Corp. hosts their
website on an Apache webserver executing on Bar Corp.
manufactured hardware in a Keystone-based enclave hosted
on Cloud Corp. cloud service. In this scenario, Bar will be the
Hardware manufacturer; Cloud will be a Keystone platform
provider and can be an RT programmer and SM programmer;
Apache developers will be eapp programmer; Acme Corp.
will be Keystone user, and; the person who uses the website
will be the eapp user.

3 Keystone Overview
We designed and built Keystone on RISC-V. RISC-V is an
open ISA with multiple open-source core implementations
[19, 29]. It currently supports up to four privilege modes: U-
mode (user) for user-space processes, S-mode (supervisor) for
the kernel, H-mode (hypervisor) for the hypervisor, and M-
mode (machine) which directly accesses physical resources
(e.g., interrupts, memory, devices). At the time of writing,
H-mode (hypervisor) is not included in the standard specifi-
cation. Keystone will also be able to support hypervisor-level
isolation when H-mode becomes available.

3.1 Design Principles
We design customizable TEEs with maximum degrees of
freedom and minimum effort using the following principles.
Leverage programmable layer and isolation primitives
below the untrusted code.We design a reference monitor
style security monitor (SM) to enforce TEE guarantees on
the platform using four properties of M-mode: (a) it is pro-
grammable by platform providers, (b) it meets our needs for a
minimal highest privilege mode, (c) it controls hardware dele-
gation of the interrupts and exceptions in the system, and (d)
M-mode’s control of RISC-V’s Physical Memory Protection
(PMP) standard [17] enables isolation of memory-mapped
control features at runtime.
Decouple the resourcemanagement and security checks.
The SM enforces security policies with minimal code at the
highest privilege. It has few non-security responsibilities.
This keeps the TCB low and allows it to present clean ab-
stractions. Our S-mode runtime (RT) and U-mode enclave
application (eapp) both reside in enclave address space and

AttestationProvisioning

DeploymentDevelopment

Remote Verifier

Untrusted Machine

Eapp 
Sources

Host 
Sources

Keystone Framework 
(User)

RT Bin.
Enclave
Configs

Eapp Bin.

Untrusted
Host Bin.

Keystone SM
Trusted Platform

Untrusted
OSR

T

R
T

R
T

E
ap

p

E
ap

p

E
ap

p

H
os

t
U

se
r P

ro
c.

U
se

r P
ro

c.

Enclave Hash
(Eapp+RT)

Keystone Libraries

Keystone Framework 
(Platform Provider)

Platform
Configs

SM Bin.

RT Sources
(seL4, Eyrie, …)

SM Sources

Keystone Tools

Platform Sources
(e.g., Cache Isolation)

Modules

Platform 
PubKey

SM Hash

Platform 
Spec.

Platform 
PubKey
Platform 

Spec.

C
ha

lle
ng

e

R
es

po
ns

e

Ve
rif

y

❶
❷

❸

❹ ❺

❻
❼

❽

Figure 2. Keystone End-to-end Overview. ❶ Platform provider
configures the SM. ❷ Keystone compiles and generates the SM boot
image. ❸ Platform provider deploys the SM. ❹ Developer writes
an eapp, configures the enclave. ❺ Keystone builds the binaries,
computes measurements. ❻ Untrusted host binary is deployed to
the machine. ❼ Host deploys the RT, the eapp, and initiates the
enclave creation. ❽ Remote verifier can attest based on known
platform specifications, keys, and SM/enclave measurements.

are isolated from the untrusted OS or other user applications.
The RT manages the lifecycle of the user code executing
in the enclave, manages memory, services syscalls, etc. For
communication with the SM, the RT uses a limited set of API
functions via the RISC-V supervisor binary interface (SBI)
to exit or pause the enclave (Table 1) as well as request SM
operations on behalf of the eapp (e.g., attestation). Each en-
clave instance may choose its own RT which is never shared
with any other enclaves.
Design modular layers. Keystone uses modularity (SM,
RT, eapp) to support a variety of workloads. It frees Key-
stone platform providers and Keystone programmers from
retrofitting their requirements and legacy applications into
an existing TEE design. Each layer is independent, provides
a security-aware abstraction to the layers above it, enforces
guarantees which can be easily checked by the lower layers,
and is compatible with existing notions of privilege.
Allow fine-grained TCB configuration. Keystone can in-
stantiate TEEs with the minimal TCB for given specific use-
cases. The enclave programmer can further optimize the TCB
via RT choice and eapp libraries using existing user/kernel
privilege separation. For example, if the eapp does not need
libc support or dynamic memory management, Keystone
will not include them in the enclave.

3.2 Keystone Enclave Workflow
Figure 2 details the steps from Keystone provisioning to eapp
deployment. The platform provider instantiates a SM with a
proper hardware specification and security extenstions that
bring additional isolation guarantees such as cache parti-
tioning. Independently, the enclave developers use Keystone

FIGURE 3.5: Keystone TEE implementation [7].EuroSys ’20, April 27–30, 2020, Heraklion, Greece D. Lee et al.
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Figure 3.How Keystone uses RISC-V PMP for the flexible, dynamic
memory isolation. pmpaddr and pmpcfg control and status registers
(CSRs) are used to specify PMP entries. The SM uses a few PMP
entries to guard its own memory (SM) and enclave memories (E1,
E2). Upon enclave entry, the SM will reconfigure the PMP such that
the enclave can only access its own memory (E1) and the untrusted
buffer (U1).

Background: RISC-V Physical Memory Protection. Key-
stone uses physical memory protection (PMP), a feature pro-
vided by RISC-V. PMP restricts the physical memory access
of S-mode and U-mode to certain regions defined via PMP
entries (See Figure 3). Each PMP entry controls the U-mode
and S-mode permissions to a customizable region of physi-
cal memory.1 The PMP address registers encode the address
of a contiguous physical region, configuration bits specify
the r-w-x permissions for U/S-mode, and two addressing
mode bits. PMP has three addressing modes to support var-
ious sizes of regions (arbitrary regions and power-of-two
aligned regions). PMP entries are statically prioritized with
the lower-numbered PMP entries taking priority over the
higher-numbered entries. If U- or S-mode attempts to access
a physical address and it does not match any PMP address
range, the hardware does not grant any access permissions.
Enforcing Memory Isolation via the SM. PMP makes Key-
stone memory isolation enforcement flexible in three ways:
(a) multiple discontiguous enclave memory regions can coex-
ist instead of reserving one large memory region shared by
all enclaves, (b) PMP entries can cover regions from 4 bytes to
all of DRAM allowing for arbitrarily sized enclaves, (c) PMP
entries can be reconfigured during execution to dynamically
create new regions or release a region to the OS.

During the SM boot, Keystone configures the first PMP en-
try (highest priority) to cover its own memory region (code,
stack, data such as enclave metadata and keys), disallowing
access to it from U-mode and S-mode. It then configures the
last PMP entry (lowest priority) to cover all memory and
with all permissions enabled to allow the OS default access
to memory not otherwise covered by a PMP entry.
When a host application requests the OS to create an

enclave, the OS finds an appropriate contiguous physical

1Currently processors have up to 16 M-mode configurable PMP entries.

region2 and then calls into the SM. After validating the re-
quest, the SM protects the enclave memory by adding a PMP
entry with all permissions disabled. Since the enclave’s PMP
entry has a higher priority than the OS PMP entry (the last in
Figure 3), the OS and other user processes cannot access the
enclave region. A valid request requires that enclave regions
not overlap with each other or with the SM region.
During control-transfer to an enclave, the SM (for the

current core only): (a) enables PMP permission bits of the
relevant enclave memory region; and (b) removes all OS PMP
entry permissions to protect all other memory from the en-
clave. This allows the enclave to access its own memory and
no other regions. At a CPU context-switch to non-enclave,
the SM disables all permissions for the enclave region and
re-enables the OS PMP entry to allow default access from the
OS. Enclave PMP entries are freed on enclave destruction.
PMP Enforcement Across Cores. Each core has its own
complete set of PMP entries. During enclave creation, PMP
changes must be propagated to all the cores via inter-proce-
ssor interrupts (IPIs). The SM executing on each of the cores
handles these IPIs by removing the access of other cores to
the enclave. During the enclave execution, changes to the
PMP entries (e.g., context switches between the enclave and
the host) are local to the core executing it and need not be
propagated to the other cores. PMP synchronization IPIs are
only sent during enclave creation and destruction.
PMP Management. Each allocated enclave (executing or
not) requires one PMP entry per isolated memory region
it uses. We re-use the OS PMP entry during enclave execu-
tion for allowing access to shared memory. Additional PMP
regions are available to enclaves via SM interfaces and are
used for cases like self-paging as described in Section 5.1.

Naively, Keystone supports N − 2 simultaneously created
enclaves, where N is the number of PMP entries available.
Alternatively, with adjacent allocations by the OS, Keystone
can virtualize the PMP entries at the cost of disallowingmem-
ory reclamation until all latter enclaves are destroyed. Future
SM and RT features that support relocation may allow for
complete virtualization of PMP entries via defragmentation.
Similarly, the proposed RISC-V hypervisor mode (H-mode)
would allow for an additional layer of address translation to
transparently virtualize PMP entries [7].

4.2 Post-creation In-enclave Page Management
Keystone has a different memory management design from
most TEEs (see Figure 4). It uses the OS-generated page ta-
bles for initialization and then delegates virtual-to-physical
memory mapping entirely to the enclave during execution.
Since RISC-V provides per-hardware-thread views of the

2Our kernel driver uses both the Buddy Allocator and the Contiguous
Memory Allocator (CMA) to dynamically allocate enclave memory with
various sizes.

FIGURE 3.6: RISC-V PMP architecture [7].

3.2.2 Secure Boot Procedure for TEE

The boot procedure and keys generation described in this sub-section is based
on the Keystone framework [7]. Keystone is not a specific TEE implementa-
tion but a framework for customizing TEE depending on needs. Further-
more, it is currently the most completed TEE based on RISC-V architecture.

To establish a secure boot process, two things need to be trusted in the begin-
ning:
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• Hardware manufacturer: For legal reasons, chip manufacturers must
be held responsible for their products. Thus, we can trust the silicon
manufacturing process to create the right hardware such as RoT.

• Software provider: Similarly, for legal reasons and brand reputation,
software providers also need to meet security standards to protect their
users.

What we can’t trust are the data transmission environment and the infra-
structure:

• Infrastructure: There are many factors that the infrastructure providers
cannot control. For example, security vulnerability on virtualization
software allow hackers to attack other virtual machines directly from
the hacked virtual machine.

• Data transmission environment: It is best to assume that a hacker can
capture the data on the transmission line, like the Internet, for example.

The RoT in a TEE system is the very first authentication. That means self-
authentication at the manufacturer level. As a result, each manufacturer
has to create their pair keys, called the manufacturer’s secret-key SKM and
public-key PKM, as shown in Figure 3.7. The pair keys should be asymmet-
ric like Rivest-Shamir-Adleman (RSA) pair keys [113], Elliptic Curve Digital
Signature Algorithm (ECDSA) pair keys [114], or Edwards-curve Digital Sig-
nature Algorithm (EdDSA) pair keys [115]. In this case, the used algorithm is
the Ed25519 [116] as seen in the figure. The manufacturer publishes the PKM
and conceals the SKM.

FIGURE 3.7: Manufacturer’s pair keys.

The next step in the trust flow is the integrity of the silicon products. The
chip fabricated at the trustworthy manufacturer needs to have its pair keys,
named device’s secret-key SKD and public-key PKD. These pair keys are also
created by the manufacturer and stored inside the chip at the time manu-
factured, as described in Figure 3.8. Finally, the manufacturer uses its SKM
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to sign and endorse the chip, thus creating the device’s certificate CertD, as
shown in Figure 3.9. Based on this CertD, we can now determine whether the
content in the boot Read-Only Memory (ROM) can be trusted or not, thus en-
suring the chip’s integrity and its Zero Stage BootLoader (ZSBL).

FIGURE 3.8: SoCs are manufactured with built-in device’s pair
keys.

FIGURE 3.9: Manufacturer signs and creates the device’s certifi-
cate.

With the secure SKD and PKD pair keys, the next step in the CoT is about
software, starting with the bootloaders. At this point, we have the trusted
chip and the trusted boot ROM. Any software after this point is considered
vulnerable to attack because it is located on easy-to-attack physical memories
such as flash, Secure Digital card (SD-card), and Double Data Rate (DDR)
memory. Therefore, a trust mechanism with hash and encryption algorithms
is required.

First of all, the RoT (secure chip with trusted boot ROM) hashes the software
binary to create the HS, as shown in Figure 3.10. The programs that need to
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be hashed are the sensitive programs like OS-related applications and those
that need a special privilege after boot. Each software has its own generated
HS. After the HS is generated, the SKD together with the HS are used to
create the software pair keys of secret-key SKS and public-key PKS via a Key
Derivation Function (KDF), as described in Figure 3.11.

FIGURE 3.10: The RoT hashes the software binary.

FIGURE 3.11: Software pair keys are created.

After the SKS and PKS are created, the SKD is used to sign and endorse
the PKS together with its HS, thus creating a software’s certificate CertS, as
shown in Figure 3.12. Now the CertS can be used to verify the integrity of the
software because it is bound by the HS and signed by the device. And with
the chain of certificates, we can do the attestation report down to the manu-
facturer. Finally, when all the necessary CertS are generated, the machine can
boot to the OS space. However, because the boot image S is untrusted, all the

48



3.2. Trusted Execution Environment

sensitive data must be cleaned up beforehand, like stack and SKD, as seen in
Figure 3.13.

FIGURE 3.12: Software’s certificate is created.

FIGURE 3.13: RoT cleans up SKD and stack then boot to the OS
space.
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3.3 VexRiscv: A 32-bit RISC-V Microcontroller

3.3.1 The Architecture

In this section, a 32-bit RISC-V MCU is presented. The core processor is the
VexRiscv CPU, originally from the SpinalHDL research group [92]. VexRiscv
is a 5-stage pipeline in-of-order processor with the RV32IM ISA extensions.
It has many options and complimentary plugins to provide various func-
tionalities. According to the site [92], some parts of the core can be turned
on or off as wished via the plugin system. For instance, new functions or
instructions can be added without modifying any of the CPU sources, thus
making the CPU design completely parameterizable. If no plugin is defined,
the VexRiscv core contains only the 5-stage pipeline as the definition.

To make the first step into understanding the RISC-V, this VexRiscv was im-
plemented on both FPGA and VLSI. An MCU based on this architecture was
made, and Figure 3.14 shows the architecture. The core processor shown
in the figure was generated with the full option, including cache trashing,
cache exceptions, single cycle barrel shifter, debug module via JTAG, dyna-
mic branching, and MMU [92]. Compared to the original design from the
SpinalHDL research group [92], the caches sizes were modified to fit the chips
better, and the SPI controller was added for the usage of the SD-card. The
GPIO has 16 LEDs and 16 switches. The on-chip memory was used in chips,
while the off-chip SRAM controller was replaced for the FPGA versions. The
boot ROM has 8-KB with 7-KB of hard-code in combinational logics and 1-KB
in SRAM for the stack. The 1-KB of SRAM stack can be used later after boot.
The 7-KB hard-code boot ROM inits the CSRs in the CPU, prints the initial
text to the UART, starts the SD-card, loads the program from the SD-card
to the on-chip memory, jumps to the on-chip memory, and executes there.
The MCU can self-boots to run any desired software in the SD-card for an
embedded application with this boot flow. For both FPGA and VLSI imple-
mentations, if the MCU is successfully booted, the terminal should show the
content, as seen in Figure 3.15. The source codes and guide for replicating this
proposed MCU are published in the given repository [117]. The architecture
presented in this section was later used to develop trigonometric hardware
with custom instruction in [95] (2021).
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FIGURE 3.14: Block diagram of the implemented VexRiscv
MCU.

FIGURE 3.15: Terminal shows the VexRiscv core is booting.
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3.3.2 FPGA Implementation

For FPGA versions, the on-chip memory in Figure 3.14 was replaced by an
off-chip SRAM controller. Depending on the FPGA chip being implemented,
the off-chip SRAM controller could be SDRAM, DDR2, or DDR3 memory
controller. The available FPGA demos in the repository [117] are Arrow-
SoCKit, DE0-Nano, DE2-115, DE1-SoC, DE4, and TR4 FPGA boards. The
FPGA build reports are collected and given in Table 3.5. Because SRAM con-
troller IPs in the boards are vastly different, the results in Table 3.5 were re-
ported without them.

TABLE 3.5: VexRiscv MCU build reports in various FPGAs.

FPGA board Arrow-SoCKit DE0-Nano DE2-115

FPGA chip Cyclone V Cyclone IV Cyclone IV
(5CSXFC6D6) (EP4CE22) (EP4CE115)

Combinational logic 2,858 4,800 4,810
Register 3,054 2,751 2,766

ALM 1,891 N/A N/A
Memory (bit) 106,752 106,752 123,136

DSP block 4 8 8

FPGA board DE1-SoC DE4 TR4

FPGA chip Cyclone V Stratix IV Stratix IV
(5CSEMA5) (EP4SGX230) (EP4SGX230)

Combinational logic 2,832 2,874 2,863
Register 2,974 2,750 2,734

ALM 1,850 2,392 2,403
Memory (bit) 123,136 106,752 106,752

DSP block 4 8 8

3.3.3 VLSI Implementation

For small and low-power 32-bit RISC-V microprocessors, although there were
plenty of IP cores presented in FPGAs as reviewed in [74] (2019), silicon-
proof publications were still limited. The worth-mention 32-bit RISC-V chip
measurement publications can be listed are the PULP SoC in [63] (2016),
PULPv2 SoC in [67] (2017), the low-power IoT MCUs in [61] (2016) and in [64]
(2017), the FE310-G000 in [118] (2017), and the FE310-G002 in [119] (2019). As
a result, a further step was made for the VexRiscv MCU implementation to
realize the MCU into VLSI circuits.

The SOTB-65nm process is an FD-SOI technology that has the ultra-low-
power feature [120]. It can provide the chip with the back-gate biasing tech-
nique, further enhancing its performance [121]. The measurement result of
the SOTB-65nm chip was reported in [93] (2020). And its completed MCU
with PCB was also served as the platform for the investigation of counter-
measures against power analysis attacks in [122] (2021). Figure 3.16 shows
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the layout of the chip, and its barechip image is given in Figure 3.17. The
implemented SoC has 1,436.24-µm in width and 921.6-µm in height and oc-
cupies the whole 1.5×1.0-mm2 die as seen in Figure 3.17. According to the
figure, it can be seen that the four 16-KB SRAM macros made up a total of
64-KB on-chip memory for the system. The 16-KB SRAM macro was chosen
because it is the largest SRAM macro available in the SOTB-65nm process.
The 8-KB of boot ROM also contains one 1-KB SRAM macro for the stack.
As shown in Figure 3.17, one VexRiscv core is placed at the bottom with two
caches of instruction and data that sit right next to its left and right. Each
cache contained four 1-KB SRAM macros and one 512-B SRAM macro, thus
4.5-KB in total.

FIGURE 3.16: Layout of the SOTB-65nm VexRiscv SoC.

ROHM-180nm is a conventional bulk process that is popular and close to the
industrial standard. The same version of VexRiscv MCU was also done in
this technology. Figure 3.18 and Figure 3.19 show the layout and the barechip
images, respectively. Compared to the last VLSI implementation, due to lack
of space, the 64-KB of on-chip memory was reduced to 16-KB SRAM, as
shown in the figure. The 8-KB of boot ROM was kept (as we can see that
the 1-KB of SRAM stack was still there), but two caches of instruction and
data were removed. As seen from the figure, the ROHM-180nm version of
the VexRiscv MCU has a size of 1,933.44×1,933.2-µm2 and sits on the whole
2.5×2.5-mm2 die.
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FIGURE 3.17: Barechip image of the SOTB-65nm VexRiscv SoC.
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FIGURE 3.18: Layout of the ROHM-180nm VexRiscv SoC.
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FIGURE 3.19: Barechip image of the ROHM-180nm VexRiscv
SoC.

Both two chips were done by using the Synopsys tools of Design Compiler
(DC) for synthesis and IC Compiler (ICC) for Place-and-Route (PnR). The
results reported by the Synopsys tools were collected and given in Table 3.6
for the two VLSI implementations.
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TABLE 3.6: VexRiscv MCU VLSI synthesis reports.

Process SOTB-65nm ROHM-180nm
(1.2-V @ 100-MHz) (1.8-V @ 100-MHz)

On-chip RAM 64-KB 16-KB
Memory Inst. cache 4.5-KB none

Data cache 4.5-KB none
Die 2.0×1.5-mm2 2.5×2.5-mm2

1,436.24×921.6-µm2 1,933.44×1,933.2-µm2

Area Core = 1.324-mm2 = 3.74-mm2

≈ 349,061-NAND2 ≈ 289,692-NAND2
Cell 33,935 48,541

Power @Synthesis 13.39 66.92
(mW) @PnR 15.74 89.94
FMax @Synthesis 94 2

(MHz) @PnR 88 102

3.3.4 Chip Measurement Result

Both SOTB-65nm and ROHM-180nm chips were fabricated with the 160-pin
QFP packaging. Two PCB test boards were developed to test the chips.
Figure 3.20 and Figure 3.21 show the testing PCBs for the SOTB-65nm and
ROHM-180nm chips, respectively. Both PCBs have a built-in USB-to-UART
interface, SD-card socket, JTAG header, LEDs, switches, and a programable
clock circuit. The power supplies can be drawn directly from the USB inter-
face or external power sources using power jumpers. The clock can be pro-
vided by on-board clock circuit or external sources via the SMA connector.
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FIGURE 3.20: PCB for testing the SOTB-65nm VexRiscv MCU.
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FIGURE 3.21: PCB for testing the ROHM-180nm VexRiscv
MCU.

In SOTB-65nm technology, the default threshold voltage (VTH) is about 0.4-V
to 0.5V, and the recommended operating VDD is 0.75-V. Therefore, the SOTB-
65nm chip measurement was done in the condition of 0.4-V to 1.2V VDD and
−1.6-V to +1.6-V back-gate bias voltage (VBB). Figure 3.22 shows the changes
in maximum operating frequency (FMax) corresponding to the power sup-
plies (VDD and VBB). In general, the FMax performances increased almost
linear with the increment of VDD. Specifically, with no bias (i.e., VBB = 0-V),
the FMax values ranged from 12-MHz at 0.6-V VDD to 104-MHz at 1.2-V VDD;
the changes were about 15-MHz per 0.1-V of VDD. For VBB from −1.6-V to
+0.8-V, FMax values also increased nearly linear; there was about 18-MHz
FMax improvement for each 0.4-V VBB increment. However, when a VBB ≥
0.8-V was applied, the FMax increment became little to none, as shown in
Figure 3.22. The highest FMax value of 156-MHz was achieved at 1.2-V VDD
with +1.6-V VBB. At −1.6-V VBB, the MCU can function only with VDD ≥
0.9-V.
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FIGURE 3.22: SOTB-65nm VexRiscv MCU: FMax vs. supply volt-
ages.

Continue with the SOTB-65nm measurement, Figure 3.23 and Figure 3.24
give the variations in power consumption (PActive) and power density (PActive/FMax)
corresponding to power supplies. Overall, the changes were almost linear
with the VDD increment. For no bias, the power consumption values ranged
from 0.49-mW (40.8-µW/MHz) at 0.6-V VDD to 17.58-mW (169.04-µW/MHz)
at 1.2-V VDD; the changes were about 2.85-mW (21-µW/MHz) for each 0.1-
V increment of VDD. At reversed back-gate bias, there were only slight re-
ductions in consumption, as seen in the figures. In contrast, PActive values
increased quite a lot with forwarding back-gate bias. The lowest power con-
sumption of 0.49-mW has been achieved at 0.6-V VDD with no bias, but the
best power density of 33.4-µW/MHz was at 0.5-V VDD with +0.8-V VBB.

FIGURE 3.23: SOTB-65nm VexRiscv MCU: PActive vs. supply
voltages.
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FIGURE 3.24: SOTB-65nm VexRiscv MCU: PActive/FMax vs.
supply voltages.

Figure 3.25 shows the leakage power of the SOTB-65nm chip in the changes
of power supplies. These values were measured at sleep mode when the
clock was cut off. At no bias, Psleep values ranged from 2.165-µW at 0.5-V VDD
to 30-µW at 1.2-V VDD. From −0-8 to +0.8-V VBB, the Psleep values reduced
roughly about one order of magnitude per 0.4-V VBB reduction. However,
the VBB ≤ −1.6-V lines can not result in further reduction due to the Gate-
Induced Drain Leakage (GIDL) phenomenon [121]. The best leakage power
was 2.43-nW with 0.5-V VDD and −1.6-V VBB.

FIGURE 3.25: SOTB-65nm VexRiscv MCU: PLeak vs. supply
voltages.

In ROHM-180nm technology, the default VTH is about 1.0-V and the recom-
mended operating VDD is 1.8-V. Therefore, the ROHM-180nm chip measure-
ment was done with the VDD range of 1.0-V to 2.0-V. Figure 3.26 shows the
changes in FMax with VDD. We can see that the FMax performances increased
almost linear with VDD increment, about 8-MHz per 0.1-V of VDD increment.
The lowest and highest FMax were 35-MHz and 99-MHz achieved at 1.2-V
and 2.0-V VDD, respectively. The MCU failed to function with VDD < 1.2-V.
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FIGURE 3.26: ROHM-180nm VexRiscv MCU: FMax vs. supply
voltages.

Figure 3.27 and Figure 3.28 show the PActive and PActive/FMax of the ROHM-
180nm chip, respectively. In the figures, the idle-state is when the chip was
held at reset, and the active-state is when it was continuously running the
Dhrystone test. In general, their changes were almost linear, with roughly
about 15.44-mW (113-µW/MHz) and 12.42-mW (90.8-µW/MHz) per 0.1-V
VDD for the active-state and idle-state, respectively. The lowest and highest
PActive were 18.61-mW (531.77-µW/MHz) and 142.14-mW (1,435.76-µW/MHz)
at 1.2-V and 2.0-V of VDD, respectively. The lowest and highest PIdle were
15.01-mW (428.91-µW/MHz) and 114.38-mW (1,155.35-µW/MHz) at 1.2-V
and 2.0-V of VDD, respectively.
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FIGURE 3.27: ROHM-180nm VexRiscv MCU: PActive vs. supply
voltages.

FIGURE 3.28: ROHM-180nm VexRiscv MCU: PActive/FMax vs.
supply voltages.

Figure 3.29 shows the leakage power of the ROHM-180nm chip in the changes
with VDD. The sleep-state was measured when the clock was cut off. From
the figure, we can see a "break-point" at VDD = 1.7-V. This is because when
the VDD-core ≥ VDD-I/O (the VDD-I/O is fixed at 1.8-V), currents from the
I/Os were drawn back to the core, thus increasing the PSleep of the core. In
the range of VDD = 1.2-V to 1.7-V, the changes were about 0.29-mW per 0.1-
V VDD. And in the range of VDD = 1.7-V to 2.0-V, the changes were about
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1.55-mW per 0.1-V VDD. The leakage power consumption at 1.2-V, 1.7-V, and
2.0-V were 1.3-mW, 2.74-mW, and 8.92-mW, respectively.

FIGURE 3.29: ROHM-180nm VexRiscv MCU: PLeak vs. supply
voltages.

TABLE 3.7: VexRiscv MCU chips’ features summary.

Process SOTB-65nm ROHM-180nm
On-chip 64-KB 16-KB

Memory Inst. cache 4.5-KB none
Data cache 4.5-KB none

Die 2.0×1.5-mm2 2.5×2.5-mm2

1,436.24×921.6-µm2 1,933.44×1,933.2-µm2

Area Core = 1.324-mm2 = 3.74-mm2

≈ 349,061-NAND2 ≈ 289,692-NAND2
Cell 33,935 48,541

VDD
I/O 3.3-V 1.8-V

Core 0.5-V to 1.2-V 1.2-V to 2.0-V

Benchmarks 1.27-DMIPS/MHz 1.02-DMIPS/MHz
2.4-Coremark/MHz 1.9-Coremark/MHz

Peak at 1.2-V VDD & +1.6-V VBB at 2.0-V VDD

performance FMax=156-MHz FMax=99-MHz
PActive=269.54-µW/MHz PActive=1,435.76-µW/MHz

Best power at 0.5-V VDD & +0.8-V VBB at 1.2-V VDD

density FMax=15-MHz FMax=35-MHz
PActive=33.4-µW/MHz PActive=531.77-µW/MHz

Key features of the two chips are summarized in Table 3.7. The completed
SoCs were also benchmarked with the Dhrystone and Coremark tests. The
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SOTB-65nm chip achieved 1.27-DMIPS/MHz and 2.4-Coremark/MHz, while
the results of the ROHM-180nm chip were 1.02-DMIP/MHz and 1.9-Coremark/MHz.
Due to the decisive advantage of the back-gate biasing, the SOTB-65nm chip
got overwhelming better metrics than its ROHM-180nm equivalent in both
peak performance and best power density, as shown in Table 3.7.

3.3.5 Comparison and Discussion

Table 3.8 gives the results of the two chips in comparison with other re-
cent 32-bit RISC-V MCUs. To provide a better point-of-view, the results of
PULPv2 [67], Duran et al. [64], and the ROHM-180nm were scaled to the
equivalent results of a 65-nm node by using the equations from [123]. It is
noted that because the equations in [123] did not have the parameters for the
28-nm process, the scaled values of PULPv2 [67] were calculated by using
the settings of the 32-nm process instead.

Although the FMax of the VexRiscv MCUs are the lowest value in the table,
the comparison may not reflect the true nature of the architecture. The reason
is that for those designs without integrated Phase-Locked Loop (PLL) or
Frequency-Locked Loop (FLL), the operating frequencies heavily depended
on the I/O circuits. For example, the chip in [67] had integrated FLL while
the others had not. Therefore, the operating frequency in [67] could quickly
go higher than 500-MHz, while the other works were limited by the general
digital I/Os, as seen in the table.

TABLE 3.8: Comparison between the VexRiscv chips with other
32-bit RISC-V MCUs.

Design Duran et al. PULPv2 This work(2017) [64] (2017) [67]
ISA RV32IM RV32IMC RV32IM

Number of cores 1 4 1
Core VDD (V) 1.2 0.32 to 1.15 0.5 to 1.2 1.2 to 2.0

Process 130-nm 28-nm 65-nm 180-nm
FMax (MHz) 160 825 156 99

PActive (µW/MHz) 167 20.7 33.4 531.77
Leakage power (mW) N/A 0.37∗ 0.4∗ 4.97∗∗

Scaled to 65-nm by using equations [123]
Process 65-nm

FMax (MHz) 304.88 388.68 156 235.63
PActive (µW/MHz) 23.05 126.6 33.4 31.57

Leakage power (mW) N/A 2.22∗ 0.4∗ 0.32∗∗
∗

measured at 0.6-V VDD & no bias.
∗∗

measured at 1.8-V VDD & no bias.

For the power consumption of PActive, the VexRiscv results were measured
while running the Dhrystone test, while the result in [64] was measured
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while running three while loops. Therefore, if the MCU in [64] was run-
ning the Dhrystone test when being measured, the value of 23.05-µW/MHz
should be a bit higher. For the result of [67], it can be argued that if with
a single-core processor, its power consumption will be much less. Hence,
the power density of a single-core PULPv2 can be roughly approximated by
126.6/4 = 31.65-µW/MHz, close to the value of 33.4-µW/MHz and 31.57-
µW/MHz of the VexRiscv MCUs.

For leakage power comparison, the PULPv2 chip [67] reported 0.37-mW while
running at 0.6-V VDD with no bias (i.e., VBB = 0-V). Scaling to the equivalent
result of the 65-nm node, 0.37-mW became 2.22-mW. With a similar argument
about single-core versus multi-core, the leakage power of a single-core could
be roughly estimated to be about 2.22/4 = 0.555-mW. Thus, the 0.4-mW and
0.32-mW results of the VexRiscv MCUs still yield the best performances in
the table. It is also noted that the best values of leakage powers in this work
were not brought to the comparison table because the results with reserved
back-gate bias voltages were not reported in those papers [64, 67].

To conclude, a truly fair comparison between implementations was hard to
achieve due to the complex nature of computer architecture. Table 3.8 has
already brought a proper perspective for the comparison, but it may not ulti-
mately reflect all of the pros and cons of all implementations. However, it can
be said that the implemented chips have achieved the average performances
of FMax and PActive with a genuinely good leakage power consumption. With
the powerful tool of back-gate biasing, the SOTB-65nm chip can be used for
a wide range of embedded applications in both means of low-power and
high-performance settings.
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3.4 Rocket-chip Computer System

3.4.1 The Architecture

In this section, the Linux-bootable Rocket-chip computer system is inves-
tigated. The system originally came from the SiFive-Freedom repository
[124]. The Rocket-chip is a highly customizable core processor with a 5-
stage in-of-order architecture. Its default ISA is RV64IMAFDC (also called
RV64GC); that means 64-bit RISC-V with Integer, Multiplication, Atomic,
Floating-point, Double floating-point, and Compressed instruction sets. How-
ever, own to the fact that it is highly customizable [40], any sub-set in the
RV64IMAFDC can be turned on or off, including the 64-bit/32-bit addres-
sing.

Studying this Rocket-chip generator and implementing its computer system
set a foundation for future developments in the following chapters. Figure
3.30 shows the original system architecture demonstrated on various FPGA
boards given by the site [124]. Following the tutorial on the site, a new ver-
sion was slightly modified to better fit with VLSI implementation, and Figure
3.31 gives its architecture. As seen in Figure 3.31, the PCIe connection was
removed for simplicity. About the DDR memory, because we can not include
the DDR IP into our chip, the memory bus was exported out to the chip’s
I/O. The DDR controller with its TileLink-to-AXI4 bridge will be kept in the
FPGA, while the rest will become an SoC and go to the chip. When the chip
is done, it will be connected back to an FPGA and use the FPGA’s DDR IP for
its memory. Tutorial for replicating this architecture is published in the given
repository [125]. The Keystone boot flow was followed to boot the system
into Linux; its publication is provided in [7], and its tutorial is given in [102].

TEE

Rocket processor(s)

System Bus (SBus)

Data cache Instruction cache

Memory Bus (MBus)

DDR controller

Peripheral Bus (PBus)

GPIO Boot ROM UARTSPI (MMC)TileLink to AXI4PCIe controller

TileLink to AXI4

FIGURE 3.30: The Rocket-chip computer system, original archi-
tecture.
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TEE

Rocket processor(s)

System Bus (SBus)

Data cache Instruction cache

Memory Bus (MBus)

DDR controller

Peripheral Bus (PBus)

GPIO Boot ROM UARTSPI (MMC)
TileLink to AXI4

SoC

FPGA

FIGURE 3.31: The Rocket-chip computer system, modified for
SoC implementation.

3.4.2 FPGA and VLSI Implementation

The FPGA implementation followed the original architecture in Figure 3.30,
with PCIe and DDR controllers included. The tested FPGA was the Altera
TR4 board; the tutorial for the build can be found on the given site [125].
The FPGA build report is shown in Table 3.9. To be consistent with the VLSI
implementation, the results in the table omitted the PCIe and DDR controller
IPs resources.

TABLE 3.9: 64-bit quad-core Rocket-computer build report in
Altera TR4 FPGA.

FPGA TR4: Stratix IV (EP4SGX230)
Processor Rocket-chip ×4

Cache Inst.: 16-KB; Data: 16-KB
ISA RV64IMAFDC

Combinational logic 106,702
Register 68,295

ALM 88,475
Memory (bit) 202,422

DSP block 86

For VLSI implementation, one ROHM-180nm chip was made with the archi-
tecture given in Figure 3.31. Figure 3.32 shows the layout of the chip, and its
barechip image is provided in Figure 3.33. This chip is a quad-core Rocket-
chip computer system implemented in a whole 5.0×7.5-mm2 die. The Synopsys
tools of DC and ICC were also used to make this chip. Table 3.10 gives the
results reported by the synthesis tools.
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FIGURE 3.32: Layout of the ROHM-180nm 64-bit quad-core
Rocket-chip (5.0×7.5-mm2).
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FIGURE 3.33: Barechip image of the ROHM-180nm 64-bit quad-
core Rocket-chip (5.0×7.5-mm2).
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TABLE 3.10: Quad-core Rocket-chip computer system synthe-
sis reports.

Process ROHM-180nm (1.8-V @ 100-MHz)
Processor Rocket-chip ×4

Cache Inst: 16-KB; Data: 16-KB
ISA RV64IMAFDC

Die 5.0×7.5-mm2

Area Core 4,512×7,172-µm2 = 32.36-mm2

≈ 1,343,800-NAND2
Cell 502,821

Power @Synthesis 301.18
(mW) @PnR 391.13
FMax @Synthesis 91

(MHz) @PnR 92

3.4.3 Chip Measurement Result
One ROHM-180nm chip was made with the architecture given in Figure 3.31.
The chip was fabricated with the 257-pin PGA packaging. A PCB test board
was also developed to test the chips. Figure 3.34 shows the testing PCB
with a built-in USB-to-UART interface, SD-card socket, JTAG header, LEDs,
switches, and a programable clock circuit. For the power supply, the chip can
draw the power from either the USB interface, external sources via power
jumpers, or from the FPGA directly. The clock also has three options: an
on-board clock circuit, external sources via the SMA connector, or the FPGA
directly. Figure 3.35 shows the working PCB with a chip inside mounting on
the TR4 FPGA board to use the FPGA’s DIMM RAM.
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FIGURE 3.34: PCB for testing the 64-bit quad-core Rocket-
computer ROHM-180nm chip.

FIGURE 3.35: The quad-core Rocket-computer PCB mounts on
the TR4 FPGA board.
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In ROHM-180nm technology, the default VTH is about 1.0-V and the recom-
mended operating VDD is 1.8-V. Therefore, the ROHM-180nm chip measure-
ment was done with the VDD range of 1.0-V to 2.0-V. Figure 3.36 shows the
changes in FMax with VDD. We can see that the FMax performances increased
almost linear with VDD increment, about 1.5-MHz per 0.1-V of VDD incre-
ment. The lowest and highest FMax were 23-MHz and 35-MHz achieved at
1.2-V and 2.0-V VDD, respectively.

FIGURE 3.36: ROHM-180nm 64-bit quad-core Rocket-
computer: FMax vs. VDD.

Figure 3.37 and Figure 3.38 show the PActive and PActive/FMax of the chip,
respectively. In the figures, the idle-state is when the chip was held at reset,
and the active-state is when it was running the Zero Stage BootLoader (ZSBL)
program. In general, their changes were almost linear, with roughly about
28.88-mW (0.69-mW/MHz) per 0.1-V VDD. The lowest and highest PActive
were 74.18-mW (3.23-mW/MHz) and 305.18-mW (8.72-mW/MHz) at 1.2-V
and 2.0-V of VDD, respectively.
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FIGURE 3.37: ROHM-180nm 64-bit quad-core Rocket-
computer: PActive vs. VDD.

FIGURE 3.38: ROHM-180nm 64-bit quad-core Rocket-
computer: PActive/FMax vs. VDD.

Figure 3.39 shows the leakage power of the chip in the changes with VDD.
The sleep-state was measured when the clock was cut off. From the figure,
there was a nice curve of increment. The changes could be seen roughly as
linear, with about 0.47-mW per 0.1-V VDD. The lowest and highest leakage
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power consumption were 0.55-mW and 4.29-mW at 1.2-V and 2.0-V VDD, res-
pectively. Finally, the key features of the quad-core Rocket-computer ROHM-
180nm chip are summarized in Table 3.11.

FIGURE 3.39: ROHM-180nm 64-bit quad-core Rocket-
computer: PLeak vs. VDD.

TABLE 3.11: 64-bit Quad-core Rocket-computer ROHM-180nm
chip’s features summary.

Process ROHM-180nm
Processor Rocket-chip ×4

Cache Inst: 16-KB; Data: 16-KB
ISA RV64IMAFDC

Die 5.0×7.5-mm2

Area Core 4,512×7,172-µm2 = 32.36-mm2

≈ 1,343,800-NAND2
Cell 502,821

VDD
I/O 1.8-V

Core 1.2-V to 2.0-V

Peak at 2.0-V VDD

performance FMax=35-MHz
PActive=8.72-mW/MHz

Best power at 1.2-V VDD

density FMax=23-MHz
PActive=3.23-mW/MHz
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3.5 Summary

This chapter briefly explained the RISC-V architecture and the TEE termino-
logy. This chapter introduced the two RISC-V-based computer systems, the
32-bit small MCU with VexRiscv core and the Linux bootable big platform
with Rocket-chip processors. For the VexRiscv MCU, FPGA and VLSI imple-
mentations were investigated, and two chips were made in SOTB-65nm and
ROHM-180nm technologies. For the Rocket-chip computer system, FPGA
and VLSI implementations were also done, and one ROHM-180nm chip was
made with quad-core of Rocket-chip processors. The results of the three chips
were reported in this chapter. The goal of these implementations was to initi-
ate the study of RISC-V, thus gaining experience in building a RISC-V system.
Based on the knowledge gained from this chapter, the following two chap-
ters, Chapter 5 and Chapter 6, will develop more advanced versions for the
TEE purpose.
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Proposed TEE Hardware Computer
System

4.1 TEE Hardware Framework

The primary goal of this section is to develop a RISC-V-based TEE HardWare
(TEE-HW) framework that is easy to use and easy to develop over time. This
framework is not only for creating a secure computer system but also for
security developers in the long run. The TEE-HW framework was developed
based on the Chipyard repository [126], a RISC-V generator with all sorts of
chisel-related utilities and hardware assemblies. The proposed framework
was published in the repository [59], and Figure 4.1 shows its folder struc-
ture. The core processor, the overall architecture with buses, and several
peripherals were already provided in chisel by Chipyard library. For other
cryptographic accelerators written in Verilog HDL, a proper chisel wrapper
must be made for the final integration. When compiled, the chisel generator
first generates an intermediate RTL representation named FIRRTL [47] and
subsequently converts the FIRRTL into Verilog HDL sources. The generated
Verilog file can be used in both FPGA and VLSI flows [48, 49].
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FIGURE 4.1: Folder structure of the TEE-HW framework repo-
sitory.

Currently, the proposed TEE-HW framework supports four FPGA boards,
including two Altera’s FPGAs of DE4 and TR4 and two Xilinx’s FPGAs of
VC707 and VCU118. The makefile system was designed with many options
that can be changed easily for a quick compilation to make this framework as
flexible as possible. Table 4.1 gives the supported configurations, and Figure
4.2 shows a makefile example. Noted that these variables are just for an im-
mediate change in the system, the potential development of this framework
is beyond those variables presented in Table 4.1. From time to time, many
other designs and architectures with many different options can be added or
removed, with the current trends of development in the field.
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TABLE 4.1: Supported variables in the TEE-HW framework’s
makefile.

Variable Available option Description
- VC707

BOARD - VCU118 Select the FPGA board- DE4
- TR4
- RV64GC

ISACONF - RV64IMAC Select the ISA- RV32GC
- RV32IMAC

MBUS - MBus64 Select the bit-width for the memory bus- MBus32

BOOTSRC - BOOTROM Select the boot source- QSPI

PCIE - WPCIe - Include PCIe controller IP in the system
- WoPCIe - Remove PCIe controller IP from the system

DDRCLK - WSepaDDRClk - Separate DDR-clock with System-clock
- WoSepaDDRClk - Not separate DDR-clock with System-clock
- Rocket - Dual-core Rockets

HYBRID - Boom - Dual-core BOOMs
- RocketBoom - Dual-core Rocket-BOOM (Rocket core first)
- BoomRocket - Dual-core BOOM-Rocket (BOOM core first)

FIGURE 4.2: Example for selecting parameters in the TEE-HW
build, according to Table 4.1.

4.2 TEE Hardware with Cryptographic Accelera-
tors

4.2.1 The Architecture

Based on the framework proposed in the previous Section 4.1, a completed
TEE-HW architecture featuring cryptographic accelerators is proposed in this
section. Figure 4.3 presents the architecture of the TEE-HW system. The core
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processor can be Rocket-chip [40] (open-source at [127]) or BOOM [86] (open-
source at [128]), with the default ISA of RV64IMAFDC (also called RV64GC).
The settings for the number of cores, type of cores, and type of ISA are recon-
figurable. The implemented crypto-cores are SHA3, AES, and Ed25519. They
were written in Verilog; hence, they are wrapped by a chisel-wrapper to be
integrated into the system. The Ed25519 algorithm [116] is implemented with
two crypto-cores, one is for the base-point multiplier, and one is for the signa-
ture generation. The buses highlighted in blue in Figure 4.3 are TileLink [129]
buses, including System Bus (SBus), Peripheral Bus (PBus), and Memory Bus
(MBus). The figure shows that the MBus also have a coherence cache named
L2 cache, which is also reconfigurable. On the PBus, several peripherals are
attached, and they are divided into two groups: the utility group and the
crypto-core group. The utility group contains several essential modules such
as boot ROM to store the Zero Stage BootLoader (ZSBL), UART for commu-
nication during boot time, SPI for MMC controller to read outside SD-card,
and SPI for reading outside flash. The system also supports1-GB of memory
via the utilization of a DDR controller. Because the DDR controllers are of-
ten the FPGA’s IPs with AXI4 interfaces [130], a TileLink to AXI4 bridge is
needed, as shown in Figure 4.3. The system with the accelerators and gener-
ator integration is included in a single repository [59].

The three cryptographic accelerators were chosen because of their reasonably
recent specification publications, the low overhead in their execution, and
they are part of the current Keystone implementation [7]. Currently, SHA3
is the latest secure hash standard, and its efficiency has been proven to be
quantum-resistant due to the sponge function in Keccak-1600 [131]. On the
other hand, the Ed25519, according to its authors [116], has a security level
equivalent to that of a 3000-bit Rivest-Shamir-Adleman (RSA) [113] key-strength,
while its implementation cost is much cheaper than an equivalent RSA im-
plementation. To conclude, combining the SHA-3 and Ed25519 with the cus-
tomizable open-source processor of RISC-V makes a significant improvement
for the TEE-HW framework. The accelerators of SHA3, AES, and Ed25519
are used in the TEE boot procedure, utilizing the Keystone framework as the
base environment [7]. The software calculations of the Keystone are imple-
mented using hardware accelerators. Figure 4.4 shows the booting terminal
of the architecture, and Figure 4.5 gives the Keystone’s attestation test after
boot.
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Chapter 4. Proposed TEE Hardware Computer System

FIGURE 4.4: Boot terminal of the TEE hardware architecture.
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4.2. TEE Hardware with Cryptographic Accelerators

FIGURE 4.5: The keys attestation test after boot.

4.2.2 The Crypto-cores

The first implemented security accelerator for the TEE boot sequence is the
SHA3 hash calculator. Figure 4.6 shows the peripheral architecture of the
SHA3 crypto-core wrapped to communicate with the PBus. This accelerator
contains a padding module and a Keccak-1600 round calculator [131]. The
padding module retrieves 64-bit data from the register-router, then is pushed
through the 576-bit buffer using a shifter. When the buffer is complete, the
accelerator performs a round calculation. A constant counter keeps track
of the number of rounds and the constant non-linearity of the iota phase of
the Keccak round. The first round is calculated from the first 64-bit data
push through the padding module. Every round state is stored in a 1600-bit
status register. When the final data is pushed through the padding module,
the round calculation performs the final rounds in the status registers, and
then the first 512-bit word can be used for the hash output of the calculation.
The usage of this module consists of pushing 64-bit data stream segments
through the SHA3 crypto-core. The final stream that does not fit in a 64-bit
sub-stream needs to be pushed with the help of the final size register, which
is ignored for intermediate streams.
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FIGURE 4.6: SHA3 crypto-core block diagram, wrapped to
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FIGURE 4.7: AES crypto-core block diagram, wrapped to com-
municate with the PBus.

The second implemented security accelerator belongs to the AES cipher [132].
Figure 4.7 shows the AES crypto-core block diagram wrapped by a TileLink
bus to communicate over the PBus. The AES accelerator enciphers or de-
ciphers over 128-bit or 256-bit blocks depending on the configuration. The
bit-length can be changed on the fly. Each datapath performs the Substitu-
tion Box (SBox) or Inverted S-Box (InvSBox), shift rows, mix columns, and an
additional round key. The round key is calculated externally for both 128-bit
and 256-bit key modes. The AES calculation is performed by a state machine
that enables the datapath and signals the written data into the output regis-
ter.

The third accelerator is the Ed25519 base-point multiplier, and its block dia-
gram is given in Figure 4.8. This crypto-core operates P = sB in the Curve25519
elliptic curve [116]. This multiplier is useful for generating public and pri-
vate keys, which will later be used for the sign and verification processes.
The base point multiplier inputs the data through a memory-mapped RAM
controller with write-only capabilities, where SHA3 hashed private key is
stored. The Ed25519 multiplier extracts each one of the bits from memory for
the base point multiplication. Each of the bits passes through a microcode
FSM, which triggers different states according to the initialization, 0- and
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1-bit calculation states from the extraction, rounding logic, and final calcula-
tions. This FSM provides the starting point to a microcode ROM for execu-
ting arbitrary instructions. These instructions are decoded and executed by a
microprocessor containing the necessary modules for performing the 512-bit
operations for the base point calculation. The microprocessor is composed of
an adder, a subtract module, and a multiplier. All the calculation modules
are provided with a simple calculator, useful for wrapping the value to the
2252− 19 prime number, which is necessary for this algorithm to perform the
operations. The results for any operation can be stored in a 2KB memory
bank, which acts as a register file, or the final output memory-mapped me-
mory for the final output. The memory bank also contains useful constants
mapped to specific addresses. The microcode contains instructions for per-
forming vector-based operations according to the Curve25519 definition.
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wrapped to communicate with the PBus.
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Finally, the last accelerator is the Ed25519 sign, which performs the result of
the operation S = r+ H(R, A, M)× s, half of the signature for any message of
M [116]. The other half of the signature can be calculated using the Ed25519
base-point multiplier previously described. It is also noted that the number
in each operation of the Ed25519 sign is wrapped into the large prime of l.
This signature is used in the Keystone for signing the bootloader program to
prevent tampering. Figure 4.9 shows the datapath for the signature calcula-
tion. The main three inputs of the signature are the hashed message with the
public key and the half signature H(R, A, M), the hashed message with the
private key H(S, M), and the public key A. This information is taken for the
calculation of the other half of the signature triggering a begin en-able from a
memory-mapped register. The overall operation is directed by a simple FSM,
which performs each of the necessary procedures of the signature equation.
When the FSM is ready, the enable signal triggers further states for calcu-
lating each one of the steps of the equation. The datapath this composed
of a 256-bit adder, a multiplier, and a module calculator for wrapping value
through the large prime l. The logic contains a 256-bit register for holding
the sum results and a 512-bit register for the multiplication results. The FSM
first reduces the R from the H(S, M) value and stores it inside the 256-bit re-
gister. The reduction of H(R, A, M) and the subsequent multiplications and
reductions with A are stored in the 512-bit register. The final sum and reduc-
tion are calculated from the registers and stored in the final 512-bit register
output.
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Most of the hashing and key generation calculations are done by pushing
the data to specific data registers. The PBus reads the data from the registers
and performs the desired output. The signature procedure follows a different
way to accelerate the result. According to Figure 4.9, the signature receives
calculated parts of the signature equation [116]. The algorithm 1 presents
the procedure in software to calculate a full signature from the original data
using the signature accelerator. This procedure uses the SHA3 and Ed25519-
multiplier crypto-cores to obtain the two halves of the signature P and Q.
The message and the secret key most-significant bits are first hashed using
SHA3 and stored in r. To calculate R, the previous value is passed to the
hardware Ed25519-multiplier. Again, the SHA3 is used with the message,
the public key, and the result of R. The next steps involve pushing the pre-
viously calculated data into the registers. The hardware procedure performs
the operations to calculate the P and Q halves of the message signature.

Algorithm 1 Ed25519-sign crypto-core in operation using the other SHA3
and Ed25519-multiplier crypto-cores.

1: procedure HW Ed25519sign(message,Pk,Sk)
2: r ← HW SHA3(Sk[high], message)
3: R← HW Ed25519mult(r) (Note: R = rB)
4: RAM← HW SHA3(R, Pk, message)
5: (In HW) H(S, M)← r
6: (In HW) H(R, A, M)← RAM
7: (In HW) SK ← SK
8: (In HW) TriggerAndWait()
9: return [P, Q]

10: end procedure

To verify the functionalities of all crypto-cores, besides the Verilog-based
simulation tests, a simple software at M-mode was developed and embedded
in-side the FSBL to check the integration of hardware accelerators. Figure
4.10 shows the FSBL’s welcoming screen with multiple options for testing
various crypto-cores. Figure 4.11, Figure 4.12, and Figure 4.13 show the tests
for the SHA3, AES, and Ed25519 crypto-cores, respectively. Each test will do
the software program first and then execute the hardware alternative with
the same test set. The execution times were also recorded, as shown in the
figures.

FIGURE 4.10: Welcoming screen at the FSBL to select various
tests for crypto-cores.
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FIGURE 4.11: The SHA3 hardware test at FSBL.

FIGURE 4.12: The AES hardware test at FSBL.

FIGURE 4.13: The Ed25519 hardware test at FSBL.
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4.2.3 Boot Procedure with Crypto-cores

The TEE boot process is based on the Keystone framework [7] (open-sources
at [102]), as described in sub-section 3.2.2. Noted that the original Keystone
boot flow does not include the RoT yet, it assumes that the device pair keys
already generated, and the TEE is being built upon. The boot flow in this
section follows the same suit, just replacing the hash and keys generation
software with the equivalent hardware accelerators. The bootloader named
Zero-State BootLoader (ZSBL) will be executed first and foremost, and it is
stored in the boot ROM (refers to Figure 4.3). The ZSBL is also the one that
will do the first authentication and then call the next bootloader named First
Stage BootLoader (FSBL) stored in the SD-card. After the FSBL, a Linux boot-
loader such as Berkeley BootLoader (BBL) or OpenSBI will be loaded and
boot into the Linux kernel with the initial filesystem. To demonstrate the TEE
authentication process, the whole Linux bootloader payload will be used for
verification in this case.
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Figure 4.14 describes the TEE boot process using the crypto-cores. First, the
ZSBL in the boot ROM locates and copies the FSBL from the external media
such as SD-card to the main DDR memory. Then, it jumps to the FSBL and
executes there. After that, the FSBL locates and copies the BBL from the SD-
card to the DDR. It also creates the Secure Monitor (SM) in the process. The
SM then extracts the initial seed for the keys by hashing the BBL payload. The
hash calculation is performed by the SHA3 crypto-core previously described.
The hash result is then pushed to the Ed25519 base-point multiplier crypto-
core for generating the private and public keys. With the help of the SHA3
accelerator and the newly created keys, the SM performs the signature of the
BBL payload then stores the result in a secure memory address for further
use. At this point, the Linux kernel can be booted by executing the BBL.
Finally, after boot, the BBL authentication can be done by the keys attestation
function provided by the SM via signature verification.

4.3 TEE Hardware with Isolated Root-of-Trust

4.3.1 The Main-System

Although various RoT implementations were proposed, some of them re-
lied on obscurity for preserving the root keys [1–3, 9], and some others used
a fixed circuit with a specific set of constraints to do the RoT [11, 12, 57, 66].
Therefore, they did not provide the flexibility for the keys generation scheme.
As a result, the main goal in this section is to develop an RoT implementa-
tion in an isolated architecture for RISC-V-based TEE SoCs. The proposed
design is given in Figure 4.15. This design is a continuous version of the one
presented in the previous section 4.2. Compared to the previous work, the
isolated sub-system and the TRNG implementation are the two new things
being added to the architecture. Similar to the previous version in Section
4.2, the architecture in Figure 4.15 also has several properties that can be re-
configured easily depending on specific requirements, such as the number of
cores, the type of cores, the ISA configuration, and the sizes of the L1 and
L2 caches. Furthermore, the PCIe connection, the whole isolated sub-system,
and each crypto-core can be included or excluded depending on needs. The
default configuration is a dual-core system with the Rocket core first and the
BOOM core second; each core has a 16-KB instruction cache and 16-KB data
cache. By default, the ISA is RV64GC, the size of the L2 cache is 512-KB, the
PCIe controller is excluded, the isolated architecture is included, and all of
the peripherals shown in Figure 4.15 are included.
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The main design idea is the heterogeneous architecture of 64-bit Linux-capable
TEE processors combined with a 32-bit isolated MCU. At reset, the isolated
MCU will boot first, do the first authentication, and then generate keys using
root keys salted with random numbers. After that, the TEE processors will be
woken up to follow the conventional TEE boot flow [7]. The main bus of the
isolated sub-system is called the Isolated Bus (IBus), and it connects to the
conventional SBus via a master-only TileLink protocol [129]. Therefore, the
MCU can access all the sub-modules in the SoC, but the TEE processors can-
not access the IBus peripherals. As a result, the memory in the isolated sub-
system is the best place for storing root keys. The SBus also includes the op-
tion of having a coherence cache manager, the L2 cache. As shown in Figure
4.15, the PBus contains several peripherals that can be categorized into two
groups of utility group and crypto-core group. The utility group consists of
a GPIO, a UART, a boot ROM, an SPI for using SD-card, and an SPI for using
a flash device. All cryptographic accelerators needed for TEE are included
in the crypto-core group, such as SHA3, AES, Ed25519, and TRNG. For the
OS memory space, the TEE hardware system offers a 1-GB DDR controller.
This controller is driven by an AXI4 [130] bus connected to the MBus via a
TileLink-to-AXI4 bridge. The DDR IP could be Altera’s or Xilinx’s depends
on which FPGA is being used. For the VLSI implementation, the MBus sig-
nals can be exported to the outside like GPIO digital buffers. Therefore, the
fabricated chip can be mounted on an FPGA to use that FPGA’s DDR IP as
its primary OS memory.
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Crypto-core group
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processor(s)

System Bus (SBus)

Memory Bus 
(MBus)

Peripheral Bus (PBus)

TRNG
Other 

crypto-cores

Boot ROMRAM ROM (root key)
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FIGURE 4.16: The isolated sub-system with direct connection
to the TRNG module.
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4.3.2 The Isolated Sub-system

Figure 4.16 shows the isolated 32-bit architecture side-by-side with the con-
ventional 64-bit TEE processors. The isolated sub-system contains a RISC-V-
based RV32IMC IBex core [133]. The IBex was chosen because it is a small
32-bit core with tamper awareness. The main bus in the isolated architec-
ture is a TileLink bus named IBus, and its peripherals are a boot ROM, a
16-KB RAM, and a ROM for storing root keys. Additionally, this isolated sub-
system contains its own Platform Level Interrupt Controller (PLIC) and Core
Local INTerrupt (CLINT). The isolated CLINT handles internal core-level in-
terrupts for scheduling. Through the PLIC, the outside TEE processors can
issue commands to the isolated core for keys attestation. Then, the IBex core
handles the PLIC’s interrupts through programs stored in its boot ROM.

The TRNG used in this section is based on the previous work [134]. Because
the NIST standard requires the keys generation and TRNG to be in the same
environment [135], the peripheral that wraps the TRNG core was designed
with two interfaces, one for the PBus and one for the IBus, as shown in Figure
4.16. The blue interface responds to the PBus, and the green interface re-
sponds to the IBus. As a result, the IBex core has a direct connection to the
TRNG module, and it could use the TRNG core without the risk of exposing
data to the public domain. Figure 4.17 shows the TRNG module with two
bus connections. In the figure, the TRNG core highlighted in blue comes from
the previous work [134]. The generated random number can be extracted via
any channel. However, the TRNG’s peripheral is configured to respond with
a higher priority for the IBus. As shown in Figure 4.17, if the isolated enable
is activated, the accumulation process will halt and prevent the shift-register
from accumulating the result. When the TRNG finishes its IBus transaction, it
will self-reset and then resume the PBus transaction if there was one. Because
the commands that come from the two channels are not treated as equals,
the TRNG’s outputs are classified as non-Independence and Identically Dis-
tributed (non-IID) data in this case. The TRNG core was proven to pass the
NIST non-IID restart test [134]. As a result, the two-channel TRNG’s peri-
pheral did not affect the quality of generated random numbers.
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FIGURE 4.17: The TRNG’s peripheral with two interfaces.

4.3.3 Secure Boot Process with Root-of-Trust

Figure 4.18 shows the keys management scheme with the secure boot process
and the Keystone boot flow done by the isolated processor and TEE proces-
sors, respectively. The idea is that the trusted manufacturer plays the role of
a root CA; thus, its public key of PM is well-known, and its certificate MCert. is
self-signed. One manufacturer can have many key pairs, but each pair must
be unique for different manufacturers. Because the SM and PM generation are
done offline, they should be high-bit RSA keys with many years of validity.

The subsequent keys of SR and PR, called the root keys, are EC keys, and
they are created by the manufacturer at the design time. The root certificate
RCert. is signed offline by the manufacturer’s secret key SM. The root’s secret
key SR is not stored in the chip, but the root’s public key PR is stored in the
isolated ROM for the ZSBL authentication. The secure BootLoader (sBL) is
stored in the same place with the PR, the isolated boot ROM. The content in
sBL is signed by the SM previously, as shown in Figure 4.18. At reset, the IBex
core executes the sBL, and its very first task is to verify and load the ZSBL
using the given PR.

The next step is the generation of the device/chip’s EC keys pair, SD and PD.
As shown in Figure 4.18, they are also generated offline by the manufacturer.
The device’s secret key SD is stored in the isolated ROM, and the device’s
public key PD is stored in the public domain (on-chip ROM or off-chip flash).
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The ZSBL is stored in the same place as the PD, and it has a signature pre-
signed by the root’s secret key SR. Because the first act of the isolated pro-
cessor is to verify and load the ZSBL, this scheme allows the manufacturer
to update the ZSBL securely, even if the ZSBL is stored in public as in an
off-chip flash.

After verified and loaded, ZSBL then uses the TRNG as seed for the EC-
genkey to generate the subsequent keys pair of SK and PK, called Keystone
keys. These keys are stored in a public RAM on the TEE’s side. Then, the
device’s secret key SD is used to sign on the Keystone’s public key PK, thus
creating the Keystone certificate KCert., as seen in Figure 4.18. The content
of FSBL is then loaded from the SD-card outside to the TEE’s main memory,
hashed, and signed by the SD. After this step, both Keystone keys pair and
FSBL content are in the TEE’s main memory, ready to be executed by the
TEE processors. Finally, the isolated core wakes the TEE processors to follow
the conventional TEE boot flow. From this point forward, the procedure of
loading BBL and setting up SM using crypto-cores is the same as described
in 4.2.3.

The connection from the IBus to the SBus, shown in Figure 4.15 and Figure
4.16, is master-only TileLink protocol. That means all the sub-modules below
the SBus are accessible from IBus but not the other way round. Therefore,
all the information processing inside the isolated sub-system are inaccessi-
ble for TEE processors due to the bus architecture. Hence, the ROMs and
RAM inside the isolated sub-system are ideal for storing root/device keys
and executing the sBL and ZSBL. When booting, the isolated sub-system will
boot first to establish the RoT. Figure 4.19 describes the software execution in
the isolated environment. This is the secure boot program modified from the
boot flow with crypto-cores described in sub-section 4.2.3. This program will
run once the system is in the reset state.

At reset, the TEE processors will be in a wait state, waiting for an interrupt.
The isolated sub-system fetches the root/device keys from the ROM and then
salts it with TRNG to create a seed for Ed25519, thus generating the Keystone
keys pair. After making the SK and PK, the SK will be stored in a write-only
memory (refers to the Ed25519 crypto-core described in Section 4.2), which
can be read only by crypto-cores for usage, but not by TEE processors or even
the IBex core. The crypto-cores can use this write-only memory to calculate
the signature for a stream of bits. In this case, the OS bootloader (S) is hashed
and then signed internally by the previously-stored private key Curve25519
function.

Due to the isolation, the software described in Figure 4.19 cannot be tam-
pered with by any external program on the TEE side. Moreover, the TEE
processors execute programs only after the secure boot stage. Hence, the
only potential threat from the TEE side is by exploiting the interrupt channel
for attestation. However, the IBex core only responds to the external inter-
rupts based on its program written in the isolated boot ROM. Thus, we can
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change the IBex’s program in the future to adapt with the attack vector if
there is one.

4.4 Summary

In this chapter, a TEE-HW framework was proposed. This framework will be
used as a tool not only for creating a secure computer system but also for fu-
ture development. Many architecture aspects were kept optional and can be
changed easily by selecting proper parameters in the Makefile. The available
hardware accelerators are SHA-3, AES, Ed25519, and TRNG. The supported
processors are Rocket-chip and BOOM. Based on the proposed framework,
a completed TEE-HW system featuring several cryptographic accelerators
was built. A TEE boot flow was developed based on the Keystone frame-
work with some modifications for using hardware accelerators. Finally, a
heterogeneous design featuring an isolated sub-system was also presented
in this chapter. The chosen secret core is the RV32IMC IBex with the anti-
tampering feature. The isolated architecture contains ROMs and RAM for
storing root/device keys and executing the secure boot program. The com-
plete secure boot flow with an elaborated keys management scheme is also
presented in the chapter. With various crypto-cores available and the hidden
MCU to store the RoT, the secure boot program is flexible and adapts to fu-
ture threats.
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Chapter 5

Performance Analysis

5.1 FPGA and VLSI Implementations

5.1.1 Processors VLSI Reports on Different Configurations
The proposed TEE-HW system supports Rocket, BOOM, and IBex cores with
various ISA settings of RV64GC, RV64IMAC, RV32GC, and RV32IMAC. To
compare different cores with different settings, two tables were made. They
are Table 5.1 for Rocket cores and Table 5.2 for BOOM and IBex cores. The L1
caches in Rocket and BOOM cores are set at the default setting with 16-KB
for each instruction and data cache. The complete VLSI flow, from synthe-
sis, PNR, to RC-extract, is done for each core with each available setting,
and the results are given in the two tables. In Table 5.2, because BOOM ver-
sion 3 (SonicBOOM [86]) currently doesn’t support 32-bit FPU, the setting of
RV32GC is not available for the BOOM cores. Additionally, the ISA of the
IBex core is fixed at RV32IMC [133].

According to the results in Table 5.1, Rocket cores are doing well in VLSI
implementations. Their achieved FMax values are always sign-off according
to the set constraint. On the other hand, the BOOM cores in Table 5.2 have
trouble meeting with the timings. To be specific, the BOOM’s FMax values
are roughly around 20-MHz to 30-MHz after synthesized and reach its top of
around 85-MHz after PNR, even with the 100-MHz set constraint. Further-
more, in the case of BOOM-RV64GC with the 100-MHz set constraint, the
PNR just fails to route. For the IBex core’s performance, according to Table
5.2, it could reach up to around 90-MHz with the 100-MHz set constraint.

For the sizes, the Rocket cores are around 6-mm2 to 8-mm2 while the BOOM
cores are around 21-mm2 to 25-mm2. The BOOM costs are closely 2× to
2.5× bigger than the Rocket cores with the same configuration. The IBex’s
size is about 1.2-mm2 or less, too small in comparison with the Rocket or the
BOOM at the default setting. For the power consumption, the Rocket cores
consume around 400-mW to 500-mW with the 100-MHz clock, and around
200-mW to 250-mW with the 50-MHz clock. For the BOOM cores, the power
consumptions reach around 1,200-mW and 600-mW for 100-MHz and 50-
MHz clocks, respectively. Hence, the power consumptions of the BOOMs
are about 2.5× to 3×more than that of the Rockets. Finally, for the IBex core,
the values of 29.52-mW to 134.4-mW are just a fraction compared to the other
two.
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Chapter 5. Performance Analysis

5.1.2 TEE-HW with Crypto-cores

Table 5.3 shows the results of the FPGA implementation; the used FPGA
board is the Altera DE4 with the FPGA chip of Stratix IV GX EP4SGX230. The
resources crypto-cores are compared in percentages to a single-core Rocket
tile. According to the table, the Rocket tile is the most extensive core of all;
the others are about 10% to 25% compared to it. The instruction and data
caches of the Rocket were configured to be 16-KB for each one of them; hence
the 318,208-bit (about 38.8-KB) of memory was reported, as shown in Table
5.3. The Ed25519-multiplier also contains 65,536-bit (8-KB) of memory for
the register banks in the temporal calculations. The Ed25519-multiplier also
needs DSP blocks for extensive calculations units in the rounding machine.
And for the Rocket tile, the DSP blocks are for implementing Floating-Point
Unit (FPU)and integer multipliers/dividers.

Table 5.4 gives the synthesis results on the ROHM-180nm process for the
TEE-HW architecture with cryptographic accelerators. The build reports of
crypto-cores are compared in percentages with one core Rocket-chip. As
shown in the table, one core Rocket-chip with the settings of 16-KB ins-
truction cache and 16-KB data cache occupied a 7.9-mm2 die area; it is the
most significant core in the table. The second biggest core is the Ed25519-
multiplier with 2.87-mm2. The smallest core is the AES crypto-core with only
0.65-mm2. All the cores achieved roughly 90-MHz to 100-MHz for the maxi-
mum operating frequencies. For the power consumption, besides the Rocket,
Ed25519-sign is the next core that has the most consuming power with 80.89-
mW, 14.67% compared to the Rocket processor.

TABLE 5.3: TEE-HW with cryptographic accelerators, an FPGA
build report on Stratix IV GX (EP4SGX230).

SHA3 AES Ed25519- Ed25519- Rocket-chip
multiplier sign (1-core)

Combi. ALUT 8,108 3,195 2,737 3,969 31,374
Combi. ALUT (%) 25.84 10.18 8.72 12.65 100

Register 2,790 2,854 4,778 4,617 19,483
Register (%) 14.32 14.65 24.52 23.70 100

Memory (bit) 0 0 65,536 0 318,208
DSP block 0 0 48 0 22
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TABLE 5.4: TEE-HW with cryptographic accelerators, an VLSI
synthesis report on ROHM-180nm process.

SHA3 AES Ed25519- Ed25519- Rocket-chip
multiplier sign (1-core)

Area (mm2) 1.32 0.65 2.87 1.81 7.90
Area (%) 16.71 8.23 36.33 22.91 100

NAND2-gate 102,500 50,560 222,432 140,442 600,909
FMax (MHz) 104 90 106 91 100
Power (mW) 42.75 37.57 53.06 80.89 551.4
Power (%) 7.75 6.81 9.62 14.67 100

(1.8-V @ 100-MHz)

5.1.3 TEE-HW with Isolated Root-of-Trust

The proposed TEE-HW SoC in Figure 4.15 was implemented in both FPGA
and VLSI with the default configuration. That means the TEE processors are
the dual-core of Rocket and BOOM with the ISA of RV64GC; each core has 16-
KB for each instruction cache and data cache. The size of the L2 cache is 512-
KB. The isolated sub-system is included, and the IBex core has a 4-KB of the
instruction cache. The PCIe connection is excluded. And all modules in the
utility group and crypto-core group, as shown in Figure 4.15, are included.

The chosen FPGA is the Virtex-7 XC7VX485T Xilinx FPGA, and Table 5.5
gives the resources utilization by total and by different parts of the system.
The entire design occupied 51.3% of the FPGA resources, and nearly half of it
was because of the BOOM core with 22.86%. The 7.64% FPGA resources were
for the Rocket core, almost one-third compared to the BOOM core. The whole
isolated sub-system cost 2.02% FPGA resources, nearly a quarter compared
to the Rocket-core. The crypto-cores needed a very few FPGA resources with
0.0451%, 0.51%, 1.1%, 1.86%, and 0.59% for the TRNG, Ed25519 base-point
multiplication, Ed25519 sign, SHA3-512, and AES-128/256 modules, respec-
tively.
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TABLE 5.5: Performances of the proposed TEE SoC in Virtex-7
FPGA (XC7VX485T).

BOOM Rocket IBex∗ TRNG
Logic LUT 66,525 24,817 7,465 198

Slices Flip-Flop 44,520 12,312 3,253 21
Total LUT 111,045 37,129 9,793 219

BRAM 62 63 12 0
DSP block 36 15 4 0

FPGA utilization (%) 22.86 7.64 2.02 0.0451
Area Rocket-based (%) 299.08 100 26.38 0.59

overhead Total-based (%) 44.57 14.9 3.93 0.0879
Ed25519 SHA3 AES Totalmul sign

Logic LUT 2,305 5,344 8,881 2,710 149,765
Slices Flip-Flop 3,767 4,630 2,825 2,860 99,411

Total LUT 2,465 5,344 9,013 2,842 249,176
BRAM 4 0 0 0 283

DSP block 16 0 0 0 71
FPGA utilization (%) 0.51 1.1 1.86 0.59 51.3

Area Rocket-based (%) 6.64 14.39 24.28 7.65 671.11
overhead Total-based (%) 0.99 2.15 3.62 1.14 100

∗Including the isolated sub-system.
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TABLE 5.6: Area synthesis results of the proposed TEE SoC in
ROHM-180nm technology.

Cell-count Cell-area
(NAND2) µm2 %

Total system 666,957 63,163,554 100.00
BOOM 362,038 18,745,262 29.68

core 142,090 3,615,820 5.72
dcache 20,722 4,171,936 6.61
icache 170,942 9,955,331 15.76
fpu 18,103 434,456 0.69

Rocket 94,663 6,673,530 10.57
core 23,290 593,378 0.94
dcache 10,584 2,773,067 4.39
icache 17,848 2,283,889 3.62
fpu 37,864 880,321 1.39

IBex∗ 25,508 2,641,567 4.18
core 22,113 1,234,939 1.96

L2 cache 41,072 30,663,467 48.55
Ed25519 58,559 2,336,819 3.70

sign 25,380 630,950 1.00
mul 26,464 1,488,695 2.36

SHA3 26,130 650,604 1.03
AES 16,325 412,932 0.65
BootROM 7,465 120,438 0.19
TRNG 268 3,984 0.0063

∗Including the isolated sub-system.

For the VLSI implementation, the TEE SoC was also synthesized by a typi-
cal bulk process; the ROHM-180nm process library was chosen, and Table
5.6 and Table 5.7 gives the results of the system together with its submo-
dules. The synthesis results were reported by using the Cadence’s Genus
tool version 18.13. According to the table, the L2 cache cost the most die
area with 48.55%, nearly half of the chip, while consuming just 5.84% total
power. For the most power consumption, the BOOM tile, including the core,
two caches, and its floating-point unit, achieved 54.35%, more than half of
the total power, while occupied only 29.68% of the chip area. The Rocket tile
reached a fair value of 10.57% and 15.66% for the total area and power con-
sumption, respectively. The IBex tile was relatively small, with 4.18% and
2.14% for the total size and power consumption, respectively. Compared
to the Rocket tile, the area and power overheads of the whole isolated sub-
system were 39.58% and 13.64%, respectively.
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TABLE 5.7: Power consumption synthesis results of the pro-
posed TEE SoC in ROHM-180nm technology.

Power
Leakage (nW) Dynamic (µW) Total (µW) %

Total system 8,725.42 2,121,323 2,121,332 100.00
BOOM 4,890.36 1,152,855 1,152,860 54.35

core 1,668.91 532,203 532,205 25.09
dcache 327.11 60,191 60,191 2.84
icache 2,549.61 501,332 501,335 23.63
fpu 203.45 31,607 31,607 1.49

Rocket 1,138.11 332,103 332,104 15.66
core 288.90 67,958 67,959 3.20
dcache 138.99 30,684 30,684 1.45
icache 260.58 49,793 49,793 2.35
fpu 368.97 166,620 166,620 7.85

IBex∗ 265.06 45,291 45,291 2.14
core 203.98 32,507 32,508 1.53

L2 cache 648.99 123,889 123,889 5.84
Ed25519 783.50 240,425 240,425 11.33

sign 311.78 65,797 65,797 3.10
mul 341.72 154,598 154,598 7.29

SHA3 276.19 31,792 31,792 1.50
AES 205.29 37,515 37,515 1.77
BootROM 47.71 2,889 2,889 0.14
TRNG 1.76 133 133 0.0063

∗Including the isolated sub-system.

5.2 TEE Boot Performance

To test the performance of the TEE boot flow, the FPGA implementation
was run with pure-software and hardware-accelerated FSBL programs. The
SHA3, Ed25519-multiplier, and Ed25519-sign crypto-cores push the boot-
loader payload for hashing, keys generation, and signing. Several payload
sizes were run in the same setting to measure the execution times. Figure 5.1
presents the results of software versus hardware; both were run with the sys-
tem clock of 100-MHz. The chosen FPGA board for testing is the Altera DE4
FPGA. The payload includes the Linux bootloader, the Linux kernel, and the
initial filesystem. The payload size was changed by expanding the initial
filesystem with random data in the image file. For both software and hard-
ware implementations, the time increments exponentially. For any stream
size, the execution time on the hardware-accelerated version decreased about
2.5-decades compared to the pure-software approach.
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FIGURE 5.1: Comparison between software and hardware im-
plementation of the TEE boot including SHA3 and Ed25519 ac-

celerations.

The TEE boot flow presented in Figure 4.14 mainly used the SHA3 hashing,
leaving the Ed25519 genkey and sign as a new calculation process. There-
fore, Table 5.8 was made to offer a broader perspective on the individual
processes of genkey and sign. According to the table, the all software app-
roach presents a significant execution time in the case of the signing proce-
dure. The main reason is that the payload needs to be hashed twice in the
sign program. On the other hand, for the genkey, replacing software SHA3
with hardware SHA3 did not impact as much time as it did in the signing
process. It is because, in the genkey process, the hash was performed only
on the 256-bit stream. Comparing the second column with the third column
in Table 5.8, we see nearly the same portion of decrements, about 90%, when
the hardware equivalent replaced the software Ed25519.

TABLE 5.8: Execution times for genkey and sign processes.

2MB Software SHA3 Hardware SHA3 Hardware SHA3
bootloader Software Ed25519 Software Ed25519 Hardware Ed25519
genkey (ms) 109.5 93.4 4.6

sign (ms) 231,019 82.6 4.7
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5.3 System-on-Chip Implementation
5.3.1 Design
Finally, the proposed architecture in Figure 4.15 was made into two ROHM-
180nm chips, one with 64-bit dual-core Rocket-BOOM and one with 32-bit
dual-core Rocket-BOOM. To better fit in chips, several things were reduced
compared to the architecture shown in Figure 4.15. The PCIe connection was
excluded, the DDR controller was cut, and the MBus was exported as chip’s
I/Os. All the peripherals shown in the utility and crypto-core groups are
included. The isolated sub-system is included. The 512-KB L2 cache was
removed, and the 16-KB of L1 caches were reduced to 4-KB. Two chips have
dual-core processors with Rocket core first and BOOM core second. The 64-
bit TEE processors version was made into a 5.0×7.5-mm2 chip, and the 32-bit
TEE processors version was made into a 5.0×5.0-mm2 chip. Figure 5.2 and
Figure 5.3 show the floorplans of the two chips, and Figure 5.4 and Figure 5.5
give the layouts of them. Barechip images are shown in Figure 5.6 and Figure
5.7 with proper notes for each sub-module. The two chips were made using
the Cadence design flow with Genus tool for synthesis and Innovus tool for
PnR. Table 5.9 gives the results reported by the synthesis tools.
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FIGURE 5.2: Floorplan of the ROHM-180nm 32-bit dual-core
Rocket-BOOM plus the isolated sub-system (5.0×5.0-mm2).
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FIGURE 5.3: Floorplan of the ROHM-180nm 64-bit dual-core
Rocket-BOOM plus the isolated sub-system (5.0×7.5-mm2).
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FIGURE 5.4: Layout of the ROHM-180nm 32-bit dual-core
Rocket-BOOM plus the isolated sub-system (5.0×5.0-mm2).

113



Chapter 5. Performance Analysis

FIGURE 5.5: Layout of the ROHM-180nm 64-bit dual-core
Rocket-BOOM plus the isolated sub-system (5.0×7.5-mm2).
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FIGURE 5.6: Barechip image of the ROHM-180nm 32-bit dual-
core Rocket-BOOM plus the isolated sub-system (5.0×5.0-

mm2).
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FIGURE 5.7: Barechip image of the ROHM-180nm 64-bit dual-
core Rocket-BOOM plus the isolated sub-system (5.0×7.5-

mm2).
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TABLE 5.9: VLSI synthesis reports of the two ROHM-180nm
chips, the design of dual-core Rocket-BOOM TEE-HW system

with isolated architecture.

Process ROHM-180nm
(1.8-V @ 100-MHz)

Cores Rocket-BOOM and IBex Rocket-BOOM and IBex
ISA RV32IMAC RV64IMAFDC
Instruction 4-KB 4-KB

Caches Data 4-KB 4-KB
L2 none none

Die 5.0×5.0-mm2 5.0×7.5-mm2

4,559.52×4,556.16-µm2 4,559.52×7,217.28-µm2

Area Core = 14.96-mm2 = 23.4-mm2

≈ 1,545,599-NAND2 ≈ 2,418,005-NAND2
Cell 360,339 631,597

MOSFET 7,332,462 11,722,810
Density 72.64% 71.62%

Power @Synthesis 1,098.74 2,084.05
(mW) @PnR 846.5 1,378
FMax @Synthesis 26 10

(MHz) @PnR 50 50

5.3.2 Measurement Results

Two ROHM-180nm chips were made for the demonstration, one with 32-
bit and one with 64-bit TEE processors. Because they are different only in the
ISA, their pinouts are identical. Hence, both chips were packaged in the same
257-pin PGA with the same pinouts to save resources. As a result, there is
only one PCB needed for testing the chips. Figure 5.8 shows the testing PCB
with a chip inside its socket. For better stability, the critical peripherals such
as SD-card, UART, and flash were designed in PMOD headers and attached
with small circuits outside. Similar to the previous PCBs, this PCB also can
choose a power supply and clock source. The power and clock can be pro-
vided by either the FPGA or from external sources via jumpers. Figure 5.9
shows the working PCB mounting on the TR4 FPGA board to use the FPGA’s
DIMM RAM.
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FIGURE 5.8: PCB for testing the two TEE-HW with isolated
architecture ROHM-180nm chips.

FIGURE 5.9: The TEE-HW with isolated architecture PCB
mounts on the TR4 FPGA board.
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In ROHM-180nm technology, the default VTH is about 1.0-V and the recom-
mended operating VDD is 1.8-V. Therefore, the ROHM-180nm chip measure-
ment was done with the VDD range of 1.0-V to 2.0-V. Figure 5.10 shows the
changes in FMax with VDD for the 32-bit 5.0×5.0-mm2 version. We can see that
the FMax performances increased almost linear with VDD increment, about
5.75-MHz per 0.1-V of VDD increment. The lowest and highest FMax were 36-
MHz and 82-MHz achieved at 1.2-V and 2.0-V VDD, respectively. Figure 5.11
and Figure 5.12 show the PActive and PActive/FMax of the 5.0×5.0-mm2 chip,
respectively. In general, their changes were almost linear, with roughly about
58.9-mW (0.51-mW/MHz) per 0.1-V VDD. The lowest and highest PActive
were 105.47-mW (2.93-mW/MHz) and 576.68-mW (7.03-mW/MHz) at 1.2-V
and 2.0-V of VDD, respectively.

FIGURE 5.10: ROHM-180nm TEE-HW with isolated RoT, 32-bit
version (5.0×5.0-mm2): FMax vs. supply voltages.

FIGURE 5.11: ROHM-180nm TEE-HW with isolated RoT, 32-bit
version (5.0×5.0-mm2): PActive vs. supply voltages.
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FIGURE 5.12: ROHM-180nm TEE-HW with isolated RoT, 32-bit
version (5.0×5.0-mm2): PActive/FMax vs. supply voltages.

FIGURE 5.13: ROHM-180nm TEE-HW with isolated RoT, 32-bit
version (5.0×5.0-mm2): PSleep vs. supply voltages.

Figure 5.13 shows the leakage power of the 5.0×5.0-mm2 chip in the changes
with VDD. The sleep-state was measured when the clock was cut off. From
the figure, the changes is nearly linear, with about 0.21-µW per 0.1-V VDD.
The lowest and highest leakage power consumption were 1.17-µW and 2.88-
µW at 1.2-V and 2.0-V VDD, respectively.
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For the 64-bit version of the chip, the same measurement was done with the
VDD range of 1.0-V to 2.0-V. Figure 5.14 shows the changes in FMax with
VDD for the 5.0×7.5-mm2 version. We can see that the FMax performances
increased almost linear with VDD increment, about 3.25-MHz per 0.1-V of
VDD increment. The lowest and highest FMax were 27-MHz and 53-MHz
achieved at 1.2-V and 2.0-V VDD, respectively. Figure 5.15 and Figure 5.16
show the PActive and PActive/FMax of the 64-bit chip, respectively. In gene-
ral, their changes were almost linear, with roughly about 61.06-mW (0.87-
mW/MHz) per 0.1-V VDD. The lowest and highest PActive were 123.71-mW
(4.58-mW/MHz) and 612.18-mW (11.55-mW/MHz) at 1.2-V and 2.0-V of
VDD, respectively.

FIGURE 5.14: ROHM-180nm TEE-HW with isolated RoT, 64-bit
version (5.0×7.5-mm2): FMax vs. supply voltages.

FIGURE 5.15: ROHM-180nm TEE-HW with isolated RoT, 64-bit
version (5.0×7.5-mm2): PActive vs. supply voltages.
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FIGURE 5.16: ROHM-180nm TEE-HW with isolated RoT, 64-bit
version (5.0×7.5-mm2): PActive/FMax vs. supply voltages.

FIGURE 5.17: ROHM-180nm TEE-HW with isolated RoT, 64-bit
version (5.0×7.5-mm2): PSleep vs. supply voltages.

Figure 5.17 shows the leakage power of the 64-bit TEE-HW with isolated
architecture chip. From the figure, the changes is nearly linear, with about
0.33-µW per 0.1-V VDD. The lowest and highest leakage power consumption
were 1.94-µW and 4.6-µW at 1.2-V and 2.0-V VDD, respectively. For a better
comparison between the two measurements, key features of the two chips
are summarized in Table 5.10.
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TABLE 5.10: TEE-HW with isolated architecture chips’ features
summary.

Process ROHM-180nm
Cores Rocket-BOOM and IBex Rocket-BOOM and IBex
ISA RV32IMAC RV64IMAFDC
Instruction 4-KB 4-KB

Caches Data 4-KB 4-KB
L2 none none

Die 5.0×5.0-mm2 5.0×7.5-mm2

4,559.52×4,556.16-µm2 4,559.52×7,217.28-µm2

Area Core = 14.96-mm2 = 23.4-mm2

≈ 1,545,599-NAND2 ≈ 2,418,005-NAND2
Cell 360,339 631,597

MOSFET 7,332,462 11,722,810

VDD
I/O 1.8-V 1.8-V

Core 1.2-V to 2.0-V 1.2-V to 2.0-V

Peak at 2.0-V VDD at 2.0-V VDD

performance FMax=82-MHz FMax=53-MHz
PActive=7.03-mW/MHz PActive=11.55-mW/MHz

Best power at 1.2-V VDD at 1.2-V VDD

density FMax=36-MHz FMax=27-MHz
PActive=2.93-µW/MHz PActive=4.58-µW/MHz

5.4 Comparison and Discussion
5.4.1 Comparison

For the comparison between cores, the Drystone test was conducted for both
IBex core and Rocket core, and Table 5.11 gives the experimental results. Be-
cause the ISA of the IBex is RV32IMC, the test on the Rocket core was re-
peated by the same ISA. The Dhrystone test was run 500 times, and the ave-
rage values were recorded. According to Table 5.11, the Rocket core achieved
1.573 to 1.713-DMIPS/MHz, which is a good result compared to an average
processor [136]. The IBex core scored 0.434-DMIPS/MHz, which falls into
the mid-range MCUs [137]. The DMIPS/MHz results of the Rocket core were
about 3.62× to 3.95× compared to that of the IBex core. Although the IBex
core is much slower than the Rocket, considering it still can use crypto-cores
to accelerate its boot program, the boot speed when swapping a Rocket for
an IBex is not much of a change.
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TABLE 5.11: Dhrystone tests comparison between IBex and
Rocket cores.

Core ISA Dhrystone/s DMIPS/MHz Changes

Rocket RV64GC 150,511 1.713 3.95×
RV32IMC 138,197 1.573 3.62×

IBex RV32IMC 38,165 0.434 1.00×

TABLE 5.12: Area comparison with recent RISC-V-based TEE
SoCs that support secure boot process.

Design Registers LUTs
Overhead (+%) Overhead (+%)

This Baseline: Dual-Rocket 24,624 74,258

work + IBex1 +3,253 (13.21%) +9,793 (13.19%)

(2021) + crypto-cores2 +14,103 (52.27%) +19,883 (26.78%)
+ IBex1 + crypto-cores2 +17,356 (70.48%) +29,676 (39.96%)

ITUS Baseline: Dual-Rocket 24,624 74,258

[11, 12] + CAU +6,722 (27.30%) +27,170 (36.59%)

(2019) + KMU +3,344 (13.58%) +29,529 (39.77%)
+ CAU + KMU +10,066 (40.88%) +56,699 (76.35%)

HECTOR-V Baseline: Single-lowRISC 55,443

[9] with RI5CY N/A +8,205 (14.80%)

(2021) with Remus +11,581 (20.89%)
with Frankenstein +13,303 (23.99%)

1Including the isolated sub-system.
2Including SHA-3, AES, Ed25519, and TRNG.

Table 5.12 shows the FPGA results compared to recent similar implementa-
tions, and Table 5.13 gives the comparison regarding the security and flexi-
bility features. For details about ITUS, WorldGuard, HECTOR-V, and CURE
architectures, please refer to the section 2.3.
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TABLE 5.13: Comparison with recent security-driven RISC-V-
based SoCs, regarding the security and flexibility features;  ,
G#, and# rank the performance from best to worst, respectively.

CURE HECTOR-V WorldGuard ITUS This
[8] [9] [10] [11, 12] work

Open-source # # G# # G#
Secure boot G#  G#   

Flexible boot process    #  
TEE & secure boot iso. # # #   

Exclusive TEE processor G#  G# # #
Exclusive secure storage #  #   

Secure I/O paths   G# # #
Crypto. accel. # # G#   
SCA resilience   G# # #
Hardware cost  G#  # G#

High expressiveness G#  G# # G#
Low porting efforts # # G#   
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The comparison keys used in Table 5.13 are:

• Open-source. The source codes are available for modification.

• Secure boot. Has a clear secure boot process with RoT.

• Flexible boot process. The boot process is flexible and can be updated.

• TEE and secure boot isolation. The secure boot process is done by the
TEE processor or by another party?

• Exclusive TEE processor. TEE is executed by an exclusive processor or
sharing processors with the REE?

• Exclusive secure storage. The proposed system has a safe place to store
the root key(s) and the first bootloader. The storage could be ROM or
otherwise, as long as it is inaccessible for the application processors
after boot.

• Secure I/O paths. The proposed architecture could bind a peripheral to
an isolated environment and make a direct secure connection.

• Cryptographic accelerators. Hardware accelerators for cryptographic
functions are provided in the system.

• SCA resilience. The ability to prevent some SCAs.

• Hardware cost. The amount of resources that the proposed architecture
needs, compared in the overhead ratio. Low is around 5-10%, medium
is around 20%-25%, and high is around 50%.

• High expressiveness. The proposed architecture allows multi/hyper-
threading, flexible isolation enforcement, memory encryption, cache
partitioning, and so on.

• Low porting effort. The development effort for adapting/porting the
proposed design.

In ITUS [11, 12], they try to solve the secure boot in TEE by a pure hardware
approach. The new hardware modules are introduced, Code Authentication
Unit (CAU) and Key Management Unit (KMU). The KMU contains a PUF
and a TRNG for keys generation and distribution. The CAU handles pro-
gram authentication by using an ECDSA and an SHA-3 to sign and verify.
Because their solution is based solely on hardware, their approach would
not be flexible. On the other hand, the IBex’s program could do any cryp-
tographic functions given in [11, 12]. The crypto-cores in our system are not
necessary for a secure boot; they just help accelerate the program. On the
other hand, due to the complete hardware approach, ITUS has to realize all
cryptographic functions needed in the boot process, thus increasing the re-
sources significantly when the complexity of those functions goes up. For
the comparison in Table 5.12, if the IBex sub-system is compared to CAU or
KMU, our work will achieve the least expense. If the crypto-cores are also
included in the comparison, our resources would be approximately equal to
ITUS with CAU + KMU. Because ITUS has a similar goal with ours, which is
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to remove the RoT and boot process from the TEE domain, the SCAs in ITUS
and ours are considered out of scope.

In WorldGuard [10], a security scheme with IDs is implemented across the
entire system for solid isolation. The goal of WorldGuard is to strengthen
the existing TEEs, not to provide a secure boot process like ours. For the
secure boot, WorldGuard utilizes the conventional boot flow with root keys
and the first bootloader pre-stored in ROM at the time manufactured. The
bootloader is then executed first to verify and load the SM into the working
RAM. Therefore, the RoT and the boot program are still in the TEE domain.
Hence, the attack surface in WorldGuard still exists. Although WorldGuard
opens its bootloader program, its hardware is not opened. Thus, we cannot
compare WorldGuard’s sizes with our implementation.

In HECTOR-V [9], the design comes from two novel ideas, the heterogeneous
architecture for separating REE and TEE domains, and the security-hardened
TEE processor for SCAs resilience. In HECTOR-V, the secure boot process is
done using the TEE core. Therefore, HECTOR-V’s boot program is flexible
and can be updated like our approach. Although the secure storage element
is introduced that can be inaccessible from the REE domain after boot, the
RoT and the boot program are still visible from the TEE’s eyes. In contrast,
our implementation ultimately moves the RoT and the secure boot process
out of the TEE’s domain, thus eliminating the potential threats from the ma-
licious TEE’s enclaves. Although the HECTOR-V’s set goal is different from
ours, we could still compare in terms of the secure boot’s hardware require-
ments, as given in Table 5.12. According to the table, the IBex sub-system is
smaller than HECTOR-V with Remus or HECTOR-V with Frankenstein but
bigger than HECTOR-V with RI5CY.

In CURE [8], a new TEE model is proposed together with new hardware
primitives for fine-tuning the security strength in TEE. The main goal of the
CURE is a TEE model that can support multi-type enclaves while maintain-
ing strong isolation between them. To achieve that, new hardware modi-
fications are added across the system at many architectural levels, such as
registers in the core, access controller in the system bus, and way-based par-
titioning in the shared cache. Although CURE tailors the hardware for in-
creasing the TEE’s security level, it considers the secure boot with RoT out
of scope. In CURE, the RoT is assumed at reset, and the secure boot pro-
cess is provided beforehand. Therefore, besides security features, we cannot
include the CURE resources in the comparison in Table 5.12.

5.4.2 Security Analysis

The goals of the proposed TEE-HW are: (i) accelerating the boot process by
using crypto-cores and (ii) isolating the boot program with RoT from the
TEE processors. The used TEE model in the implementation is Keystone
[7]; thus, the proposed design inherits all of the Keystone’s advantages and
disadvantages. For more detail on the Keystone TEE, please refer to section
2.2.7.
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To summarize Keystone, the threat model of Keystone considers a strong
software adversary that can compromise all of the software stack and a strong
physical adversary that can corrupt peripherals and memory communica-
tions. A malicious enclave is also considered in the Keystone model. At
S-mode, the Eyrie runtime provides the OS-equivalent services and ensures
the validity of address mappings, thus preventing mapping attacks [138].
Furthermore, thanks to the runtime, the enclaves don’t have to rely on the
OS for critical functions; hence, they can defend against controlled SCAs
that exploit the sharing states across domains, like interrupt handlers and
table paging. At M-mode, the PMP feature defines the memory access rights.
Therefore, any direct attempt to read enclave’s data will be denied by the
PMP, preventing the software adversary [7]. In Keystone, the SM performs
a clean context switch by flushing enclave states. Together with cache par-
titioning, the cache-based SCAs are prevented. Moreover, an enclave can be
encrypted, and its page table can be self-managed; thus, any subtle attacks
like controlled SCAs are impossible. Finally, Keystone also offers plugins to
strengthen the TEE, such as memory encryption, enclave dynamic resizing,
edge call service, and syscall services [7]. In Keystone and our implementa-
tion, the speculative attacks, timing SCAs, and SCAs that exploit hardware
flaws in the off-chip components are considered out of scope. Finally, al-
though possible, the enclave-to-peripheral binding is not recommended in
the current implementation because introducing a peripheral driver into the
runtime is not a two-way binding process, thus allowing DMA-capable peri-
pherals attacks.

About the RoT and the secure boot process, not just Keystone but TEE mod-
els, in general, consider the secure boot process out of scope. In the end,
TEE is just an isolated environment; it shouldn’t be the RoT. As a general
rule of thumb, a secure boot process with RoT is recommended to be run
by hardware primitives or another entity inaccessible from the TEE’s eyes.
Common TEEs use extra hardware or third-party IPs to deliver the secure
boot. In Keystone, the trusted domain operates based on the assumption
that the hardware signed the SM during boot. Therefore, trusted hardware
is needed for delivering that secure boot process with RoT. And that is the
primary goal of the proposed TEE-HW in this dissertation. By introducing a
secure boot mechanism with silicon level RoT, the CoT is completed, and the
device’s integrity is guaranteed.

As described in section 4.3.3, with all of the cryptographic keys are inter-
locked with each other, a direct attack to the keys chain is impossible. For
example, The public root key PR and the secret device key SD are stored in
the hidden ROM inside the isolated domain, and the secret root key SR is
not even in the chip. Only the public device key PD is available in the public
domain after boot and for the sole purpose of verification. Additionally, due
to the isolation dictated by the bus architecture, even if a malicious enclave
could hack the TEE side, it cannot retrieve any data in the hidden ROMs by
any means. From the software perspective, the only attack surface left is by
exploiting the interrupt channel for attestation. However, the IBex core only
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responds to external interrupts based on its program. Thus, the IBex’s pro-
gram can be updated in the future at any time to adapt to the new attack
vector, if there is one. To conclude, the proposed secure boot scheme can still
safeguard its secrets even if the TEE processors were compromised.

5.5 Summary

In this chapter, the performances of TEE-HW were presented. The completed
systems were implemented in both FPGA and VLSI, and the results were
reported. The boot performance using cryptographic accelerators was also
given in this chapter. The heterogeneous design with isolated sub-system for
secure boot process was made into two ROHM-180nm chips, and their mea-
surement results were presented. The comparison with other recent works
was analyzed, and security analysis was given.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

6.1.1 Achievements

This dissertation proposed a Trusted Execution Environment HardWare (TEE-
HW) framework that is easy to use, flexible for various needs, and easy to up-
date in the future. Then based on the framework, a completed TEE-HW com-
puter system was developed and tested. The proposed TEE-HW architecture
contains several cryptographic accelerators for enhancing boot performances
and increasing the security level. Finally, a heterogeneous architecture with
an isolated sub-system was developed. The hidden Micro-Controller Unit
(MCU) in the isolated architecture provides not only the secure Root-of-Trust
(RoT) implementation but also the ability to adapt to the future changes
of the boot sequence. To summary, the key achievements are described as
follows:

1. The TEE-HW framework: by understanding that security is a race bet-
ween attacker and defender, the goal of this dissertation is not only
about the development of a fully protected computer system but also
about a hardware framework that can be easily updated in the long
run. In addition, all the source codes will be published in the open-
source RISC-V community, thus opening up many opportunities for
future developers to reuse and make further improvements.

2. TEE-HW with cryptographic accelerators: although the TEE hardware
has been defined for memory isolation, the security algorithms often
are executed using software implementations. Therefore, a custom TEE-
HW was made exclusively for accelerating the TEE. Currently, the archi-
tecture contains several crypto-cores such as Advanced Encryption Stan-
dard (AES), Secure Hashing Algorithm 3 (SHA3), Ed25519, and True
Random Number Generator (TRNG). The crypto-cores have been proven
to be efficient not only for performance but also for security strength.
The best part about the proposed architecture is that it is flexible and
easily reconfigured for specific requirements just by changing variables
in the Makefile system.
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3. TEE-HW with isolated RoT: although various RoT implementations
were proposed, some relied on obscurity to preserve the root keys,
and others used a fixed circuit to do the RoT. As a result, they did not
provide the flexibility for the keys generation scheme. Therefore, this
dissertation’s critical achievement is developing an RoT implementa-
tion in an isolated architecture for RISC-V-based TEE System-on-Chips
(SoCs). The idea was based on a heterogeneous machine by combining
an outside untrusted user-mode, typically Operating System (OS), with
an inside isolated machine-mode (a hidden MCU). The untrusted side
allows the user to interact with everyday activities, while the hidden
MCU will take care of the sensitive data and cryptographic activities,
such as secure boot, key generation, and sign and authenticate.

4. Silicon-proof TEE-HW chips: the proposed TEE-HW SoC was tested
on Field-Programmaple Gate Array (FPGA) and then realized in Very
Large Scale Integrated circuit (VLSI). Two ROHM-180nm chips were
made, and the measurements were delivered.

6.1.2 Limitations

In this dissertation, there are several limitations have been recognized as
follows:

1. During the chip measurement, significant time was wasted on fixing
the testing Printed Circuit Board (PCB). This problem is related to the
number of pinouts of the SoC. Because we have to mount the PCB onto
an FPGA to use its Double Data Rate (DDR) memory, the number of
pinouts in both parties is extensive. Furthermore, the overall perfor-
mance of the system could be potentially limited by this problem.

2. The maximum operating frequencies (FMax) of the chips are low. They
are roughly about 50-MHz, although the design itself could go more
than 100-MHz. This problem is because of the Inputs/Outpus (I/Os).
In ROHM-180nm technology, the oscillating frequency that I/O allows
is about 50-MHz to 100-MHz. And because an I/O pin will feed the
internal system clock, thus the final FMax is hard to get close the 100-
MHz.

3. The next issue is related to the limited optional security features. Cur-
rently, only four crypto-cores are available, including SHA3, AES, Ed25519,
and TRNG. The number of recent cryptographic functions is much more
than that.

4. The final problem is about the root keys in the proposed isolated archi-
tecture. By using Read-Only Memory (ROM) to store the root keys,
the flexibility of the booting sequence is limited. With ROM inside the
chip, the root keys can not be changed after being fabricated. Thus,
some other implementations such as One-Time Programmable (OTP)
memory of flash will be more helpful.
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Chapter 6. Conclusion and Future Work

6.2 Future Work

6.2.1 Improve I/O Performance

To overcome the issue with the number of pinouts, Serializer/Deserializer
(SerDes) architecture [139] could be used. SerDes is a way to convert any
bus protocol into a series of parallel-to-serial and serial-to-parallel packages.
Thus, we can fine-tune our performances to the available resources. Further-
more, unlike TileTink, SerDes is the protocol that was designed to use for
off-chip communication. Hence, the expected speed of the SerDes to be used
as General-Purpose IO (GPIO) will be higher than directly exporting out the
TileLink bus.

For the problem with the maximum operating frequencies, a Phase Locked
Loop (PLL) or Frequency Locked Loop (FLL) is suggested to be implemented
inside the chip. Then, the on-chip-communication system-clock and the off-
chip-communication SerDes-clock can be separated. The SerDes-clock speed
will be limited by I/Os at around 50-MHz as usual. But the internal system
clock will be fed by the embedded PLL or FLL, which can be much higher
than 100-MHz.

6.2.2 Develop Recent Cryptographic Hardware

To keep up with the security development trend, many crypto-cores must be
added to the current TEE-HW framework. Figure 6.1 shows the future ver-
sion of the architecture presented in this dissertation. The reason why those
crypto-cores were chosen for the next version is because of the latest version
of Transport Layer Security (TLS), version 1.3 [140]. The TLS v1.3 was chosen
as a guide for developing new crypto-cores because it is a well-known and
the most used cryptographic protocol, specially designed for secure com-
munication over the internet. According to the TLS v1.3, the crypto-cores
that need to be developed are the AES Galois Counter Mode (AES-GCM)
[141], Hashed Message Authentication Code SHA2 (HMAC-SHA2) [142],
Rivest-Shamir-Adleman (RSA) [113], ChaCha20 [143], Poly1305 [144], Au-
thenticated Encryption with Associated Data (AEAD) [145], Elliptic Curve
Digital Signature Algorithm (ECDSA) [114], and Edwards-curve Digital Sig-
nature Algorithm (EdDSA) [115].

6.2.3 Other Improvements

A Physical Unclonable Function (PUF) should be developed in the near fu-
ture, as shown in Figure 6.1, for adding more flexibility to the current isolated
architecture. With PUF and TRNG, the system will have more options for the
secure boot program. For example, by using PUF together with TRNG, the
TRNG fault attacks [14, 15] can be prevented, thus increasing the security
level for the EC-genkey in the current boot flow, as shown in Figure 6.3.
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6.2. Future Work

Finally, the storing place for the root/device keys (i.e., PR and SD in Figure
6.3) should have the option for OTP memory or flash memory instead of
ROM. With an OTP memory, the fabrication process does not fix those root/device
keys. Hence, the keys can be programmed after taped-out, thus leading to
different keys for each chip. Similarly, if we have on-chip flash memory, we
can re-program the root/device keys for other purposes or other keys sche-
duling schemes. The on-chip OTP or flash memories are for more versatile
usage, not for security reasons.
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[13] A. Waterman, K. Asanović, and John Hauser, “The RISC-V Instruction
Set Manual Volume II: Privileged Architecture,” SiFive Inc. and
EECS Dep., Univ. of California, Berkeley, Tech. Rep., Dec. 2021.
[Online]. Available: https://github.com/riscv/riscv-isa-manual/
releases/download/Priv-v1.12/riscv-privileged-20211203.pdf

[14] H. Martín, T. Korak, E. S. Millán, and M. Hutter, “Fault Attacks on
STRNGs: Impact of Glitches, Temperature, and Underpowering on
Randomness,” IEEE Trans. on Info. Forensics and Secu., vol. 10, no. 2,
pp. 266–277, Feb. 2015.

[15] S. Larimian, M. R. Mahmoodi, and D. B. Strukov, “Lightweight Inte-
grated Design of PUF and TRNG Security Primitives Based on eFlash
Memory in 55-nm CMOS,” IEEE Trans. on Electron Devices, vol. 67, no. 4,
pp. 1586–1592, Mar. 2020.

[16] A. Waterman and K. Asanovi´c, “The RISC-V Instruction Set Manual
Volume I: Unprivileged ISA,” SiFive Inc. and EECS Dep., Univ. of
California, Berkeley, Tech. Rep., Dec. 2019. [Online]. Available: https:
//riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf

[17] Unified Extensible Firmware Interface Forum. (May 2020) Unified
Extensible Firmware Interface (UEFI) Specification, Version 2.8
Errata B. [Online]. Available: https://uefi.org/sites/default/files/
resources/UEFI%20Spec%202.8B%20May%202020.pdf

[18] Jessie Frazelle, “Securing the Boot Process,” Commun. ACM, vol. 63,
no. 3, pp. 38––42, Feb. 2020.

[19] V. Costan and S. Devadas, “Intel SGX Explained,” Cryptology ePrint
Archive, Report 2016/086, Jan. 2016, https://eprint.iacr.org/2016/086.

[20] V. Costan, I. Lebedev, and S. Devadas, Secure Processors Part I: Back-
ground, Taxonomy for Secure Enclaves and Intel SGX Architecture. Now
Foundations and Trends, Jul. 2017.

[21] ——, Secure Processors Part II: Intel SGX Security Analysis and MIT Sanc-
tum Architecture. Now Foundations and Trends, Jul. 2017.

[22] A. Baumann, M. Peinado, and G. Hunt, “Shielding Applications from
an Untrusted Cloud with Haven,” in USENIX Symp. on Operating Syst.
Design and Imple. (OSDI), Broomfield, CO, USA, Oct. 2014, pp. 267–283.

140

https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf
https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf
https://uefi.org/sites/default/files/resources/UEFI%20Spec%202.8B%20May%202020.pdf
https://uefi.org/sites/default/files/resources/UEFI%20Spec%202.8B%20May%202020.pdf
https://eprint.iacr.org/2016/086


BIBLIOGRAPHY

[23] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A Practical Library
OS for Unmodified Applications on SGX,” in USENIX Annual Technical
Conf. (ATC), Santa Clara, CA, USA, Jul. 2017, pp. 645–658.

[24] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J.
Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer, “SCONE: Secure Linux
Containers with Intel SGX,” in USENIX Symp. on Operating Syst. Design
and Impl. (OSDI), Savannah, GA, USA, Nov. 2016, pp. 689–703.

[25] S. Pinto and N. Santos, “Demystifying Arm TrustZone: A Comprehen-
sive Survey,” ACM Comput. Surv., vol. 51, no. 6, pp. 1–36, Nov. 2019.

[26] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno, “Komodo:
Using Verification to Disentangle Secure-Enclave Hardware from Soft-
ware,” in Symp. on Operating Syst. Principles (SOSP), Shanghai, China,
Oct. 2017, pp. 287–305.

[27] Linaro Ltd. Open Portable Trusted Execution Environment. [Online].
Available: https://www.op-tee.org/

[28] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf, “SANCTU-
ARY: ARMing TrustZone with User-space Enclaves,” in Network and
Distributed Syst. Secu. (NDSS) Symp., San Diego, CA, USA, Feb. 2019,
pp. 1–15.

[29] David Kaplan. (Feb. 2017) Protecting VM Register State with SEV-ES.
[Online]. Available: https://www.amd.com/system/files/TechDocs/
Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf

[30] (Jan. 2020) AMD SEV-SNP: Strengthening VM Isola-
tion with Integrity Protection and More. [Online]. Avai-
lable: https://www.amd.com/system/files/TechDocs/SEV-SNP-
strengthening-vm-isolation-with-integrity-protection-and-more.pdf

[31] S. P. Dandamudi, Guide to RISC Processors: for Programmers and Engi-
neers. New York, NY, USA: Springer, 2005.

[32] ARM Ltd. Arm Architecture Reference Manual Armv8, for A-
profile architecture. [Online]. Available: https://developer.arm.com/
documentation/ddi0487/latest/

[33] Wikipedia. Reduced Instruction Set Computer. [Online]. Available:
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer

[34] Rupert Goodwins. (Mar. 2020) Chips that pass in the night: How risky
is RISC-V to Arm, Intel and the others? Very. [Online]. Available:
https://www.theregister.co.uk/2020/03/09/risc_v_intel_amd_arm/

[35] Y. Wang and N. Tan, “An Application-Specific Microprocessor for
Energy Metering Based on RISC-V,” in IEEE Int. Conf. on IC Design and
Tech. (ICICDT), Suzhou, China, Jun. 2019, pp. 2381–3555.

141

https://www.op-tee.org/
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0487/latest/
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://www.theregister.co.uk/2020/03/09/risc_v_intel_amd_arm/


BIBLIOGRAPHY

[36] A. Munir, M. Magdy, S. Ahmed, S. Nasr, S. E.-Ashry, and A. Shalaby,
“Fast Reliable Verification Methodology for RISC-V Without a Refer-
ence Model,” in Int. Workshop on Microprocessor and SOC Test and Verifi-
cation (MTV), Austin, TX, USA, Dec. 2018, pp. 12–17.

[37] E. Gür, Z. E. Sataner, Y. H. Durkaya, and S. Bayar, “FPGA Imple-
mentation of 32-bit RISC-V Processor with Web-Based Assembler-
Disassembler,” in Int. Symp. on Fundamentals of Electrical Engi. (ISFEE),
Bucharest, Romania, Nov. 2018, pp. 1–4.

[38] D. K. Dennis, A. Priyam, S. S. Virk, S. Agrawal, T. Sharma, A. Mondal,
and K. C. Ray, “Single Cycle RISC-V Micro Architecture Processor and
Its FPGA Prototype,” in Int. Symp. on Embedded Computing and Syst.
Design (ISED), Durgapur, India, Dec. 2017, pp. 1–5.

[39] K. Patsidis, D. Konstantinou, C. Nicopoulos, and G. Dimitrakopoulos,
“A Low-cost Synthesizable RISC-V Dual-issue Processor Core Levera-
ging the Compressed Instruction Set Extension,” Microprocessors and
Microsystems, vol. 61, pp. 1–10, Sep. 2018.
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