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Abstract Swarm robots in obstacle environments per-

form search tasks efficiently while avoiding obstacles.

Obstacle avoidance methods are classified by the way

obstacles are represented. Potential functions are typi-

cal for circular obstacles, while collision cones and polyg-

onal regions are used for non-circular obstacles. The

shape of the obstacle this paper considers is angular.

When swarm robots try to avoid angular obstacles with

potential functions, they require information such as

the relative angle between the robot and the obstacle

and the size of the obstacle. This paper focuses on the

shape parameters of angular obstacles and proposes an

easier way to avoid angular obstacles in column for-

mation. The key idea is fluid dynamics. The proposed

method is based on a Polygon-Wall expression of MPS

(Moving Particle Semi-implicit) method, a fluid dynam-
ics method. The Polygon-Wall expression allows robots

to measure the distance from the obstacle wall and

avoid the obstacle without using the relative angles and

the obstacle sizes. Usual MPS methods have the chal-

lenge of requiring centralized computation, while typ-

ical swarm robots are based on distributed computa-
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tion. Therefore, this paper addresses this challenge by

introducing potential functions into MPS method. The

contribution of this paper is to propose a distributed

obstacle avoidance method for angular obstacles with a

small number of parameter designs for swarm robots.

The results of numerical experiments reflecting these

ideas show the effectiveness of the proposed method.

Keywords Swarm Robots · Obstacle Avoidance ·
MPS method · Polygon-Wall · Formation Control

1 Introduction

A multi-agent system (MAS) is a system in which mul-

tiple agents cooperate with each other to accomplish

tasks [1–4]. Agents share information with each other
through the network to accomplish tasks more efficiently

than if they work alone. One example of tasks per-

formed by swarm robots is a search task that they per-

form while staying formation [5].

In such a task, round or angular-shaped obstacles

may be present, which the robot must avoid. Potential

method is one of the typical methods used in path plan-

ning and involves the design of a function that generates

attracting and repulsion forces with different positive

and negative values at the obstacle and target posi-

tions [6–8]. Potential functions are often used for round

obstacles because the functions become popular in a

circular fashion. Although this method also approxi-

mates angular obstacles with round obstacles, it is not

easy to represent an angular obstacle directly with a

potential function. Then, a number of researches taking

into account he obstacle shape have been studied [9–12].

[9] proposes the obstacle magnification method which

magnifies but retains the detected obstacle and [10] pro-

poses the collision cone approach which has its origin
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in aerospace domain. Also, other researches [11,12] are

being conducted on robot path planning for polygonal

environments. In these cases, a polygonal environment

is prepared to deal with angular obstacles.

Unlike previous studies [9–12], this paper tries to

propose an angular obstacle avoidance algorithm based

on the potential-like method. Our research question

is: ”What is an avoidance method that can be im-

plemented distributed to each robot like the potential

method, but with fewer configuration parameters for

angular obstacles than the potential method?” As one

answer to this research question, we focus on an angular

obstacle design method of fluid dynamics. The reasons

for introducing fluid dynamics to swarm robots are two.

The first reason is the academic interest in incorpo-

rating the behavior of collections of active particles (ac-

tive matter) into swarm robot control. Theory of active

matter [13,14] analyzes the collections of active parti-

cles, including organic and inorganic matter and thus

covers a wide range of subjects such as fluid dynamics

and swarm robots. It is natural to apply control laws

that reflect the active matter to swarm robots, and this

leads to the integration of control engineering and fluid

mechanics. This paper focuses on the analogy between

swarms and fluids in obstacle avoidance.

The second reason is to propose a new obstacle

avoidance method for swarm robots. Previous studies

applying fluid properties to swarm robot control have

been done in the literature [15,16]. The previous study

[15] applies the MPS (Moving Particle Semi-implicit)

method, a fluid analysis method for incompressible flu-

ids, to swarm robotics control. Based on the discussion

in Reference [15], Reference [16] verifies through nu-

merical experiments whether the pressure calculation

between particles of the MPS method is applicable for

the collision avoidance for swarm robots. This paper

tries to remove some assumptions made in [15,16] when

applying the MPS method to swarm robots and then

to realize an obstacle avoidance method that better re-

flects fluid characteristics.

The challenge for swarm robots to realize fluidic

phenomenon is to perform pressure calculations in a

distributed manner. In [15,16], the fluid pressure is cen-

trally calculated at the same time as the swarm robots

are centrally controlled. The behavior of active parti-

cles in fluid depends on the interaction between them,

which is a distributed control aspect. Therefore, the

decentralized control collision avoidance method repro-

ducing the fluid behaviors is this paper’s novelty and

advantage compared to the centralized methods in [15,

16]. As a first step in our study, this paper implements

an approximate distributed calculation of the particle

pressures by the potential function.

Also, this paper introduces Polygon-Wall [17], an

obstacle design method different from the previous stud-

ies [15,16], to swarm robots. The MPS method de-

termines the pressure value of each particle and the

pressure gradient prevents particles from colliding with

each other. This concept of collision avoidance between

particles is also used for avoidance against obstacles.

Meanwhile, its obstacle boundaries are not smooth. To

resolve the disadvantage, reference [17] proposes the

concept of Polygon-Wall. Polygon-Wall has a smooth

obstacle boundaries and calculates the repulsion force

from the obstacle only using the distance between the

particle and the obstacle.

Further, this paper compares the proposed method

based on the Polygon wall with the potential method

in terms of configuration parameters. Reference [8] pro-

poses an obstacle avoidance method using a time-varying

potential function. This method is helpful for avoid-

ing angular obstacles, but, has a difficulty of parameter

settings. Meanwhile, the proposed method only needs

to distance sensors from an obstacle, regardless of the

shape of the obstacle. This may make it easier to design

angular obstacles than reference [8]. In this paper, the

angular obstacle avoidance in [8] is compared with the

proposed method. This paper deals with multitasking

such as maintaining formation, reaching the target po-

sition, and obstacle avoidance. For multitasking, fewer

design parameters for each control input are more ef-

fective. Using numerical experiments, we show that the

proposed parameter configurations for angular obsta-

cles become easier than the potential method.

The organization of this paper is as follows. Section

2 describes the basic theories used in this paper. Sec-

tion 3 describes the problem setting. Section 4 describes

the proposed method based on Section 2. In Section 5,

numerical experiments are conducted using MATLAB

and the conclusion of this paper is given in Section 6.

2 Preliminaries

This section describes the basic theories behind the

MAS and MPS method used in the proposed method

[17–19].

2.1 Graph Theory

The structure of network communication among agents

is represented using graph G = (V,E) composed of the

vertex set V = {1, 2, · · · , n} and the edge set E ⊆ V ×
V . For agent i(∈ V ) and j(∈ V ), (i, j) ∈ E indicates

that there is an information transfer path between the

two agents. In this case, agent i and j are neighbors. A
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graph G in which all information transfer paths are bi-

directional is called an undirected graph. An adjacent

matrix A = [aij ] ∈ Rn×n is defined as follows:

aij =

{
1 if (j, i) ∈ E and i ̸= j

0 otherwise
. (1)

The degree matrix D is defined by the number dini of

edges entering vertex i as follows:

dini =

n∑
j=1

aij , i = 1, 2, · · · , n,

D = diag
(
din1 , din2 , · · · , dinn

)
.

From the adjacent matrix A and the degree matrix D,

the Graph Laplacian L and Perron matrix P are given

by

L = D −A,

P = I − εL

where I is the identity matrix and ε (0 < ε < 1) is

some positive number.

2.2 Consensus Control

The dynamics of agent i (= 1, 2, · · · , n) is defined by a

discrete-time integral system as follows:

xi[k + 1] = xi[k] + ui[k]

where xi is the state variable and ui is the control input

of agent i.

Let d be the offset, The control input ui of the offset-

aware consensus control is given by

ui[k] = −ε

n∑
j=1

aij (xi[k]− xj [k]− d)

= −ε

n∑
j=1

aij (xi[k]− xj [k]) + bi, (2)

bi = εd

n∑
j=1

aij .

In Eq. (2), bi does not contribute to stability. Consid-

ering bi = 0 and summing up the states of all agents,

the state equation of consensus is represented by

x[k + 1] = Px[k]. (3)

Since Perron matrix P always have eigenvalues of 1,

the relationship is given by

P1n = 1n. (4)

In Eqs. (3) and (4), when k → ∞, we get

lim
k→∞

x[k + 1] =
1

n
1n1

T
nx0,

lim
k→∞

xi[k + 1] =
1

n

n∑
j=1

x0j .

Thus, the target system achieves the average consensus

in the case that the undirected graph representing the

inter-agent networks are connected.

2.3 Polygon-Wall in MPS method

MPS method is a typical fluid dynamics method. In

this method, fluid is calculated as a collection of fluid

particles.

As governing equations for incompressible fluids, Navier-

Stokes equations and continuity equation are given by

Dv

Dt
= −1

ρ
∇P + ν∇2v + g, (5)

Dρ

Dt
= 0

where v is the fluid velocity, ρ is the density of the

fluid, ν is the kinematic viscosity coefficient and g is the

gravitational acceleration. The first term on the right-

hand side of Eq. (5) is called the pressure term, the

second is the viscosity term, and the third is the ex-

ternal force term. There are two calculation processes

for MPS method: explicit and implicit. As an explicit,

the method calculates the viscosity and external force

terms. From the calculation results, the tentative posi-

tion and velocity of the particles are determined. As an

implicit, the method calculates the pressure term. From

the calculation results, the particle information is up-

dated as to its true position and velocity. In the pressure

term, collision avoidance is based on the pressure gra-

dient between particles by deriving the pressure value

for each particle. In addition, the conventional MPS

method represents obstacles as a collection of particles.

However, this method has the problem that the obstacle

wall boundaries are not smooth. Therefore, the paper

[17] proposes a method to represent the boundary using

the concept of Polygon-Wall. This subsection focuses on

the calculation of the pressure term in Eq. (5).

MPS method uses a weight function as an indicator

of the influence of particles on each other. The weight

function w which depends on the distance between par-

ticles is given by

w(rij) =

{(
1− rij

re

)2

0 ≤ rij ≤ re

0 rij > re
(6)

where rij is the distance between particles i and j, re
is the effective radius.

In addition, the particle number density ni is an

indicator of the degree to which particles are densely

concentrated around particle i. In Eq. (6), we get

ni =
∑
j ̸=i

w (rij) . (7)
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Before starting the calculation, we arrange particles in

a grid. The particle number density of the particles in

the center of the initial arrangement is used as n0.

In Eq. (5), the discretized model for particle i is

given by

Dvi

Dt
= −1

ρ
⟨∇P ⟩i + ν

〈
∇2v

〉
i
+ g, (8)

⟨∇P ⟩i =
d

n0

∑
j ̸=i

[
Pj − Pi

r2ij
rijw (rij)

]
where rij is the relative vector from particle i to particle

j, d is the number of dimensions and Pi, Pj are the

pressure values of particles i and j.

Discretizing Eq. (8) by the forward Euler method

based on the time axis, we get

vi[k + 1] = vi[k] + ufluid
i [k], (9)

ufluid
i [k] = ∆t

[
−1

ρ
⟨∇P ⟩k+1

i + v
〈
∇2v

〉k
i
+ g

]
. (10)

We describe how to obtain the pressure values in

MPS method. To find the pressure values, the Poisson

equation is given by

−1

ρ
⟨∇2P ⟩i =

1

∆t2
n∗ − n0

n0
(11)

⟨∇2P ⟩i =
2d

λn0

∑
j ̸=i

(Pj − Pi)w
(
r∗ij

)
λ =

∑
j ̸=i′ r

0
i′j

2
w
(
r0i′j

)
∑

j ̸=i′ w
(
r0i′j

)
where n∗ is the particle number density with respect to

the tentative position.

From Eq. (11), we obtain

−1

ρ

2d

λn0

∑
j ̸=i

(Pj − Pi)w
(
r∗ij

)
=

1

∆t2
n∗ − n0

n0
. (12)

We extract the coefficients for each pressure in Eq. (12),

we get

api1P1 + api2P2 + · · ·+ apiiPi + · · ·+ apiNPN = bi,

apij =

{
− 1

ρ
2d
λn0w

(
r∗ij

)
(j ̸= i)

1
ρ

2d
λn0

∑
j′ ̸=i w

(
r∗ij

)
(j = i)

,

bi =
1

∆t2
n∗ − n0

n0
.

Let Ap = [apij ] ∈ RN×N , x = [Pi] ∈ RN and b = [bi] ∈
RN , simultaneous linear equations is given by

Apx = b. (13)

The pressure values for all particles are obtained by

solving Eq. (13) using the conjugate gradient method

or other methods.

Fig. 1: Classification of regions where particles are

present

We explain obstacle avoidance in MPS method. By

classifying the region of particle presence into fluid re-

gion Ωf and wall region Ωw in Fig. 1, Eq. (7) can be

rewritten by

ni =
∑

j ̸=i,j∈Ωf

w (rij) +
∑

j ̸=i,j∈Ωw

w (rij) , (14)

Z(riw) =
∑

j ̸=i,j∈Ωw

w (riw) (15)

where riw is the distance from particle i to the wall. The

first term on the right side of Eq. (14) considers colli-

sion avoidance between particles and the second term

considers collision avoidance with walls. Eq. (15) can

be calculated using only the distance from the particle

to the wall by pre-computing different values for the

distance.

We decompose the pressure term in Eq. (8) in each

region, we obtain

⟨∇P ⟩i = ⟨∇P ⟩i,Ωf
+ ⟨∇P ⟩i,Ωw

,

⟨∇P ⟩i,Ωf
=

d

n0

Pj − Pi

r2ij
rijw (rij) , (16)

⟨∇P ⟩i,Ωw
=

d

n0

Pwall − Pi

r2iw
riwZ (riw) (17)

where Pwall is the pressure from the wall and riw is the

vertical vector from the wall to particle i.

Fig. 2: Calculating the pressure from the wall to particle

i

The following is a method for calculating Pwall in

Eq. (17). In Fig. 2, particle i moves a certain distance
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H during time ∆t due to the influence from the wall.

In this case, we obtain

dri = −∆t2

ρ
⟨∇P ⟩i,Ωw

= −∆t2

ρ

d

n0

Pwall − Pi

r2iw
riwZ (riw)

=
riw
riw

(H − riw) .

Solving for Pwall, we get

Pwall = Pi −
ρ

∆t2
n0

d

riw
Z (riw)

(H − riw) . (18)

We substitute Eq. (18) into Eq. (17), we obtain

⟨∇P ⟩i,Ωw
= − ρ

∆t2
riw
riw

(H − riw) . (19)

Eq. (19) represents the repulsive force exerted on the

particle by the Polygon-Wall.

3 Problem Setting

This section sets up the situation shown in Fig. 3. We

consider a diamond-shaped obstacle as an angular ob-

stacle on a two-dimensional plane. Swarm robots in col-

umn formation move straight ahead in the positive di-

rection of the x-axis in such an environment. Column

formation means that N(= m × n) robots are aligned

vertically in m rows and horizontally in n rows. Each

robot has sensors that acquire information about its

surroundings and measure the distance from the robot

to wall obstacles.

Fig. 3: Problem Environment

Let the set of robots be V = {1, 2, · · · , N}, the dy-

namics of robot i ∈ V at discrete-time integral systems

k ∈ N is given by

pi[k + 1] = pi[k] + ui[k], (20)

pi[k] =
[
pix[k] piy[k]

]T
,

ui[k] = uf
i [k] + ug

i [k] + uc
i [k] + uo

i [k] (21)

where pix[k], piy[k] are x, y coordinates of robot i, u
f
i [k] ∈

R2 is the control low for staying formation, ug
i [k] ∈ R2

is the control low for reaching the target, uc
i [k] ∈ R2

is the control low for avoiding collision between robots

and uo
i [k] ∈ R2 is the control low for avoiding obstacle.

In Eqs. (9), (10), (20) and (21), there is the analogy

between swarm robots and fluid dynamics. The inputs

uc
i [k] and uo

i [k] of (21) correspond to the pressure term

of (10), which relizes collision avoidance with particles

and obstacles based on the pressure gradient. The input

uf
i [k] of (21) corresponds to the viscosity term of (10),

which adjusts velocities between particles. The position

tracking input ug
i [k] of (21) corresponds to the external

force term of (10), which is the effects of gravity. On

the other hand, there is a gap between the centralized

pressure calculation of particles in (13) and decentral-

ized collision avoidance within robots in uo
i [k]. The aca-

demic interest in this study is a new collision avoidance

method using this gap.

In Eqs. (20) and (21), the states of all robots verti-

cally are given by

p[k + 1] = p[k] + uf [k] + ug[k] + uc[k] + uo[k].

3.1 Formation Control

Information transfer path of swarm robots is undirected

and connected graph as shown Fig. 4. For the direction

of movement, let Ni = {Ri, Li, Fi, Bi} be the set of

robots located in each direction. Also, the adjacency

matrix A = [aij ] ∈ RN×N representing the connection

state to the robot included in Ni is defined as follows:

aij =

{
1 if pij ≤ S

0 otherwise
, j ∈ Ni

where pij is the distance between robot i and robot

j, S(> 0) is the sensor’s range of a robot. The reason

for introducing parameter S is to compare this paper’s

method with the formation control method proposed in

the previous study [8]. The fixed graph that does not

depend on S is also acceptable.

Fig. 4: Network structure between robots

Each robot maintains the desired distance d∗ from

its neighbors. A set of vectors representing the desired
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distances for the robots included in Ni is defined as

follows:

dRi =

[
0

d∗

]
, dLi =

[
0

−d∗

]
,

dFi
=

[
−d∗

0

]
, dBi

=

[
d∗

0

]
.

(22)

The following equation must be satisfied for swarm robots

to maintain column formation.

lim
k→∞

∥p̂i[k]− p̂j [k]∥ = 0, j ∈ Ni (23)

where p̂i[k] (= pi[k]− dj/2) , p̂j [k] (= pj [k] + dj/2) are

the target relative vectors.

According to Section 2.2, Eqs. (22) and (23), the

control law for staying the formation is given by

uf
i [k] = −ε

∑
j∈Ni

aij [k] (pi[k]− pj [k]− dj) (24)

where dj (j ∈ {Ri, Li, Fi, Bi}) is given by (22) [20,21].

Also, Eq. (24) is proportional to the magnitude of

the displacement between the distance between the robots

and the desired distance. In other words, the displace-

ment changes the attraction of the formation control.

In reference [8], to mitigate this change in input uf
i [k],

the adjacency matrix A[k] = [aij [k]] ∈ RN×N is given

by

aij [k] =

{
exp (− |pij [k]− d|) if pij [k] ≤ S

0 otherwise
, j ∈ Ni.

3.2 Reaching the Target Position

This paper uses the potential method to get the robot to

the target position. In this case, gravitational potential

function V g
i (r) and control low ug

i [k] for robot i is given

by

V g
i (r) = kg

∥∥x− xi
g

∥∥2
ug
i [k] = − α

∂V g
i (r)

∂r

∣∣∣∣T
pi[k]

where r = [x y]T, kg ∈ R+ is the adjustment parameter,

xi
g is the target x-coordinate and α is the step size. Let

xg be the criterion of the target positions, the target

x-coordinate of the n′ th from the first column is xi
g =

xg − (n′ − 1)d∗ [8].

4 Main Result

This section describes the solutions to issues addressed

in this study. The first is a design method for obstacles

with angular shape, and the second is to incorporate

fluid dynamics methods for distributed control. For the

first issue, the concept of Polygon-Wall in MPS method

described in Section 2.3 is applied to the control of

swarm robots. The second issue is addressed by sub-

stituting the centralized computation process of MPS

method in other way.

4.1 Obstacle Avoidance

This subsection describes two design methods of diamond-

shaped obstacle. Section 4.1.1 is an approximate design

method using the time-varying potential function of [8].

Section 4.1.2 describes the Polygon-Wall based method

proposed in this paper. Also, this subsection compares

the parameter properties of the two design methods.

4.1.1 Conventional Method

In reference [8], obstacle avoidance is performed by as-

signing weights to exponential potential function. Rel-

ative angle θgoi between the direction of movement and

the obstacle with respect to robot i is used to design the

weight. Thus, θgoi needs the obstacle’s position. Using

this method, a diamond-shaped obstacle is represented

by varying the major and minor axes with respect to

an ellipse. Referring to design methods in reference [8],

time-varying potential function V o
i (r) and control law

uo
i [k] are given by

V o
i (r) = kow(θ

go
i )

exp

[
−

{(
x− pox
σo + σ

)2

+

(
y − poy
σo − σ

)2
}]

,

σ =
kσR

r
|θs − θgoi | ,

w(θgoi ) = exp (kθ |θs − θgoi |) ,

uo
i [k] = − α

∂V o
i (r)

∂r

∣∣∣∣T
pi[k]

(25)

where ko, σo, kσ, kθ ∈ R+ are the adjustment parame-

ters, po = [pox poy]
T is the position of obstacle and r,R

are the sizes of the robot and obstacle, respectively. In

Eq. (25), the obstacle size R determines the magnitude

of σ. Peculiar shaped obstacles make it difficult to mea-

sure the position po and the size R of the obstacle.

4.1.2 Proposed Method

In paper study, we introduce the concept of Polygon-

Wall in fluid dynamics to swarm robots as an avoidance

method for angular obstacles. Using the theory in Sec-

tion 2.3, we can obstacles design more easily than with

traditional potential function. We use Eq. (19) that rep-

resents the repulsive force against the Polygon-Wall.
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Repulsive force ⟨∇P ⟩i,Ωw in Eq. (19) allows us to de-

sign even diamond-shaped obstacle and to determine

the strength of the weights independently of the size of

the obstacle. In Fig. 5, control law uo
i [k] for obstacle

avoidance using the concept of Polygon-Wall is given

by

uo
i [k] =

{
−kw

piw[k]
piw[k] (H − piw[k]) if piw[k] < H

0 otherwise
(26)

where kw, H ∈ R+ are the adjustment parameters, piw[k]

is the vertical vector from the wall to robot i and piw[k]

is the distance between robot i and the wall. ρ
∆t2 , riw

and riw of (19) are replaced by kw, piw[k], and piw[k],

respectively. This proposed method requires a sensor

acquiring piw even if the obstacles are peculiar shaped.

Fig. 5: Generation of repulsion by Polygon-Wall

4.2 Collision Avoidance between Robots

This subsection describes collision avoidance between

robots. In this paper, the fluid dynamics method is in-

troduced for swarm robots. In the existing studies [15,

16], MPS method is applied directly to the control of

swarm robots. However, as explained in Section 2.3,
MPS method is a centralized control that aggregates

information from all robots in the process of pressure

calculation. By substituting other methods for the pro-

cess of pressure calculation, distributed control may be

maintained when MPS method is applied to control of

swarm robots. Since the pressure gradient between the

particles prevents the particles from colliding with each

other, this paper replaces the computation of pressure

gradients with the computation of potential functions.

Therefore, in this paper, the conventional poten-

tial function is used for collision avoidance between

robots. Repulsive potential function V c
i (r) and control

law uc
i [k] for collision avoidance between robots are

V c
i (r) =

∑
j∈Ñi[k]

kce
−∥r−pj∥2

σc2 ,

uc
i [k] = − α

∂V c
i (r)

∂r

∣∣∣∣T
pi[k]

where kc, σc ∈ R+ are the adjustment parameters [22].

5 Numerical Experiment

In paper study, MATLAB is used as the analysis soft-

ware for simulation. Two types of control laws uo
i [k]

(Conventional:(25), Proposed:(26)) for obstacle avoid-

ance are used and compared in the problem setup in

Section 3. In addition, this paper conducts on the case

with three differently shaped obstacles to demonstrate

the effectiveness of a proposed method (26).

5.1 One Diamond-shaped Obstacle

The parameters used in each numerical experiment are

shown in Table 1. Parameter values are determined by

trial and error. Fig. 6 shows snapshots of swarm robots

in each step. The trajectory of swarm robots is shown

in the upper parts of Fig. 7 and it means the solid

black line connecting the plot points at each step of the

robot. Since the main topic of this paper is collision

avoidance, we calculate relative distances to obstacles

and other robots. Focusing on a specific robot (ID: 59),

the lower parts of Fig. 7 shows the distances between it

and its neighbors N59 = {19, 58, 60, 99}, and between

it and the obstacle wall.

Table 1: Parameters

parameter value

N,m, n 1600, 40, 40
d∗ 1
ϵ, α, S 0.2, 0.005, 50

s, t 6, 6
√
3

xg 500
po [59.5 170]T

kg, kc, σc 0.01, 1, 0.5
ko, σo, kσ, kθ 800, 2, 0.025, 0.001
r,R 0.1, (s/2 + t/2)/2
kw, H 0.4, 1

Figs. 6 and 7 show that the obstacle avoidance method

using Polygon-Wall proposed in this paper avoids ob-

stacles in the same way as the conventional potential

method. Compared to the conventional method [8], the

proposed method requires fewer parameters. Also, no

information on the relative angle and the size to the ob-

stacle is required and the swarm robots can avoid even

diamond-shaped obstacles. In addition, we can apply

the Polygon-Wall-based obstacle avoidance method to

swarm robots in a distributed manner.

Fig. 7 shows the trajectory of Robot 59 (solid blue

line) and the relative distances to N59 and the obsta-

cle. Since the radius of the circular robot is r = 0.1 in
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(a) Conventional [8]

(b) Proposed

Fig. 6: Snapshots of swarm robots at each step

Table 1, the lower parts of Fig. 7b show that the pro-

posed method (26) does not collide with other robots

and obstacles.

These numerical experiments with one diamond-shaped

obstacle show that the proposed method (26) can achieve

obstacle avoidance and parameter reduction compara-

ble to the conventional method (25) without collisions.

5.2 Three Differently-Shaped Obstacles

This paper conducts an additional numerical experi-

ment to verify that the proposed method (26) avoids

swarm robots along the walls of the obstacles. Fig. 8

shows the case with three differently-shaped obstacles.

For diamond, circular and isosceles right triangle-shaped

obstacles, the positions are po1,po2,po3, and the sizes

are R1, R2, R3, respectively. Table 2 shows the parame-

ters, the upper parts of Figs. 9 and 10 show the trajec-

tories of swarm robots. Also, we calculate the relative

distances as Section 5.1. Focusing on specific robots

Trajectory

Neighbors Diamond

(a) Conventional [8]

Trajectory

Neighbors Diamond

(b) Proposed

Fig. 7: Trajectory and Relative Distance (ID:59)

(ID: 49, 73), the lower parts of Figs. 9 and 10 show

the distances between them and their neighbors N49 =

{9, 48, 50, 89},N73 = {33, 72, 74, 113}, and between them

and the obstacle wall.

Fig. 8: Problem Environment
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Table 2: Parameters

parameter value

N,m, n 1600, 40, 40
d∗ 1
ϵ, α, S 0.2, 0.005, 50
xg 500
po1,po2,po3 [59.5 170]T, [75 180.5]T, [78.6 157.2]T

kg, kc, σc 0.01, 1, 0.5
ko, σo, kσ, kθ 800, 2, 0.025, 0.001
r,R1, R2, R3 0.1, 4.1, 2.5, 1.4
kw, H 0.4, 1

Trajectory

Neighbors Circular

(a) Conventional [8]

Trajectory

Neighbors Circular

(b) Proposed

Fig. 9: Trajectory and Relative Distance (ID:49)

The upper parts of Figs. 9 and 10 show that the

trajectories of Robot 49, 73 (solid blue line). These show

that the conventional method (25) avoids obstacles with

Trajectory

Neighbors Isosceles Right Triangle

(a) Conventional [8]

Trajectory

Neighbors Isosceles Right Triangle

(b) Proposed

Fig. 10: Trajectory and Relative Distance (ID:73)

a large turn, but the proposed method (26) avoids them

along the walls of the obstacles. The lower parts of Figs.

9, 10 show the relative distances to N49,N73 and the

obstacle. The lower parts of Figs. 9b and 10b show that

the proposed method (26) does not collide with other

robots and obstacles.

These numerical experiments with three differently-

shaped obstacle show that the proposed method (26)

can reduce the parameters while maintaining the avoid-

ance performance comparable to the conventional method

(25). Also, it is possible to realize avoidance with less

detours along the shape of obstacles than the conven-

tional method (25).

From the above results, Polygon-Wall is an effective

solution to the research question of this paper. Mean-

while, replacing the pressure calculations by the calcu-

lations of potential functions remains a challenge. To
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adequately reflect fluid characteristic in swarm robots,

we need to solve Eq. (13) in a distributed manner. This

is a work for future research.

6 Conclusion

This paper has applied the concept used in fluid dy-

namics to swarm robots. The obstacle of Polygon-Wall

allows angular obstacles to be designed more easily than

with traditional potential methods. The partial incor-

poration of a fluid dynamics method into the control of

swarm robots also helps to maintain distribution.Our

future work is to calculate pressures in a distributed

manner to better reflect fluid characteristics.
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